metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(4-meth­­oxy­benzoato-κO)bis­­(nicotinamide-κN1)nickel(II) dihydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 30 June 2010; accepted 1 July 2010; online 7 July 2010)

In the mononuclear title compound, [Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2O, the NiII ion is located on a crystallographic inversion center. The asymmetric unit further contains one 4-meth­oxy­benzoate anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water mol­ecule; all ligands are monodentate. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 7.2 (1)°, while the pyridine and benzene rings are oriented at a dihedral angle of 72.80 (4)°. An intra­molecular O—H⋯O hydrogen bond links the uncoordinated water mol­ecule to one of the carboxyl­ate groups. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513-m514.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.]); Necefoğlu et al. (2010[Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361-m362.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2O

  • Mr = 677.28

  • Triclinic, [P \overline 1]

  • a = 8.1279 (2) Å

  • b = 9.7006 (2) Å

  • c = 10.0636 (3) Å

  • α = 101.637 (3)°

  • β = 91.634 (2)°

  • γ = 105.137 (3)°

  • V = 747.42 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.35 × 0.26 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.797, Tmax = 0.871

  • 13749 measured reflections

  • 3740 independent reflections

  • 3454 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.04

  • 3740 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0569 (9)
Ni1—O5 2.0697 (9)
Ni1—N1 2.1167 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H22⋯O6i 0.88 (2) 1.96 (2) 2.8306 (16) 170 (2)
O5—H51⋯O4ii 0.83 (2) 1.88 (2) 2.7074 (14) 171 (2)
O5—H52⋯O2iii 0.79 (2) 1.95 (2) 2.7040 (14) 159 (2)
O6—H61⋯O2 0.82 (2) 1.99 (2) 2.8136 (14) 174 (2)
O6—H62⋯O2iv 0.82 (2) 2.08 (2) 2.8887 (15) 169 (2)
C9—H9⋯O1iii 0.95 2.35 2.9719 (16) 123
C10—H10⋯O5v 0.95 2.41 3.2973 (17) 156
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+2, -y+1, -z; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, where the NiII ion is located on a crystallographic inversion center. The asymmetric unit contains one 4-methoxybenzoate (PMOB) anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water molecules, all ligands are monodentate (Fig. 1). The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

The four O atoms (O1, O5, and the symmetry-related atoms, O1', O5') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2681 (15) Å] and C1—O2 [1.2644 (16) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Ni—O bond length is 2.0633 (9) Å (Table 1), and the NiII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.7794 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 7.2 (1)°, while that between rings A and B (N1/C9—C13) is 72.80 (4)°. An intramolecular O—H···O hydrogen bond (Table 2) links the uncoordinated water molecule to one of the carboxylate groups (Fig. 1).

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996,2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (2.63 g, 10 mmol) in H2O (50 ml) and nicotinamide (2.44 g, 20 mmol) in H2O (50 ml) with sodium 4-methoybenzoate (3.48 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H21, H22 (for NH2) and H51, H52, H61, H62 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, where the NiII ion is located on a crystallographic inversion center. The asymmetric unit contains one 4-methoxybenzoate (PMOB) anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water molecules, all ligands are monodentate (Fig. 1). The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

The four O atoms (O1, O5, and the symmetry-related atoms, O1', O5') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2681 (15) Å] and C1—O2 [1.2644 (16) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Ni—O bond length is 2.0633 (9) Å (Table 1), and the NiII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.7794 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 7.2 (1)°, while that between rings A and B (N1/C9—C13) is 72.80 (4)°. An intramolecular O—H···O hydrogen bond (Table 2) links the uncoordinated water molecule to one of the carboxylate groups (Fig. 1).

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996,2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator: (') 2 - x, 1 - y, 1 -z. Dashed lines indicate the hydrogen-bonding.
Diaquabis(4-methoxybenzoato-κO)bis(nicotinamide-κN1)nickel(II) dihydrate top
Crystal data top
[Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2OZ = 1
Mr = 677.28F(000) = 354
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1279 (2) ÅCell parameters from 7665 reflections
b = 9.7006 (2) Åθ = 2.2–28.4°
c = 10.0636 (3) ŵ = 0.72 mm1
α = 101.637 (3)°T = 100 K
β = 91.634 (2)°Block, blue
γ = 105.137 (3)°0.35 × 0.26 × 0.19 mm
V = 747.42 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3740 independent reflections
Radiation source: fine-focus sealed tube3454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.797, Tmax = 0.871k = 1212
13749 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.3607P]
where P = (Fo2 + 2Fc2)/3
3740 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2Oγ = 105.137 (3)°
Mr = 677.28V = 747.42 (4) Å3
Triclinic, P1Z = 1
a = 8.1279 (2) ÅMo Kα radiation
b = 9.7006 (2) ŵ = 0.72 mm1
c = 10.0636 (3) ÅT = 100 K
α = 101.637 (3)°0.35 × 0.26 × 0.19 mm
β = 91.634 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3740 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3454 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.871Rint = 0.024
13749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
3740 reflectionsΔρmin = 0.32 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.50000.01031 (7)
O10.84093 (11)0.34709 (9)0.34598 (9)0.01344 (18)
O20.97158 (13)0.37223 (10)0.15603 (9)0.0186 (2)
O30.51173 (13)0.29261 (10)0.00777 (10)0.0227 (2)
O41.23447 (12)0.12322 (10)0.38559 (10)0.01808 (19)
O50.84001 (12)0.41637 (10)0.63798 (10)0.01381 (18)
H510.824 (2)0.328 (2)0.6383 (18)0.026 (5)*
H520.880 (3)0.466 (2)0.710 (2)0.033 (5)*
O61.09929 (14)0.36688 (11)0.10135 (11)0.0217 (2)
H611.060 (2)0.3618 (18)0.0275 (19)0.020*
H621.093 (2)0.444 (2)0.1194 (17)0.020*
N11.15013 (13)0.35208 (11)0.50331 (10)0.0123 (2)
N21.00731 (15)0.08680 (12)0.27740 (11)0.0164 (2)
H210.955 (2)0.027 (2)0.2615 (17)0.021 (4)*
H220.976 (2)0.178 (2)0.2312 (19)0.028 (5)*
C10.86838 (16)0.29893 (13)0.22424 (12)0.0132 (2)
C20.77440 (16)0.14302 (13)0.16204 (12)0.0136 (2)
C30.65161 (17)0.06356 (14)0.23287 (13)0.0166 (3)
H30.62700.10960.31970.020*
C40.56565 (17)0.08093 (14)0.17828 (14)0.0186 (3)
H40.48110.13300.22680.022*
C50.60317 (17)0.15037 (14)0.05176 (13)0.0166 (3)
C60.72616 (18)0.07365 (14)0.01936 (13)0.0193 (3)
H60.75310.12070.10490.023*
C70.80961 (18)0.07279 (14)0.03580 (13)0.0178 (3)
H70.89200.12560.01380.021*
C80.5467 (2)0.37024 (15)0.11975 (15)0.0267 (3)
H8A0.47400.47120.13860.040*
H8B0.66720.37050.11610.040*
H8C0.52290.32230.19220.040*
C91.30962 (17)0.40473 (14)0.56440 (13)0.0165 (3)
H91.34740.50530.60800.020*
C101.42177 (17)0.31926 (14)0.56686 (14)0.0191 (3)
H101.53280.36000.61300.023*
C111.36869 (17)0.17315 (14)0.50057 (13)0.0156 (2)
H111.44280.11190.50070.019*
C121.20523 (16)0.11758 (13)0.43385 (12)0.0124 (2)
C131.09960 (16)0.21032 (13)0.43965 (12)0.0124 (2)
H130.98670.17170.39670.015*
C141.14890 (16)0.04076 (13)0.36228 (12)0.0132 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01171 (11)0.00792 (11)0.01082 (11)0.00341 (8)0.00027 (8)0.00012 (8)
O10.0145 (4)0.0117 (4)0.0131 (4)0.0045 (3)0.0005 (3)0.0006 (3)
O20.0262 (5)0.0119 (4)0.0144 (4)0.0005 (4)0.0021 (4)0.0015 (3)
O30.0265 (5)0.0112 (4)0.0244 (5)0.0007 (4)0.0025 (4)0.0016 (4)
O40.0195 (5)0.0117 (4)0.0246 (5)0.0068 (4)0.0026 (4)0.0039 (4)
O50.0164 (4)0.0100 (4)0.0140 (4)0.0034 (3)0.0002 (3)0.0007 (3)
O60.0344 (6)0.0147 (5)0.0164 (5)0.0076 (4)0.0037 (4)0.0025 (4)
N10.0140 (5)0.0108 (5)0.0123 (5)0.0044 (4)0.0013 (4)0.0018 (4)
N20.0217 (6)0.0112 (5)0.0167 (5)0.0071 (4)0.0002 (4)0.0010 (4)
C10.0146 (6)0.0117 (5)0.0137 (6)0.0052 (4)0.0024 (4)0.0017 (4)
C20.0151 (6)0.0112 (5)0.0135 (6)0.0039 (4)0.0024 (5)0.0007 (4)
C30.0175 (6)0.0152 (6)0.0157 (6)0.0043 (5)0.0021 (5)0.0006 (5)
C40.0174 (6)0.0152 (6)0.0211 (6)0.0011 (5)0.0022 (5)0.0033 (5)
C50.0173 (6)0.0111 (6)0.0190 (6)0.0025 (5)0.0049 (5)0.0006 (5)
C60.0261 (7)0.0152 (6)0.0136 (6)0.0041 (5)0.0007 (5)0.0018 (5)
C70.0223 (6)0.0139 (6)0.0144 (6)0.0016 (5)0.0019 (5)0.0014 (5)
C80.0364 (8)0.0146 (6)0.0236 (7)0.0044 (6)0.0065 (6)0.0038 (5)
C90.0165 (6)0.0115 (6)0.0195 (6)0.0036 (5)0.0013 (5)0.0002 (5)
C100.0140 (6)0.0169 (6)0.0250 (7)0.0046 (5)0.0031 (5)0.0013 (5)
C110.0161 (6)0.0150 (6)0.0185 (6)0.0085 (5)0.0029 (5)0.0043 (5)
C120.0158 (6)0.0104 (5)0.0120 (5)0.0044 (4)0.0041 (4)0.0034 (4)
C130.0140 (6)0.0116 (5)0.0117 (5)0.0036 (4)0.0014 (4)0.0028 (4)
C140.0169 (6)0.0110 (5)0.0129 (5)0.0047 (4)0.0061 (5)0.0037 (4)
Geometric parameters (Å, º) top
Ni1—O12.0569 (9)C2—C71.3904 (18)
Ni1—O1i2.0569 (9)C3—C41.3822 (18)
Ni1—O52.0697 (9)C3—H30.95
Ni1—O5i2.0697 (9)C4—C51.3970 (19)
Ni1—N12.1167 (10)C4—H40.95
Ni1—N1i2.1167 (10)C5—C61.3902 (19)
O1—C11.2681 (15)C6—C71.3941 (18)
O2—C11.2644 (16)C6—H60.95
O3—C51.3607 (15)C7—H70.95
O3—C81.4274 (18)C8—H8A0.98
O4—C141.2392 (15)C8—H8B0.98
O5—H510.83 (2)C8—H8C0.98
O5—H520.79 (2)C9—C101.3858 (18)
O6—H610.823 (18)C9—H90.95
O6—H620.818 (18)C10—C111.3867 (18)
N1—C91.3421 (16)C10—H100.95
N1—C131.3434 (15)C11—C121.3913 (18)
N2—C141.3324 (17)C11—H110.95
N2—H210.839 (18)C12—C131.3910 (17)
N2—H220.877 (19)C12—C141.5017 (16)
C1—C21.5001 (17)C13—H130.95
C2—C31.3995 (18)
O1i—Ni1—O1180.0C3—C4—C5119.95 (12)
O1—Ni1—O588.52 (4)C3—C4—H4120.0
O1i—Ni1—O591.48 (4)C5—C4—H4120.0
O1—Ni1—O5i91.48 (4)O3—C5—C4115.16 (12)
O1i—Ni1—O5i88.52 (4)O3—C5—C6124.95 (12)
O1—Ni1—N188.64 (4)C6—C5—C4119.89 (12)
O1i—Ni1—N191.36 (4)C5—C6—C7119.52 (12)
O1—Ni1—N1i91.36 (4)C5—C6—H6120.2
O1i—Ni1—N1i88.64 (4)C7—C6—H6120.2
O5—Ni1—O5i180.000 (1)C2—C7—C6121.20 (12)
O5—Ni1—N193.21 (4)C2—C7—H7119.4
O5i—Ni1—N186.79 (4)C6—C7—H7119.4
O5—Ni1—N1i86.79 (4)O3—C8—H8A109.5
O5i—Ni1—N1i93.21 (4)O3—C8—H8B109.5
N1—Ni1—N1i180.0O3—C8—H8C109.5
C1—O1—Ni1130.22 (8)H8A—C8—H8B109.5
C5—O3—C8117.74 (11)H8A—C8—H8C109.5
Ni1—O5—H51117.6 (12)H8B—C8—H8C109.5
Ni1—O5—H52104.9 (14)N1—C9—C10123.11 (12)
H51—O5—H52111.1 (19)N1—C9—H9118.4
H62—O6—H61108.0 (17)C10—C9—H9118.4
C9—N1—Ni1118.24 (8)C9—C10—C11118.69 (12)
C9—N1—C13117.80 (11)C9—C10—H10120.7
C13—N1—Ni1123.79 (8)C11—C10—H10120.7
C14—N2—H21120.0 (12)C10—C11—C12118.98 (11)
C14—N2—H22119.6 (12)C10—C11—H11120.5
H21—N2—H22120.1 (17)C12—C11—H11120.5
O1—C1—C2116.29 (11)C11—C12—C14118.60 (11)
O2—C1—O1124.22 (11)C13—C12—C11118.44 (11)
O2—C1—C2119.46 (11)C13—C12—C14122.93 (11)
C3—C2—C1120.07 (11)N1—C13—C12122.95 (11)
C7—C2—C1121.44 (12)N1—C13—H13118.5
C7—C2—C3118.47 (11)C12—C13—H13118.5
C2—C3—H3119.5O4—C14—N2122.82 (12)
C4—C3—C2120.95 (12)O4—C14—C12118.87 (11)
C4—C3—H3119.5N2—C14—C12118.31 (11)
O5—Ni1—O1—C1160.75 (10)C1—C2—C3—C4178.93 (12)
O5i—Ni1—O1—C119.25 (10)C7—C2—C3—C40.71 (19)
N1—Ni1—O1—C167.50 (10)C1—C2—C7—C6177.72 (12)
N1i—Ni1—O1—C1112.50 (10)C3—C2—C7—C60.5 (2)
O1—Ni1—N1—C9162.56 (10)C2—C3—C4—C51.2 (2)
O1i—Ni1—N1—C917.44 (10)C8—O3—C5—C4178.85 (12)
O1—Ni1—N1—C1312.62 (10)C8—O3—C5—C61.3 (2)
O1i—Ni1—N1—C13167.38 (10)C3—C4—C5—O3179.75 (12)
O5—Ni1—N1—C9109.01 (10)C3—C4—C5—C60.4 (2)
O5i—Ni1—N1—C970.99 (10)O3—C5—C6—C7179.07 (13)
O5—Ni1—N1—C1375.81 (10)C4—C5—C6—C70.7 (2)
O5i—Ni1—N1—C13104.19 (10)C5—C6—C7—C21.2 (2)
Ni1—O1—C1—O229.75 (18)N1—C9—C10—C111.5 (2)
Ni1—O1—C1—C2148.20 (9)C9—C10—C11—C120.1 (2)
Ni1—N1—C9—C10176.80 (10)C10—C11—C12—C131.78 (19)
C13—N1—C9—C101.33 (19)C10—C11—C12—C14179.97 (11)
Ni1—N1—C13—C12174.71 (9)C11—C12—C13—N12.04 (18)
C9—N1—C13—C120.49 (18)C14—C12—C13—N1179.79 (11)
O1—C1—C2—C36.12 (17)C11—C12—C14—O413.48 (17)
O1—C1—C2—C7172.05 (12)C11—C12—C14—N2167.30 (12)
O2—C1—C2—C3175.83 (11)C13—C12—C14—O4164.68 (12)
O2—C1—C2—C76.00 (18)C13—C12—C14—N214.53 (18)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O6ii0.88 (2)1.96 (2)2.8306 (16)170 (2)
O5—H51···O4iii0.83 (2)1.88 (2)2.7074 (14)171 (2)
O5—H52···O2i0.79 (2)1.95 (2)2.7040 (14)159 (2)
O6—H61···O20.82 (2)1.99 (2)2.8136 (14)174 (2)
O6—H62···O2iv0.82 (2)2.08 (2)2.8887 (15)169 (2)
C9—H9···O1i0.952.352.9719 (16)123
C10—H10···O5v0.952.413.2973 (17)156
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z; (iii) x+2, y, z+1; (iv) x+2, y+1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2O
Mr677.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1279 (2), 9.7006 (2), 10.0636 (3)
α, β, γ (°)101.637 (3), 91.634 (2), 105.137 (3)
V3)747.42 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.35 × 0.26 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.797, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
13749, 3740, 3454
Rint0.024
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.04
No. of reflections3740
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O12.0569 (9)Ni1—N12.1167 (10)
Ni1—O52.0697 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O6i0.88 (2)1.96 (2)2.8306 (16)170 (2)
O5—H51···O4ii0.83 (2)1.88 (2)2.7074 (14)171 (2)
O5—H52···O2iii0.79 (2)1.95 (2)2.7040 (14)159 (2)
O6—H61···O20.82 (2)1.99 (2)2.8136 (14)174 (2)
O6—H62···O2iv0.82 (2)2.08 (2)2.8887 (15)169 (2)
C9—H9···O1iii0.952.352.9719 (16)123
C10—H10···O5v0.952.413.2973 (17)156
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y+1, z; (v) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361–m362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds