organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of N-eth­­oxy­carbonyl-N′-(3-phenyl-1H-1,2,4-triazol-5-yl)thio­urea

aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, and cPerm State Pharmaceutical Academy, 2 Polevaya Street, Perm 614990, Russian Federation
*Correspondence e-mail: dolzhenkoav@gmail.com

(Received 28 June 2010; accepted 2 July 2010; online 10 July 2010)

The title compound, C12H13N5O2S {systematic name: ethyl N-[N-(3-phenyl-1H-1,2,4-triazol-5-yl)carbamothio­yl]carbamate}, is a monoclinic polymorph (space group P21/c) which crystallizes with three similar independent mol­ecules in the asymmetric unit. The triazole ring makes dihedral angles of 6.6 (2), 8.4 (2) and 10.6 (2)° with the phenyl ring in the three independent molecules. The structure was previously reported [Dolzhenko et al. (2010a[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010a). Acta Cryst. E66, o425.]). Acta Cryst., E46, o425] as a triclinic polymorph crystallizing in space group P[\overline{1}]. Mol­ecules in both polymorphs possess two S(6) rings generated by intra­molecular N—H⋯S and N—H⋯O hydrogen bonds, resulting in similar mol­ecular geometries. However, the two polymorphs differ in the crystal packing. In contrast to the dimers of the triclinic polymorph, mol­ecules of the monoclinic polymorph are connected by inter­molecular N—H⋯S and N—H⋯N hydrogen bonds, forming pseudosymmetric trimers arranged in sheets parallel to (302).

Related literature

For the synthesis, tautomerism and crystal structure studies of related 1,2,4-triazoles, see: Dolzhenko et al. (2007[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Tetrahedron, 63, 12888-12895.], 2009a[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009a). Tetrahedron Lett. 50, 2124-2128.],b[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009b). Acta Cryst. E65, o126.],c[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009c). Acta Cryst. E65, o125.]). For the crystal structure of the triclinic polymorph, see: Dolzhenko et al. (2010a[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010a). Acta Cryst. E66, o425.]). For the crystal structure of N-carbeth­oxy-N′-(3-aryl-1H-1,2,4-triazol-5-yl)thio­urea, see: Dol­zhenko et al. (2010b[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010b). Acta Cryst. E66, o549-o550.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N5O2S

  • Mr = 291.33

  • Monoclinic, P 21 /c

  • a = 13.4743 (6) Å

  • b = 20.4817 (9) Å

  • c = 15.0266 (7) Å

  • β = 104.040 (1)°

  • V = 4023.1 (3) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 223 K

  • 0.56 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.872, Tmax = 0.971

  • 28189 measured reflections

  • 9216 independent reflections

  • 5772 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.164

  • S = 1.03

  • 9216 reflections

  • 598 parameters

  • 86 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯S1 0.90 (1) 2.44 (3) 2.978 (2) 119 (2)
N8—H8N⋯S2 0.90 (1) 2.42 (3) 2.975 (2) 121 (2)
N13—H13N⋯S3 0.90 (1) 2.44 (3) 2.997 (2) 120 (2)
N8—H8N⋯S3 0.90 (1) 2.44 (2) 3.253 (2) 150 (2)
N3—H3N⋯S2i 0.90 (2) 2.43 (2) 3.238 (2) 151 (2)
N13—H13N⋯S1ii 0.90 (2) 2.49 (3) 3.306 (3) 151 (2)
N4—H4N⋯O2 0.89 (1) 1.94 (2) 2.661 (3) 137 (2)
N9—H9N⋯O4 0.90 (1) 1.91 (2) 2.648 (3) 138 (2)
N14—H14N⋯O6 0.89 (1) 1.90 (2) 2.619 (3) 136 (2)
N10—H10N⋯N2ii 0.89 (2) 2.51 (2) 3.390 (3) 170 (2)
N15—H15N⋯N7 0.89 (2) 2.31 (2) 3.197 (3) 180 (3)
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our studies on the triazole tautomerism in solution and crystals (Dolzhenko et al., 2009a,b,c), we reported recently the crystal structure of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea, which crystallized in the triclinic P1 space group (Dolzhenko et al., 2010a). Herein, we present a new monoclinic polymorph of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea, which crystallized in the P21/c space group with three similar crystallographically independent molecules in the asymmetric unit (Fig. 1). The molecules in both polymorphs exist in the same tautomeric form and possess similar molecular geometry.

In both polymorph, the N—H···S hydrogen bonds between the endocyclic NH group of the triazole ring and the thioureido sulfur atom (Fig. 2 and Table 1) are arranged in a S6 graph-set motif (Bernstein et al., 1995) stabilizing the tautomer structure. The general configurations of the carbethoxythiourea group in the title molecule replicate that of previously reported for triclinic polymorph (Dolzhenko et al., 2010a) and a similar structure (Dolzhenko et al., 2010b). The strong intramolecular hydrogen bonding between carbonyl oxygen atom and thiourea NH group arranged in S(6) graph-set motif which is common for carbethoxythioureas (Dolzhenko et al., 2010a,b). In the three independent molecules, the triazole ring make dihedral angles of 6.6 (2)°, 8.4 (2)° and 10.6 (2)° with the corresponding phenyl rings [cf. 6.59 (10)° for the triclinic polymorph (Dolzhenko et al., 2010a)].

The monoclinic and triclinic polymorphs are significantly different in crystal packing. In contrast to the dimers of triclinic polymorph (Dolzhenko et al., 2010a), molecules of monoclinic polymorph are connected with intermolecular hydrogen bonding of the CS···H—N—N···H—N pattern forming pseudosymmetric trimer structures arranged in sheets parallel to the (302) plane.

Related literature top

For the synthesis, tautomerism and crystal structure studies of related 1,2,4-triazoles, see: Dolzhenko et al. (2007, 2009a,b,c). For the crystal structure of the triclinic polymorph, see: Dolzhenko et al. (2010a). For the crystal structure of N-carbethoxy-N'-(3-aryl-1H-1,2,4-triazol-5-yl)thiourea, see: Dolzhenko et al. (2010b). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by nucleophilic addition of 3(5)-amino-5(3)-phenyl-1H-1,2,4-triazole (Dolzhenko et al., 2007), to ethoxycarbonyl isothiocyanate in DMF solution at room temperature (Fig.3). Single crystals suitable for crystallographic analysis were grown by recrystallization from toluene.

Refinement top

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.94 Å for Caryl–H, 0.98 Å for methylene H atoms and 0.97 Å for methyl groups; Uiso(H) = 1.2Ueq(Caryl and Cmethylene) and 1.5Ueq(Cmethyl)] while the N-bound H atoms were located in a difference map and refined with restraints in bond length and thermal parameters. One of the ethoxy -OCH2CH3 group is disordered over two orientations with occupancies of 0.634 (7) and 0.366 (7). The corresponding bond distances in the disorder components were restrained to be the same. The Uij parameters of disordered atoms were restrained to an approximate isotropic behaviour.

Structure description top

In our studies on the triazole tautomerism in solution and crystals (Dolzhenko et al., 2009a,b,c), we reported recently the crystal structure of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea, which crystallized in the triclinic P1 space group (Dolzhenko et al., 2010a). Herein, we present a new monoclinic polymorph of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea, which crystallized in the P21/c space group with three similar crystallographically independent molecules in the asymmetric unit (Fig. 1). The molecules in both polymorphs exist in the same tautomeric form and possess similar molecular geometry.

In both polymorph, the N—H···S hydrogen bonds between the endocyclic NH group of the triazole ring and the thioureido sulfur atom (Fig. 2 and Table 1) are arranged in a S6 graph-set motif (Bernstein et al., 1995) stabilizing the tautomer structure. The general configurations of the carbethoxythiourea group in the title molecule replicate that of previously reported for triclinic polymorph (Dolzhenko et al., 2010a) and a similar structure (Dolzhenko et al., 2010b). The strong intramolecular hydrogen bonding between carbonyl oxygen atom and thiourea NH group arranged in S(6) graph-set motif which is common for carbethoxythioureas (Dolzhenko et al., 2010a,b). In the three independent molecules, the triazole ring make dihedral angles of 6.6 (2)°, 8.4 (2)° and 10.6 (2)° with the corresponding phenyl rings [cf. 6.59 (10)° for the triclinic polymorph (Dolzhenko et al., 2010a)].

The monoclinic and triclinic polymorphs are significantly different in crystal packing. In contrast to the dimers of triclinic polymorph (Dolzhenko et al., 2010a), molecules of monoclinic polymorph are connected with intermolecular hydrogen bonding of the CS···H—N—N···H—N pattern forming pseudosymmetric trimer structures arranged in sheets parallel to the (302) plane.

For the synthesis, tautomerism and crystal structure studies of related 1,2,4-triazoles, see: Dolzhenko et al. (2007, 2009a,b,c). For the crystal structure of the triclinic polymorph, see: Dolzhenko et al. (2010a). For the crystal structure of N-carbethoxy-N'-(3-aryl-1H-1,2,4-triazol-5-yl)thiourea, see: Dolzhenko et al. (2010b). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal packing of the title compound, viewed along the c axis.
[Figure 2] Fig. 2. Synthesis of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea
ethyl N-[N-(3-phenyl-1H-1,2,4-triazol-5- yl)carbamothioyl]carbamate top
Crystal data top
C12H13N5O2SF(000) = 1824
Mr = 291.33Dx = 1.443 Mg m3
Monoclinic, P21/cMelting point: 454 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.4743 (6) ÅCell parameters from 3587 reflections
b = 20.4817 (9) Åθ = 2.4–21.7°
c = 15.0266 (7) ŵ = 0.25 mm1
β = 104.040 (1)°T = 223 K
V = 4023.1 (3) Å3Rod, colourless
Z = 120.56 × 0.24 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
9216 independent reflections
Radiation source: fine-focus sealed tube5772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1717
Tmin = 0.872, Tmax = 0.971k = 2526
28189 measured reflectionsl = 1119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.4202P]
where P = (Fo2 + 2Fc2)/3
9216 reflections(Δ/σ)max = 0.001
598 parametersΔρmax = 0.85 e Å3
86 restraintsΔρmin = 0.52 e Å3
Crystal data top
C12H13N5O2SV = 4023.1 (3) Å3
Mr = 291.33Z = 12
Monoclinic, P21/cMo Kα radiation
a = 13.4743 (6) ŵ = 0.25 mm1
b = 20.4817 (9) ÅT = 223 K
c = 15.0266 (7) Å0.56 × 0.24 × 0.12 mm
β = 104.040 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
9216 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5772 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.971Rint = 0.055
28189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06386 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.85 e Å3
9216 reflectionsΔρmin = 0.52 e Å3
598 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.20531 (6)0.64994 (3)0.06103 (6)0.0441 (2)
S20.17227 (7)0.48747 (3)0.97238 (6)0.0513 (2)
S30.31718 (9)0.53635 (4)0.83353 (7)0.0713 (3)
O10.23376 (15)0.88193 (8)0.06109 (14)0.0410 (5)
O20.17439 (15)0.85011 (9)0.06024 (14)0.0404 (5)
O30.04408 (16)0.38003 (9)1.20243 (14)0.0455 (5)
O40.06816 (16)0.30621 (9)1.09867 (14)0.0445 (5)
O60.4656 (2)0.50555 (10)0.59819 (18)0.0682 (7)
N10.07377 (17)0.68052 (10)0.18244 (15)0.0328 (5)
N20.07758 (18)0.57196 (10)0.15331 (16)0.0369 (5)
N30.11842 (18)0.60701 (10)0.09369 (16)0.0347 (5)
H3N0.1465 (19)0.5860 (12)0.0535 (15)0.042*
N40.15156 (17)0.72134 (10)0.06799 (16)0.0327 (5)
H4N0.144 (2)0.7611 (7)0.0893 (18)0.039*
N50.21787 (18)0.77628 (10)0.03862 (16)0.0354 (5)
H5N0.244 (2)0.7715 (14)0.0874 (13)0.043*
N60.21916 (17)0.28401 (10)0.88026 (16)0.0339 (5)
N70.28571 (17)0.35600 (10)0.79634 (16)0.0372 (5)
N80.24310 (17)0.38767 (10)0.85782 (16)0.0353 (5)
H8N0.243 (2)0.4314 (5)0.860 (2)0.042*
N90.15402 (17)0.35768 (10)0.97396 (16)0.0340 (5)
H9N0.1309 (19)0.3232 (9)0.9998 (18)0.041*
N100.09302 (18)0.41605 (10)1.08206 (16)0.0361 (5)
H10N0.087 (2)0.4548 (8)1.1074 (18)0.043*
N110.40967 (17)0.69867 (10)0.67246 (16)0.0361 (5)
N120.34161 (18)0.74325 (10)0.78232 (18)0.0418 (6)
N130.34239 (19)0.67680 (10)0.78753 (17)0.0391 (6)
H13N0.318 (2)0.6556 (13)0.8300 (15)0.047*
N140.39497 (18)0.58664 (10)0.70279 (16)0.0349 (5)
H14N0.421 (2)0.5794 (14)0.6543 (13)0.042*
N150.37852 (18)0.47458 (10)0.70418 (17)0.0373 (6)
H15N0.353 (2)0.4418 (10)0.7300 (18)0.045*
C10.0235 (2)0.65393 (13)0.3321 (2)0.0389 (7)
H10.00210.69670.32390.047*
C20.0761 (2)0.64147 (14)0.3989 (2)0.0455 (7)
H20.09060.67560.43550.055*
C30.1069 (2)0.57897 (14)0.4112 (2)0.0483 (8)
H30.14200.57050.45690.058*
C40.0870 (2)0.52842 (14)0.3573 (2)0.0462 (8)
H40.10900.48580.36590.055*
C50.0343 (2)0.54099 (13)0.2905 (2)0.0409 (7)
H50.02030.50670.25380.049*
C60.0022 (2)0.60396 (12)0.27731 (19)0.0328 (6)
C70.0510 (2)0.61851 (12)0.20477 (19)0.0316 (6)
C80.11565 (19)0.67033 (12)0.11294 (18)0.0303 (6)
C90.1901 (2)0.71755 (12)0.00656 (19)0.0317 (6)
C100.2060 (2)0.83789 (12)0.0065 (2)0.0336 (6)
C110.2122 (2)0.94956 (12)0.0410 (2)0.0422 (7)
H11A0.25140.96180.02050.051*
H11B0.13920.95510.04410.051*
C120.2431 (2)0.99114 (13)0.1123 (2)0.0506 (8)
H12A0.31570.98580.10760.061*
H12B0.22861.03660.10240.061*
H12C0.20490.97780.17290.061*
C130.2936 (2)0.17599 (13)0.7891 (2)0.0432 (7)
H130.26750.16730.84040.052*
C140.3236 (3)0.12477 (14)0.7417 (2)0.0517 (8)
H140.31810.08170.76140.062*
C150.3612 (2)0.13640 (14)0.6660 (2)0.0491 (8)
H150.38090.10150.63340.059*
C160.3697 (3)0.20008 (15)0.6385 (2)0.0531 (8)
H160.39600.20860.58720.064*
C170.3401 (2)0.25111 (14)0.6854 (2)0.0460 (7)
H170.34590.29420.66560.055*
C180.3016 (2)0.23983 (12)0.7617 (2)0.0348 (6)
C190.2690 (2)0.29402 (12)0.81255 (19)0.0333 (6)
C200.2040 (2)0.34429 (12)0.90587 (19)0.0317 (6)
C210.1390 (2)0.41679 (12)1.00938 (19)0.0329 (6)
C220.0671 (2)0.36185 (13)1.1259 (2)0.0366 (6)
C230.0197 (3)0.32624 (14)1.2587 (2)0.0491 (8)
H23A0.06810.29021.26110.059*
H23B0.04950.30991.23230.059*
C240.0270 (3)0.35195 (17)1.3519 (3)0.0707 (11)
H24A0.09390.37141.37540.085*
H24B0.01740.31661.39190.085*
H24C0.02550.38471.34960.085*
C250.4554 (2)0.82809 (14)0.6144 (2)0.0499 (8)
H250.48520.79150.59330.060*
C260.4684 (3)0.88965 (16)0.5801 (3)0.0598 (9)
H260.50720.89480.53640.072*
C270.4241 (3)0.94289 (15)0.6103 (3)0.0633 (10)
H270.43210.98460.58690.076*
C280.3683 (3)0.93515 (15)0.6747 (3)0.0591 (10)
H280.33810.97180.69510.071*
C290.3559 (2)0.87429 (13)0.7100 (2)0.0485 (8)
H290.31810.86970.75460.058*
C300.3992 (2)0.82008 (13)0.6793 (2)0.0403 (7)
C310.3835 (2)0.75410 (12)0.7126 (2)0.0357 (6)
C320.3826 (2)0.65233 (12)0.72182 (19)0.0327 (6)
C330.3652 (2)0.53406 (12)0.7427 (2)0.0353 (6)
C340.4265 (3)0.46419 (14)0.6349 (2)0.0472 (8)
O50.4364 (4)0.4001 (3)0.6227 (3)0.0402 (13)0.634 (7)
C350.4867 (5)0.3865 (3)0.5460 (5)0.0637 (17)0.634 (7)
H35A0.45710.41460.49350.076*0.634 (7)
H35B0.56000.39590.56600.076*0.634 (7)
C360.4716 (6)0.3202 (3)0.5201 (5)0.0745 (18)0.634 (7)
H36A0.50420.31110.47050.089*0.634 (7)
H36B0.39890.31120.49980.089*0.634 (7)
H36C0.50150.29260.57220.089*0.634 (7)
O5A0.3960 (7)0.4021 (5)0.5995 (6)0.041 (2)0.366 (7)
C35A0.4221 (8)0.3748 (5)0.5141 (6)0.076 (3)0.366 (7)
H35C0.37520.33920.48840.091*0.366 (7)
H35D0.41660.40890.46750.091*0.366 (7)
C36A0.5241 (7)0.3513 (7)0.5415 (9)0.088 (3)0.366 (7)
H36D0.54450.33400.48860.106*0.366 (7)
H36E0.52810.31710.58690.106*0.366 (7)
H36F0.56940.38680.56790.106*0.366 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0679 (5)0.0275 (3)0.0481 (5)0.0027 (3)0.0359 (4)0.0004 (3)
S20.0890 (6)0.0220 (3)0.0586 (5)0.0087 (3)0.0485 (5)0.0055 (3)
S30.1328 (9)0.0264 (4)0.0852 (7)0.0089 (4)0.0859 (7)0.0078 (4)
O10.0559 (12)0.0216 (9)0.0544 (13)0.0001 (8)0.0309 (10)0.0031 (9)
O20.0540 (12)0.0286 (9)0.0454 (12)0.0025 (8)0.0254 (10)0.0023 (9)
O30.0715 (14)0.0304 (10)0.0441 (12)0.0072 (9)0.0322 (11)0.0013 (9)
O40.0625 (13)0.0262 (10)0.0512 (13)0.0044 (9)0.0263 (11)0.0021 (9)
O60.121 (2)0.0318 (11)0.0786 (17)0.0009 (12)0.0760 (16)0.0008 (12)
N10.0418 (13)0.0264 (11)0.0341 (13)0.0006 (9)0.0166 (10)0.0002 (10)
N20.0496 (14)0.0283 (11)0.0377 (13)0.0019 (10)0.0198 (11)0.0033 (10)
N30.0477 (14)0.0252 (11)0.0378 (13)0.0000 (10)0.0229 (11)0.0001 (10)
N40.0452 (13)0.0216 (10)0.0368 (13)0.0009 (9)0.0207 (11)0.0000 (10)
N50.0494 (14)0.0254 (11)0.0393 (14)0.0012 (10)0.0261 (11)0.0027 (10)
N60.0449 (13)0.0208 (10)0.0377 (13)0.0008 (9)0.0135 (11)0.0021 (10)
N70.0485 (14)0.0272 (11)0.0408 (14)0.0003 (10)0.0204 (11)0.0054 (11)
N80.0501 (14)0.0213 (10)0.0411 (14)0.0016 (10)0.0235 (11)0.0023 (10)
N90.0490 (14)0.0192 (10)0.0383 (13)0.0029 (9)0.0198 (11)0.0004 (10)
N100.0510 (14)0.0240 (11)0.0402 (14)0.0000 (10)0.0242 (11)0.0002 (10)
N110.0446 (14)0.0246 (11)0.0413 (14)0.0028 (9)0.0146 (11)0.0024 (10)
N120.0541 (15)0.0229 (11)0.0496 (16)0.0003 (10)0.0148 (13)0.0021 (11)
N130.0577 (16)0.0243 (11)0.0412 (15)0.0009 (10)0.0235 (12)0.0014 (11)
N140.0503 (14)0.0232 (10)0.0381 (14)0.0002 (10)0.0244 (11)0.0007 (10)
N150.0537 (15)0.0208 (11)0.0461 (15)0.0024 (10)0.0287 (12)0.0028 (10)
C10.0518 (18)0.0317 (14)0.0360 (16)0.0018 (12)0.0163 (13)0.0029 (13)
C20.066 (2)0.0379 (16)0.0387 (17)0.0036 (14)0.0235 (15)0.0006 (14)
C30.071 (2)0.0423 (17)0.0416 (17)0.0021 (15)0.0328 (16)0.0105 (15)
C40.063 (2)0.0311 (14)0.0522 (19)0.0042 (13)0.0298 (16)0.0100 (14)
C50.0547 (18)0.0312 (14)0.0425 (17)0.0002 (12)0.0232 (14)0.0013 (13)
C60.0382 (15)0.0285 (13)0.0336 (15)0.0001 (11)0.0127 (12)0.0050 (12)
C70.0368 (15)0.0268 (13)0.0335 (15)0.0009 (11)0.0129 (12)0.0015 (12)
C80.0344 (14)0.0258 (12)0.0327 (15)0.0015 (10)0.0118 (12)0.0001 (12)
C90.0354 (14)0.0254 (12)0.0378 (15)0.0005 (10)0.0155 (12)0.0045 (12)
C100.0333 (15)0.0265 (13)0.0437 (17)0.0017 (10)0.0146 (13)0.0004 (12)
C110.0544 (18)0.0239 (13)0.0523 (19)0.0022 (12)0.0210 (15)0.0014 (13)
C120.062 (2)0.0268 (14)0.071 (2)0.0003 (13)0.0310 (18)0.0062 (15)
C130.0514 (18)0.0285 (14)0.0544 (19)0.0027 (12)0.0219 (15)0.0029 (14)
C140.068 (2)0.0262 (14)0.066 (2)0.0040 (14)0.0261 (18)0.0050 (15)
C150.056 (2)0.0363 (16)0.056 (2)0.0050 (14)0.0173 (16)0.0157 (15)
C160.069 (2)0.0500 (19)0.048 (2)0.0010 (16)0.0298 (17)0.0092 (16)
C170.065 (2)0.0281 (14)0.0504 (19)0.0030 (13)0.0243 (16)0.0037 (14)
C180.0348 (15)0.0277 (13)0.0422 (17)0.0012 (11)0.0099 (12)0.0042 (12)
C190.0367 (15)0.0278 (13)0.0353 (16)0.0022 (11)0.0085 (12)0.0011 (12)
C200.0347 (15)0.0257 (12)0.0340 (15)0.0011 (10)0.0068 (12)0.0009 (12)
C210.0406 (15)0.0252 (12)0.0350 (15)0.0001 (11)0.0133 (12)0.0004 (12)
C220.0437 (16)0.0321 (15)0.0377 (16)0.0013 (12)0.0169 (13)0.0031 (13)
C230.066 (2)0.0380 (16)0.0505 (19)0.0121 (14)0.0289 (17)0.0066 (15)
C240.116 (3)0.052 (2)0.062 (2)0.011 (2)0.059 (2)0.0019 (19)
C250.0508 (19)0.0303 (15)0.069 (2)0.0012 (13)0.0158 (17)0.0057 (15)
C260.062 (2)0.0415 (18)0.076 (3)0.0066 (15)0.0177 (19)0.0157 (18)
C270.070 (2)0.0277 (16)0.084 (3)0.0066 (15)0.004 (2)0.0120 (18)
C280.073 (2)0.0249 (15)0.073 (3)0.0055 (15)0.005 (2)0.0047 (16)
C290.057 (2)0.0295 (15)0.056 (2)0.0001 (13)0.0076 (16)0.0052 (14)
C300.0403 (16)0.0268 (13)0.0480 (18)0.0036 (12)0.0004 (14)0.0009 (13)
C310.0388 (16)0.0237 (13)0.0425 (17)0.0014 (11)0.0055 (13)0.0012 (12)
C320.0366 (15)0.0248 (12)0.0374 (15)0.0012 (11)0.0101 (12)0.0020 (12)
C330.0439 (16)0.0266 (13)0.0418 (16)0.0023 (11)0.0227 (13)0.0036 (12)
C340.069 (2)0.0275 (14)0.054 (2)0.0017 (14)0.0334 (17)0.0047 (14)
O50.047 (3)0.0255 (19)0.053 (3)0.002 (2)0.021 (2)0.010 (2)
C350.067 (4)0.050 (3)0.092 (4)0.011 (3)0.056 (3)0.030 (3)
C360.089 (4)0.064 (3)0.086 (4)0.012 (3)0.051 (3)0.016 (3)
O5A0.060 (6)0.032 (3)0.026 (3)0.022 (4)0.001 (4)0.001 (3)
C35A0.077 (5)0.058 (4)0.096 (5)0.006 (4)0.028 (4)0.024 (4)
C36A0.083 (5)0.080 (6)0.107 (5)0.016 (5)0.034 (5)0.001 (5)
Geometric parameters (Å, º) top
S1—C91.647 (3)C5—C61.390 (4)
S2—C211.651 (3)C5—H50.94
S3—C331.647 (3)C6—C71.473 (4)
O1—C101.332 (3)C11—C121.503 (4)
O1—C111.462 (3)C11—H11A0.98
O2—C101.208 (3)C11—H11B0.98
O3—C221.316 (3)C12—H12A0.97
O3—C231.474 (3)C12—H12B0.97
O4—C221.212 (3)C12—H12C0.97
O6—C341.200 (3)C13—C141.382 (4)
N1—C81.318 (3)C13—C181.383 (4)
N1—C71.367 (3)C13—H130.94
N2—C71.330 (3)C14—C151.374 (4)
N2—N31.364 (3)C14—H140.94
N3—C81.331 (3)C15—C161.381 (4)
N3—H3N0.897 (10)C15—H150.94
N4—C91.346 (3)C16—C171.373 (4)
N4—C81.393 (3)C16—H160.94
N4—H4N0.889 (10)C17—C181.387 (4)
N5—C101.374 (3)C17—H170.94
N5—C91.381 (3)C18—C191.473 (4)
N5—H5N0.890 (10)C23—C241.476 (5)
N6—C201.324 (3)C23—H23A0.98
N6—C191.364 (3)C23—H23B0.98
N7—C191.322 (3)C24—H24A0.97
N7—N81.364 (3)C24—H24B0.97
N8—C201.331 (3)C24—H24C0.97
N8—H8N0.897 (10)C25—C301.382 (4)
N9—C211.357 (3)C25—C261.389 (4)
N9—C201.382 (3)C25—H250.94
N9—H9N0.896 (10)C26—C271.372 (5)
N10—C221.378 (3)C26—H260.94
N10—C211.380 (3)C27—C281.371 (5)
N10—H10N0.892 (10)C27—H270.94
N11—C321.310 (3)C28—C291.381 (4)
N11—C311.371 (3)C28—H280.94
N12—C311.324 (4)C29—C301.384 (4)
N12—N131.363 (3)C29—H290.94
N13—C321.334 (3)C30—C311.474 (4)
N13—H13N0.896 (10)C34—O51.337 (6)
N14—C331.341 (3)C34—O5A1.401 (12)
N14—C321.394 (3)O5—C351.499 (6)
N14—H14N0.891 (10)C35—C361.414 (6)
N15—C341.369 (4)C35—H35A0.98
N15—C331.379 (3)C35—H35B0.98
N15—H15N0.883 (10)C36—H36A0.97
C1—C21.384 (4)C36—H36B0.97
C1—C61.387 (4)C36—H36C0.97
C1—H10.94O5A—C35A1.517 (7)
C2—C31.372 (4)C35A—C36A1.420 (7)
C2—H20.94C35A—H35C0.98
C3—C41.380 (4)C35A—H35D0.98
C3—H30.94C36A—H36D0.97
C4—C51.388 (4)C36A—H36E0.97
C4—H40.94C36A—H36F0.97
C10—O1—C11114.5 (2)C16—C17—C18120.7 (3)
C22—O3—C23115.0 (2)C16—C17—H17119.6
C8—N1—C7102.2 (2)C18—C17—H17119.6
C7—N2—N3102.3 (2)C13—C18—C17118.4 (3)
C8—N3—N2109.5 (2)C13—C18—C19120.2 (3)
C8—N3—H3N130.7 (18)C17—C18—C19121.4 (2)
N2—N3—H3N119.6 (18)N7—C19—N6114.7 (2)
C9—N4—C8127.6 (2)N7—C19—C18122.9 (2)
C9—N4—H4N116.9 (19)N6—C19—C18122.4 (2)
C8—N4—H4N115.4 (19)N6—C20—N8110.8 (2)
C10—N5—C9127.8 (2)N6—C20—N9122.5 (2)
C10—N5—H5N119.5 (19)N8—C20—N9126.7 (2)
C9—N5—H5N112.6 (19)N9—C21—N10116.0 (2)
C20—N6—C19102.4 (2)N9—C21—S2124.9 (2)
C19—N7—N8102.3 (2)N10—C21—S2119.12 (19)
C20—N8—N7109.7 (2)O4—C22—O3125.9 (3)
C20—N8—H8N130 (2)O4—C22—N10124.8 (3)
N7—N8—H8N121 (2)O3—C22—N10109.3 (2)
C21—N9—C20127.8 (2)O3—C23—C24107.8 (2)
C21—N9—H9N115.6 (18)O3—C23—H23A110.2
C20—N9—H9N116.5 (18)C24—C23—H23A110.2
C22—N10—C21127.0 (2)O3—C23—H23B110.2
C22—N10—H10N116.9 (19)C24—C23—H23B110.2
C21—N10—H10N115.7 (19)H23A—C23—H23B108.5
C32—N11—C31102.4 (2)C23—C24—H24A109.5
C31—N12—N13102.4 (2)C23—C24—H24B109.5
C32—N13—N12109.4 (2)H24A—C24—H24B109.5
C32—N13—H13N128.9 (19)C23—C24—H24C109.5
N12—N13—H13N121.8 (19)H24A—C24—H24C109.5
C33—N14—C32128.3 (2)H24B—C24—H24C109.5
C33—N14—H14N116.7 (19)C30—C25—C26120.7 (3)
C32—N14—H14N114.7 (19)C30—C25—H25119.7
C34—N15—C33126.2 (2)C26—C25—H25119.7
C34—N15—H15N121.2 (19)C27—C26—C25119.6 (4)
C33—N15—H15N112.7 (19)C27—C26—H26120.2
C2—C1—C6120.7 (3)C25—C26—H26120.2
C2—C1—H1119.7C28—C27—C26119.9 (3)
C6—C1—H1119.7C28—C27—H27120.0
C3—C2—C1119.7 (3)C26—C27—H27120.0
C3—C2—H2120.2C27—C28—C29120.9 (3)
C1—C2—H2120.2C27—C28—H28119.5
C2—C3—C4120.8 (3)C29—C28—H28119.5
C2—C3—H3119.6C28—C29—C30119.7 (3)
C4—C3—H3119.6C28—C29—H29120.1
C3—C4—C5119.5 (3)C30—C29—H29120.1
C3—C4—H4120.3C25—C30—C29119.1 (3)
C5—C4—H4120.3C25—C30—C31119.8 (3)
C4—C5—C6120.5 (3)C29—C30—C31121.0 (3)
C4—C5—H5119.8N12—C31—N11114.4 (2)
C6—C5—H5119.8N12—C31—C30123.1 (3)
C1—C6—C5118.9 (3)N11—C31—C30122.5 (3)
C1—C6—C7119.9 (2)N11—C32—N13111.5 (2)
C5—C6—C7121.2 (2)N11—C32—N14121.3 (2)
N2—C7—N1114.5 (2)N13—C32—N14127.2 (2)
N2—C7—C6122.2 (2)N14—C33—N15116.0 (2)
N1—C7—C6123.2 (2)N14—C33—S3124.6 (2)
N1—C8—N3111.5 (2)N15—C33—S3119.4 (2)
N1—C8—N4122.1 (2)O6—C34—O5124.1 (3)
N3—C8—N4126.4 (2)O6—C34—N15125.5 (3)
N4—C9—N5115.6 (2)O5—C34—N15109.7 (3)
N4—C9—S1125.57 (19)O6—C34—O5A125.9 (5)
N5—C9—S1118.8 (2)N15—C34—O5A106.3 (4)
O2—C10—O1125.4 (2)C34—O5—C35111.5 (5)
O2—C10—N5125.2 (2)C36—C35—O5109.2 (5)
O1—C10—N5109.4 (2)C36—C35—H35A109.8
O1—C11—C12106.7 (2)O5—C35—H35A109.8
O1—C11—H11A110.4C36—C35—H35B109.8
C12—C11—H11A110.4O5—C35—H35B109.8
O1—C11—H11B110.4H35A—C35—H35B108.3
C12—C11—H11B110.4C35—C36—H36A109.5
H11A—C11—H11B108.6C35—C36—H36B109.5
C11—C12—H12A109.5H36A—C36—H36B109.5
C11—C12—H12B109.5C35—C36—H36C109.5
H12A—C12—H12B109.5H36A—C36—H36C109.5
C11—C12—H12C109.5H36B—C36—H36C109.5
H12A—C12—H12C109.5C34—O5A—C35A123.3 (9)
H12B—C12—H12C109.5C36A—C35A—O5A106.6 (6)
C14—C13—C18120.7 (3)C36A—C35A—H35C110.4
C14—C13—H13119.6O5A—C35A—H35C110.4
C18—C13—H13119.6C36A—C35A—H35D110.4
C15—C14—C13120.5 (3)O5A—C35A—H35D110.4
C15—C14—H14119.7H35C—C35A—H35D108.6
C13—C14—H14119.7C35A—C36A—H36D109.5
C14—C15—C16119.0 (3)C35A—C36A—H36E109.5
C14—C15—H15120.5H36D—C36A—H36E109.5
C16—C15—H15120.5C35A—C36A—H36F109.5
C17—C16—C15120.7 (3)H36D—C36A—H36F109.5
C17—C16—H16119.7H36E—C36A—H36F109.5
C15—C16—H16119.7
C7—N2—N3—C80.9 (3)C19—N6—C20—N9179.4 (2)
C19—N7—N8—C200.2 (3)N7—N8—C20—N60.6 (3)
C31—N12—N13—C320.6 (3)N7—N8—C20—N9179.5 (2)
C6—C1—C2—C30.3 (5)C21—N9—C20—N6176.1 (3)
C1—C2—C3—C40.6 (5)C21—N9—C20—N83.8 (5)
C2—C3—C4—C50.6 (5)C20—N9—C21—N10175.3 (3)
C3—C4—C5—C60.3 (5)C20—N9—C21—S24.2 (4)
C2—C1—C6—C50.0 (4)C22—N10—C21—N94.6 (4)
C2—C1—C6—C7178.1 (3)C22—N10—C21—S2175.0 (2)
C4—C5—C6—C10.0 (4)C23—O3—C22—O41.2 (4)
C4—C5—C6—C7178.1 (3)C23—O3—C22—N10177.1 (2)
N3—N2—C7—N10.9 (3)C21—N10—C22—O410.9 (5)
N3—N2—C7—C6176.8 (2)C21—N10—C22—O3167.5 (3)
C8—N1—C7—N20.6 (3)C22—O3—C23—C24163.0 (3)
C8—N1—C7—C6177.2 (2)C30—C25—C26—C270.6 (5)
C1—C6—C7—N2176.7 (3)C25—C26—C27—C280.6 (5)
C5—C6—C7—N25.2 (4)C26—C27—C28—C290.1 (5)
C1—C6—C7—N15.7 (4)C27—C28—C29—C300.8 (5)
C5—C6—C7—N1172.4 (3)C26—C25—C30—C290.0 (5)
C7—N1—C8—N30.1 (3)C26—C25—C30—C31177.9 (3)
C7—N1—C8—N4179.7 (2)C28—C29—C30—C250.7 (5)
N2—N3—C8—N10.7 (3)C28—C29—C30—C31177.2 (3)
N2—N3—C8—N4179.1 (2)N13—N12—C31—N110.7 (3)
C9—N4—C8—N1175.8 (3)N13—N12—C31—C30179.7 (2)
C9—N4—C8—N34.4 (4)C32—N11—C31—N120.6 (3)
C8—N4—C9—N5178.4 (2)C32—N11—C31—C30179.6 (2)
C8—N4—C9—S11.1 (4)C25—C30—C31—N12171.4 (3)
C10—N5—C9—N43.7 (4)C29—C30—C31—N1210.6 (4)
C10—N5—C9—S1175.9 (2)C25—C30—C31—N119.6 (4)
C11—O1—C10—O26.9 (4)C29—C30—C31—N11168.3 (3)
C11—O1—C10—N5172.5 (2)C31—N11—C32—N130.1 (3)
C9—N5—C10—O25.1 (5)C31—N11—C32—N14179.1 (2)
C9—N5—C10—O1174.3 (2)N12—N13—C32—N110.3 (3)
C10—O1—C11—C12176.9 (2)N12—N13—C32—N14178.6 (3)
C18—C13—C14—C150.5 (5)C33—N14—C32—N11175.2 (3)
C13—C14—C15—C160.7 (5)C33—N14—C32—N133.6 (5)
C14—C15—C16—C170.6 (5)C32—N14—C33—N15173.9 (3)
C15—C16—C17—C180.4 (5)C32—N14—C33—S37.3 (4)
C14—C13—C18—C170.3 (4)C34—N15—C33—N145.8 (4)
C14—C13—C18—C19179.8 (3)C34—N15—C33—S3173.0 (3)
C16—C17—C18—C130.2 (5)C33—N15—C34—O61.1 (6)
C16—C17—C18—C19179.7 (3)C33—N15—C34—O5172.4 (3)
N8—N7—C19—N60.2 (3)C33—N15—C34—O5A162.6 (4)
N8—N7—C19—C18179.8 (2)O6—C34—O5—C359.8 (7)
C20—N6—C19—N70.6 (3)N15—C34—O5—C35178.8 (4)
C20—N6—C19—C18179.4 (2)O5A—C34—O5—C3593.0 (14)
C13—C18—C19—N7172.0 (3)C34—O5—C35—C36164.9 (7)
C17—C18—C19—N78.6 (4)O6—C34—O5A—C35A8.9 (10)
C13—C18—C19—N68.0 (4)O5—C34—O5A—C35A85.4 (14)
C17—C18—C19—N6171.4 (3)N15—C34—O5A—C35A172.6 (6)
C19—N6—C20—N80.7 (3)C34—O5A—C35A—C36A80.4 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···S10.90 (1)2.44 (3)2.978 (2)119 (2)
N8—H8N···S20.90 (1)2.42 (3)2.975 (2)121 (2)
N13—H13N···S30.90 (1)2.44 (3)2.997 (2)120 (2)
N8—H8N···S30.90 (1)2.44 (2)3.253 (2)150 (2)
N3—H3N···S2i0.90 (2)2.43 (2)3.238 (2)151 (2)
N13—H13N···S1ii0.90 (2)2.49 (3)3.306 (3)151 (2)
N4—H4N···O20.89 (1)1.94 (2)2.661 (3)137 (2)
N9—H9N···O40.90 (1)1.91 (2)2.648 (3)138 (2)
N14—H14N···O60.89 (1)1.90 (2)2.619 (3)136 (2)
N10—H10N···N2ii0.89 (2)2.51 (2)3.390 (3)170 (2)
N15—H15N···N70.89 (2)2.31 (2)3.197 (3)180 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H13N5O2S
Mr291.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)13.4743 (6), 20.4817 (9), 15.0266 (7)
β (°) 104.040 (1)
V3)4023.1 (3)
Z12
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.56 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.872, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
28189, 9216, 5772
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.164, 1.03
No. of reflections9216
No. of parameters598
No. of restraints86
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.52

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···S10.90 (1)2.44 (3)2.978 (2)119 (2)
N8—H8N···S20.90 (1)2.42 (3)2.975 (2)121 (2)
N13—H13N···S30.90 (1)2.44 (3)2.997 (2)120 (2)
N8—H8N···S30.90 (1)2.44 (2)3.253 (2)150 (2)
N3—H3N···S2i0.90 (2)2.43 (2)3.238 (2)151 (2)
N13—H13N···S1ii0.90 (2)2.49 (3)3.306 (3)151 (2)
N4—H4N···O20.89 (1)1.94 (2)2.661 (3)137 (2)
N9—H9N···O40.90 (1)1.91 (2)2.648 (3)138 (2)
N14—H14N···O60.89 (1)1.90 (2)2.619 (3)136 (2)
N10—H10N···N2ii0.89 (2)2.51 (2)3.390 (3)170 (2)
N15—H15N···N70.89 (2)2.31 (2)3.197 (3)180 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: B-1130-2008.

Acknowledgements

This work was supported by the National Medical Research Council, Singapore (grant No. NMRC/NIG/0019/2008).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Tetrahedron, 63, 12888–12895.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009a). Tetrahedron Lett. 50, 2124–2128.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009b). Acta Cryst. E65, o126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009c). Acta Cryst. E65, o125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010a). Acta Cryst. E66, o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010b). Acta Cryst. E66, o549–o550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds