organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­pyridinium 2-hy­dr­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bBiomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673
*Correspondence e-mail: hkfun@usm.my

(Received 6 July 2010; accepted 8 July 2010; online 14 July 2010)

In the salicylate anion of the title salt, C5H7N2+·C7H5O3, an intra­molecular O—H⋯O hydrogen bond generating an S(6) ring motif is observed. In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to the ab plane by N—H⋯O and C—H⋯O hydrogen bonds. The network contains R22(7) and R12(4) ring motifs. Weak ππ inter­actions between the benzene and pyridinium rings [centroid–centroid distance = 3.688 (1) Å] are also observed.

Related literature

For the biological activity of 4-amino­pyridine, see: Schwid et al. (1997[Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]). For the crystal structure of 4-amino­pyridine, see: Chao & Schempp (1977[Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557-1564.]); Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]). For related structures, see: Bhattacharya et al. (1994[Bhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531-537.]); Karle et al. (2003[Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727-749.]); Gellert & Hsu (1988[Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311-313.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418-o1419.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C7H5O3

  • Mr = 232.24

  • Orthorhombic, P b c a

  • a = 12.5801 (2) Å

  • b = 11.4157 (2) Å

  • c = 15.7560 (3) Å

  • V = 2262.73 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.29 × 0.17 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.992

  • 15672 measured reflections

  • 3010 independent reflections

  • 2303 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.118

  • S = 1.09

  • 3010 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.96 (2) 2.48 (2) 3.1394 (19) 126 (2)
N1—H1N1⋯O3i 0.96 (2) 1.78 (2) 2.7296 (19) 172 (2)
N2—H1N2⋯O2 0.89 (2) 1.90 (2) 2.789 (2) 176 (2)
O1—H1O1⋯O3 0.97 (3) 1.61 (2) 2.5316 (18) 157 (2)
C11—H11A⋯O3ii 0.93 2.55 3.360 (2) 146
C12—H12A⋯O2i 0.93 2.56 3.164 (2) 123
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aminopyridines are key intermediates for the synthesis of important pharmaceuticals and agrochemicals. Particularly, 4-aminopyridine (fampridine) is used in the treatment of neurological ailments, such as multiple sclerosis (MS), with tests showing that fampridine improves motor function in MS patients (Schwid et al., 1997). The crystal structure of 4-amino pyridine was first reported by Chao and Schempp (1977) and a redetermination was reported by Anderson et al. (2005). Salicylic acid (SA) is a common component in liquid scintillation systems. Salts of salicylic acid are good candidates for dry solid scintillators. Knowledge of these structural data is important to the development of a fundamental understanding of its scintillating properties, and more generally a predictive capability for tailoring materials to achieve desired scintillation properties. The present study has been carried out in order to study the hydrogen bonding patterns present in the crystal structure of 4-aminopyridinium salicylate, (I).

The asymmetric unit of (I) (Fig. 1) contains one 4-aminopyridinium cation and one salicylate anion, indicating that proton transfer occurred during the co-crystallisation experiment. Protonation leads to the widening of C8—N1—C12 angle in the pyridine ring to 120.26 (16)°, compared to 115.25 (13)° in neutal 4-aminopyridine (Anderson et al., 2005). This type of protonation has been observed in various 4-aminopyridine acid complexes (Bhattacharya et al., 1994; Karle et al., 2003). The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N atom and the hydrogen atom attached to atom C12 are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via N1—H1N1···O3 and C12—H12A···O2 hydrogen bonds, leading to the formation of an R22(7) ring motif (Bernstein et al., 1995). The carboxylate O atoms of the salicylate anion act as acceptors of bifurcated N1—H1N1···O2 and N1—H1N1···O3 hydrogen bonds with the protonated aromatic ring N atom of the 4-aminopyridinium cation, forming a ring with the graph-set notation R21(4). Furthermore, these two motifs are connected via N2—H1N2···O2 and C11—H11A···O3 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the ab-plane. There is an intramolecular O1—H1O1···O3 hydrogen bond in the salicylate anion, which generates an S(6) ring motif. This motif is also observed in the crystal structures of 2-aminopyridinium salicylate (Gellert & Hsu, 1988) and 2-amino-5-chloropyridinium salicylate (Hemamalini & Fun, 2010). The crystal structure is further stabilized by ππ interactions between the benzene ring at (x, y, z) and pyridinium ring at (3/2-x, 1/2+y, z) with a centroid-to-centroid distance of 3.688 (1) Å.

Related literature top

For the biological activity of 4-aminopyridine, see: Schwid et al. (1997). For the crystal structure of 4-aminopyridine, see: Chao & Schempp (1977); Anderson et al. (2005). For related structures, see: Bhattacharya et al. (1994); Karle et al. (2003); Gellert & Hsu (1988); Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 4-aminopyridine (0.04705 g, Aldrich) and salicylic acid (0.0691 g, Merck) was warmed for 30 min over a water bath. The solution was cooled slowly and kept at room temperature. After a few days, colourless crystals were obtained.

Refinement top

Atoms H1N1, H1N2, H2N2 and H1O1 were located from a difference Fourier map and were refined freely [N–H= 0.86 (2)–0.96 (2) Å and O–H = 0.97 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Aminopyridines are key intermediates for the synthesis of important pharmaceuticals and agrochemicals. Particularly, 4-aminopyridine (fampridine) is used in the treatment of neurological ailments, such as multiple sclerosis (MS), with tests showing that fampridine improves motor function in MS patients (Schwid et al., 1997). The crystal structure of 4-amino pyridine was first reported by Chao and Schempp (1977) and a redetermination was reported by Anderson et al. (2005). Salicylic acid (SA) is a common component in liquid scintillation systems. Salts of salicylic acid are good candidates for dry solid scintillators. Knowledge of these structural data is important to the development of a fundamental understanding of its scintillating properties, and more generally a predictive capability for tailoring materials to achieve desired scintillation properties. The present study has been carried out in order to study the hydrogen bonding patterns present in the crystal structure of 4-aminopyridinium salicylate, (I).

The asymmetric unit of (I) (Fig. 1) contains one 4-aminopyridinium cation and one salicylate anion, indicating that proton transfer occurred during the co-crystallisation experiment. Protonation leads to the widening of C8—N1—C12 angle in the pyridine ring to 120.26 (16)°, compared to 115.25 (13)° in neutal 4-aminopyridine (Anderson et al., 2005). This type of protonation has been observed in various 4-aminopyridine acid complexes (Bhattacharya et al., 1994; Karle et al., 2003). The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N atom and the hydrogen atom attached to atom C12 are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via N1—H1N1···O3 and C12—H12A···O2 hydrogen bonds, leading to the formation of an R22(7) ring motif (Bernstein et al., 1995). The carboxylate O atoms of the salicylate anion act as acceptors of bifurcated N1—H1N1···O2 and N1—H1N1···O3 hydrogen bonds with the protonated aromatic ring N atom of the 4-aminopyridinium cation, forming a ring with the graph-set notation R21(4). Furthermore, these two motifs are connected via N2—H1N2···O2 and C11—H11A···O3 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the ab-plane. There is an intramolecular O1—H1O1···O3 hydrogen bond in the salicylate anion, which generates an S(6) ring motif. This motif is also observed in the crystal structures of 2-aminopyridinium salicylate (Gellert & Hsu, 1988) and 2-amino-5-chloropyridinium salicylate (Hemamalini & Fun, 2010). The crystal structure is further stabilized by ππ interactions between the benzene ring at (x, y, z) and pyridinium ring at (3/2-x, 1/2+y, z) with a centroid-to-centroid distance of 3.688 (1) Å.

For the biological activity of 4-aminopyridine, see: Schwid et al. (1997). For the crystal structure of 4-aminopyridine, see: Chao & Schempp (1977); Anderson et al. (2005). For related structures, see: Bhattacharya et al. (1994); Karle et al. (2003); Gellert & Hsu (1988); Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) 2D network.
4-Aminopyridinium 2-hydroxybenzoate top
Crystal data top
C5H7N2+·C7H5O3F(000) = 976
Mr = 232.24Dx = 1.363 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2403 reflections
a = 12.5801 (2) Åθ = 2.6–28.5°
b = 11.4157 (2) ŵ = 0.10 mm1
c = 15.7560 (3) ÅT = 100 K
V = 2262.73 (7) Å3Plate, colourless
Z = 80.29 × 0.17 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3010 independent reflections
Radiation source: fine-focus sealed tube2303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 29.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1711
Tmin = 0.971, Tmax = 0.992k = 1515
15672 measured reflectionsl = 2116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.7134P]
where P = (Fo2 + 2Fc2)/3
3010 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C5H7N2+·C7H5O3V = 2262.73 (7) Å3
Mr = 232.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.5801 (2) ŵ = 0.10 mm1
b = 11.4157 (2) ÅT = 100 K
c = 15.7560 (3) Å0.29 × 0.17 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3010 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2303 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.992Rint = 0.057
15672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.37 e Å3
3010 reflectionsΔρmin = 0.26 e Å3
170 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93694 (11)0.70642 (11)0.39307 (9)0.0267 (3)
O21.08510 (10)0.38258 (10)0.38336 (8)0.0216 (3)
O31.08570 (10)0.56634 (10)0.43059 (8)0.0204 (3)
C10.89745 (14)0.62078 (15)0.34345 (11)0.0184 (4)
C20.80559 (14)0.64452 (17)0.29653 (12)0.0227 (4)
H2A0.77390.71800.29990.027*
C30.76181 (15)0.55938 (18)0.24519 (12)0.0255 (4)
H3A0.70030.57570.21460.031*
C40.80871 (15)0.44924 (17)0.23863 (12)0.0242 (4)
H4A0.77920.39230.20360.029*
C50.89968 (14)0.42548 (16)0.28476 (11)0.0203 (4)
H5A0.93120.35200.28020.024*
C60.94544 (13)0.50956 (15)0.33810 (11)0.0163 (3)
C71.04482 (14)0.48238 (15)0.38720 (11)0.0164 (3)
N10.76523 (12)0.02312 (13)0.49686 (9)0.0182 (3)
N21.02794 (13)0.14710 (14)0.37198 (11)0.0217 (3)
C80.82546 (14)0.05055 (15)0.45039 (11)0.0186 (4)
H8A0.80610.12900.44680.022*
C90.91367 (14)0.01310 (15)0.40865 (11)0.0178 (4)
H9A0.95430.06550.37720.021*
C100.94313 (13)0.10635 (14)0.41341 (11)0.0162 (3)
C110.87938 (14)0.18104 (15)0.46358 (11)0.0170 (4)
H11A0.89700.25980.46920.020*
C120.79224 (14)0.13756 (15)0.50369 (11)0.0186 (4)
H12A0.75040.18730.53640.022*
H1N10.7029 (19)0.003 (2)0.5260 (15)0.039 (7)*
H2N21.0665 (18)0.102 (2)0.3412 (15)0.032 (6)*
H1N21.0479 (19)0.222 (2)0.3735 (15)0.042 (7)*
H1O11.000 (2)0.669 (2)0.4166 (18)0.061 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0301 (8)0.0199 (7)0.0302 (8)0.0066 (6)0.0086 (6)0.0064 (5)
O20.0199 (6)0.0150 (6)0.0297 (7)0.0019 (5)0.0014 (6)0.0015 (5)
O30.0196 (6)0.0173 (6)0.0242 (7)0.0002 (5)0.0051 (5)0.0032 (5)
C10.0177 (8)0.0214 (9)0.0162 (9)0.0010 (7)0.0016 (7)0.0002 (7)
C20.0191 (9)0.0280 (9)0.0210 (10)0.0050 (8)0.0032 (7)0.0042 (7)
C30.0151 (9)0.0420 (11)0.0195 (9)0.0039 (8)0.0022 (7)0.0081 (8)
C40.0243 (10)0.0305 (10)0.0179 (9)0.0106 (8)0.0027 (8)0.0005 (8)
C50.0224 (9)0.0200 (8)0.0184 (9)0.0060 (7)0.0012 (7)0.0008 (7)
C60.0151 (8)0.0193 (8)0.0146 (8)0.0035 (7)0.0016 (6)0.0002 (6)
C70.0154 (8)0.0176 (8)0.0162 (8)0.0026 (7)0.0014 (7)0.0006 (6)
N10.0153 (7)0.0189 (7)0.0205 (8)0.0016 (6)0.0007 (6)0.0020 (6)
N20.0219 (8)0.0166 (8)0.0265 (9)0.0017 (7)0.0073 (7)0.0021 (6)
C80.0201 (9)0.0148 (8)0.0209 (9)0.0010 (7)0.0027 (7)0.0003 (7)
C90.0195 (8)0.0149 (8)0.0190 (9)0.0021 (7)0.0005 (7)0.0014 (6)
C100.0158 (8)0.0174 (8)0.0155 (8)0.0003 (6)0.0020 (7)0.0014 (6)
C110.0191 (9)0.0147 (8)0.0171 (9)0.0006 (7)0.0025 (7)0.0009 (6)
C120.0200 (9)0.0183 (8)0.0175 (9)0.0036 (7)0.0009 (7)0.0016 (7)
Geometric parameters (Å, º) top
O1—C11.347 (2)N1—C81.348 (2)
O1—H1O10.97 (3)N1—C121.354 (2)
O2—C71.248 (2)N1—H1N10.96 (2)
O3—C71.285 (2)N2—C101.335 (2)
C1—C21.398 (3)N2—H2N20.86 (2)
C1—C61.408 (2)N2—H1N20.89 (3)
C2—C31.379 (3)C8—C91.359 (2)
C2—H2A0.93C8—H8A0.93
C3—C41.393 (3)C9—C101.415 (2)
C3—H3A0.93C9—H9A0.93
C4—C51.382 (3)C10—C111.412 (2)
C4—H4A0.93C11—C121.359 (2)
C5—C61.400 (2)C11—H11A0.93
C5—H5A0.93C12—H12A0.93
C6—C71.503 (2)
C1—O1—H1O1101.7 (16)C8—N1—C12120.26 (16)
O1—C1—C2118.11 (16)C8—N1—H1N1122.0 (14)
O1—C1—C6122.07 (16)C12—N1—H1N1117.7 (14)
C2—C1—C6119.82 (16)C10—N2—H2N2121.1 (15)
C3—C2—C1120.23 (17)C10—N2—H1N2123.1 (16)
C3—C2—H2A119.9H2N2—N2—H1N2116 (2)
C1—C2—H2A119.9N1—C8—C9121.71 (16)
C2—C3—C4120.70 (18)N1—C8—H8A119.1
C2—C3—H3A119.7C9—C8—H8A119.1
C4—C3—H3A119.7C8—C9—C10119.43 (16)
C5—C4—C3119.26 (17)C8—C9—H9A120.3
C5—C4—H4A120.4C10—C9—H9A120.3
C3—C4—H4A120.4N2—C10—C11121.15 (16)
C4—C5—C6121.44 (17)N2—C10—C9121.29 (16)
C4—C5—H5A119.3C11—C10—C9117.56 (16)
C6—C5—H5A119.3C12—C11—C10119.85 (16)
C5—C6—C1118.54 (16)C12—C11—H11A120.1
C5—C6—C7120.65 (16)C10—C11—H11A120.1
C1—C6—C7120.80 (15)N1—C12—C11121.17 (16)
O2—C7—O3122.97 (16)N1—C12—H12A119.4
O2—C7—C6120.08 (15)C11—C12—H12A119.4
O3—C7—C6116.94 (15)
O1—C1—C2—C3179.61 (17)C1—C6—C7—O2178.36 (16)
C6—C1—C2—C30.1 (3)C5—C6—C7—O3175.74 (16)
C1—C2—C3—C40.6 (3)C1—C6—C7—O33.0 (2)
C2—C3—C4—C50.5 (3)C12—N1—C8—C90.6 (3)
C3—C4—C5—C60.2 (3)N1—C8—C9—C100.4 (3)
C4—C5—C6—C10.7 (3)C8—C9—C10—N2178.64 (17)
C4—C5—C6—C7179.52 (16)C8—C9—C10—C111.3 (2)
O1—C1—C6—C5179.75 (16)N2—C10—C11—C12178.68 (17)
C2—C1—C6—C50.6 (2)C9—C10—C11—C121.2 (2)
O1—C1—C6—C70.9 (3)C8—N1—C12—C110.6 (3)
C2—C1—C6—C7179.35 (16)C10—C11—C12—N10.3 (3)
C5—C6—C7—O22.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.96 (2)2.48 (2)3.1394 (19)126 (2)
N1—H1N1···O3i0.96 (2)1.78 (2)2.7296 (19)172 (2)
N2—H1N2···O20.89 (2)1.90 (2)2.789 (2)176 (2)
O1—H1O1···O30.97 (3)1.61 (2)2.5316 (18)157 (2)
C11—H11A···O3ii0.932.553.360 (2)146
C12—H12A···O2i0.932.563.164 (2)123
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C7H5O3
Mr232.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.5801 (2), 11.4157 (2), 15.7560 (3)
V3)2262.73 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15672, 3010, 2303
Rint0.057
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.118, 1.09
No. of reflections3010
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.96 (2)2.48 (2)3.1394 (19)126 (2)
N1—H1N1···O3i0.96 (2)1.78 (2)2.7296 (19)172 (2)
N2—H1N2···O20.89 (2)1.90 (2)2.789 (2)176 (2)
O1—H1O1···O30.97 (3)1.61 (2)2.5316 (18)157 (2)
C11—H11A···O3ii0.932.553.360 (2)146
C12—H12A···O2i0.932.563.164 (2)123
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531–537.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418–o1419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds