metal-organic compounds
Bromido{N-methyl-N′-[1-(2-pyridyl)ethylidene]ethane-1,2-diamine-κ3N,N′,N′′}(thiocyanato-κN)copper(II)
aExperimental Center, Linyi Normal University, Linyi Shandong 276005, People's Republic of China
*Correspondence e-mail: xiaoerduoaa@hotmail.com
In the title mononuclear copper(II) compound, [CuBr(NCS)(C10H15N3)], the CuII atom is five-coordinated by three N atoms of the Schiff base ligand, the N atom of a thiocyanate ligand and by one bromide ion forming a distorted square-pyramidal geometry. In the molecules are linked through intermolecular N—H⋯Br hydrogen bonds into chains propagating along [101].
Related literature
For general background to Schiff base–copper(II) complexes, see: Adhikary et al. (2009); Al-Karawi (2009); Xiao & Zhang (2009); Rajasekar et al. (2010); Sang & Lin (2010); Qin et al. (2010). For related copper complexes with square-pyramidal coordination, see: Wang et al. (2010); Zhang et al. (2009); Wei et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810027534/ci5132sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810027534/ci5132Isup2.hkl
2-Acetylpyridine (0.1 mmol, 12.1 mg), ammonium thiocyanate (0.1 mmol, 7.6 mg), and copper bromide (0.1 mmol, 22.3 mg) were mixed and stirred in methanol (20 ml) at reflux for 2 h, to give a blue solution. The solution was cooled to room temperature, and blue block-shaped single crystals were formed by slow evaporation of the solution in air.
Atom H3A attached to N3 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C–H = 0.93-0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).
Copper(II) complexes with
have been widely investigated in coordination chemistry and biological chemistry (Adhikary et al., 2009; Al-Karawi, 2009; Xiao & Zhang, 2009; Rajasekar et al., 2010; Sang & Lin, 2010; Qin et al., 2010). In the present paper, the title new copper complex with the Schiff base ligand Nmethyl-N'-(1-pyridin-2-ylethylidene)ethane-1,2-diamine, is reported.The CuII atom in the title complex (Fig. 1) is five-coordinated by one pyridine N, one imine N, and one amine N atoms of a Schiff base ligand, by one bromide atom, and by one N atom of a thiocyanate ligand, forming a square-pyramidal geometry. The bond lengths (Table 1) related to the Cu atom are comparable with those observed in similar copper complexes with square-pyramidal geometry (Wang et al., 2010; Zhang et al., 2009; Wei et al., 2007).
In the
molecules are linked through intermolecular N—H···Br hydrogen bonds (Table 2) to form chains running along the a axis (Fig. 2).For general background to Schiff base–copper(II) complexes, see: Adhikary et al. (2009); Al-Karawi (2009); Xiao & Zhang (2009); Rajasekar et al. (2010); Sang & Lin (2010); Qin et al. (2010). For related copper complexes with square-pyramidal coordination, see: Wang et al. (2010); Zhang et al. (2009); Wei et al. (2007).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[CuBr(NCS)(C10H15N3)] | F(000) = 756 |
Mr = 378.78 | Dx = 1.771 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2570 reflections |
a = 10.979 (2) Å | θ = 2.5–26.5° |
b = 11.407 (2) Å | µ = 4.48 mm−1 |
c = 12.001 (3) Å | T = 298 K |
β = 109.033 (2)° | Block, blue |
V = 1420.8 (5) Å3 | 0.30 × 0.27 × 0.27 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 3022 independent reflections |
Radiation source: fine-focus sealed tube | 1892 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
ω scans | θmax = 27.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −13→14 |
Tmin = 0.347, Tmax = 0.377 | k = −14→12 |
8078 measured reflections | l = −15→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3 |
3022 reflections | (Δ/σ)max = 0.001 |
168 parameters | Δρmax = 0.86 e Å−3 |
1 restraint | Δρmin = −1.01 e Å−3 |
[CuBr(NCS)(C10H15N3)] | V = 1420.8 (5) Å3 |
Mr = 378.78 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.979 (2) Å | µ = 4.48 mm−1 |
b = 11.407 (2) Å | T = 298 K |
c = 12.001 (3) Å | 0.30 × 0.27 × 0.27 mm |
β = 109.033 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3022 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1892 reflections with I > 2σ(I) |
Tmin = 0.347, Tmax = 0.377 | Rint = 0.070 |
8078 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 1 restraint |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.86 e Å−3 |
3022 reflections | Δρmin = −1.01 e Å−3 |
168 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.18062 (6) | 0.60367 (6) | 0.05737 (6) | 0.0319 (2) | |
Br1 | 0.38736 (6) | 0.64845 (6) | 0.25208 (5) | 0.0412 (2) | |
N1 | 0.2487 (4) | 0.4486 (4) | 0.0218 (4) | 0.0292 (11) | |
N2 | 0.2631 (5) | 0.6533 (5) | −0.0577 (4) | 0.0356 (12) | |
N3 | 0.1033 (5) | 0.7682 (4) | 0.0253 (4) | 0.0405 (13) | |
N4 | 0.0715 (5) | 0.5412 (5) | 0.1429 (5) | 0.0451 (14) | |
S1 | −0.03147 (18) | 0.50606 (17) | 0.32203 (16) | 0.0522 (5) | |
C1 | 0.2396 (6) | 0.3440 (5) | 0.0690 (5) | 0.0390 (15) | |
H1 | 0.1917 | 0.3382 | 0.1200 | 0.047* | |
C2 | 0.2974 (7) | 0.2460 (6) | 0.0456 (7) | 0.0527 (19) | |
H2 | 0.2893 | 0.1748 | 0.0803 | 0.063* | |
C3 | 0.3683 (7) | 0.2534 (6) | −0.0307 (6) | 0.0528 (19) | |
H3 | 0.4090 | 0.1874 | −0.0474 | 0.063* | |
C4 | 0.3778 (6) | 0.3601 (6) | −0.0815 (6) | 0.0454 (17) | |
H4 | 0.4249 | 0.3672 | −0.1330 | 0.054* | |
C5 | 0.3152 (5) | 0.4572 (5) | −0.0541 (5) | 0.0314 (13) | |
C6 | 0.3174 (5) | 0.5760 (5) | −0.1021 (5) | 0.0331 (14) | |
C7 | 0.3743 (7) | 0.5979 (6) | −0.1975 (6) | 0.0519 (18) | |
H7A | 0.3179 | 0.5672 | −0.2706 | 0.078* | |
H7B | 0.4566 | 0.5597 | −0.1780 | 0.078* | |
H7C | 0.3851 | 0.6806 | −0.2052 | 0.078* | |
C8 | 0.2442 (7) | 0.7750 (6) | −0.0943 (6) | 0.0518 (18) | |
H8A | 0.1787 | 0.7814 | −0.1712 | 0.062* | |
H8B | 0.3238 | 0.8082 | −0.0987 | 0.062* | |
C9 | 0.2019 (7) | 0.8386 (6) | −0.0024 (6) | 0.0535 (19) | |
H9A | 0.2752 | 0.8504 | 0.0683 | 0.064* | |
H9B | 0.1669 | 0.9148 | −0.0322 | 0.064* | |
C10 | 0.0578 (8) | 0.8231 (6) | 0.1167 (6) | 0.064 (2) | |
H10A | 0.1306 | 0.8425 | 0.1842 | 0.096* | |
H10B | 0.0030 | 0.7692 | 0.1395 | 0.096* | |
H10C | 0.0104 | 0.8931 | 0.0855 | 0.096* | |
C11 | 0.0286 (5) | 0.5262 (5) | 0.2159 (5) | 0.0312 (14) | |
H3A | 0.038 (5) | 0.760 (6) | −0.043 (3) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0334 (4) | 0.0328 (4) | 0.0350 (4) | 0.0035 (3) | 0.0184 (3) | 0.0024 (3) |
Br1 | 0.0369 (4) | 0.0467 (4) | 0.0389 (4) | 0.0031 (3) | 0.0108 (3) | −0.0090 (3) |
N1 | 0.028 (3) | 0.034 (3) | 0.029 (3) | −0.001 (2) | 0.014 (2) | 0.000 (2) |
N2 | 0.030 (3) | 0.042 (3) | 0.036 (3) | 0.004 (2) | 0.013 (2) | 0.011 (2) |
N3 | 0.049 (3) | 0.030 (3) | 0.043 (3) | 0.007 (2) | 0.014 (3) | −0.003 (2) |
N4 | 0.039 (3) | 0.056 (4) | 0.050 (3) | 0.000 (3) | 0.028 (3) | 0.000 (3) |
S1 | 0.0599 (12) | 0.0548 (11) | 0.0570 (11) | −0.0083 (9) | 0.0397 (10) | −0.0003 (9) |
C1 | 0.041 (4) | 0.036 (4) | 0.040 (4) | −0.001 (3) | 0.015 (3) | 0.003 (3) |
C2 | 0.052 (5) | 0.029 (4) | 0.071 (5) | 0.001 (3) | 0.012 (4) | −0.003 (3) |
C3 | 0.055 (5) | 0.040 (5) | 0.057 (5) | 0.006 (3) | 0.009 (4) | −0.016 (4) |
C4 | 0.039 (4) | 0.058 (5) | 0.042 (4) | 0.006 (3) | 0.017 (3) | −0.016 (3) |
C5 | 0.026 (3) | 0.039 (4) | 0.028 (3) | 0.001 (3) | 0.008 (3) | −0.002 (3) |
C6 | 0.023 (3) | 0.050 (4) | 0.029 (3) | 0.002 (3) | 0.013 (2) | 0.007 (3) |
C7 | 0.046 (4) | 0.077 (5) | 0.041 (4) | 0.002 (4) | 0.026 (3) | 0.013 (4) |
C8 | 0.056 (5) | 0.046 (5) | 0.066 (5) | 0.006 (3) | 0.036 (4) | 0.020 (4) |
C9 | 0.055 (5) | 0.033 (4) | 0.065 (5) | 0.002 (3) | 0.008 (4) | 0.008 (3) |
C10 | 0.079 (6) | 0.060 (5) | 0.054 (5) | 0.026 (4) | 0.022 (4) | −0.008 (4) |
C11 | 0.022 (3) | 0.029 (3) | 0.044 (4) | 0.000 (2) | 0.012 (3) | −0.006 (3) |
Cu1—N4 | 1.949 (5) | C3—C4 | 1.380 (9) |
Cu1—N2 | 1.965 (5) | C3—H3 | 0.93 |
Cu1—N1 | 2.019 (5) | C4—C5 | 1.398 (8) |
Cu1—N3 | 2.044 (5) | C4—H4 | 0.93 |
Cu1—Br1 | 2.7228 (10) | C5—C6 | 1.476 (8) |
N1—C1 | 1.338 (7) | C6—C7 | 1.494 (8) |
N1—C5 | 1.343 (7) | C7—H7A | 0.96 |
N2—C6 | 1.274 (7) | C7—H7B | 0.96 |
N2—C8 | 1.451 (8) | C7—H7C | 0.96 |
N3—C9 | 1.470 (9) | C8—C9 | 1.514 (9) |
N3—C10 | 1.484 (8) | C8—H8A | 0.97 |
N3—H3A | 0.899 (10) | C8—H8B | 0.97 |
N4—C11 | 1.135 (7) | C9—H9A | 0.97 |
S1—C11 | 1.630 (7) | C9—H9B | 0.97 |
C1—C2 | 1.359 (9) | C10—H10A | 0.96 |
C1—H1 | 0.93 | C10—H10B | 0.96 |
C2—C3 | 1.384 (10) | C10—H10C | 0.96 |
C2—H2 | 0.93 | ||
N4—Cu1—N2 | 168.1 (2) | C3—C4—H4 | 120.6 |
N4—Cu1—N1 | 97.2 (2) | C5—C4—H4 | 120.6 |
N2—Cu1—N1 | 79.4 (2) | N1—C5—C4 | 121.3 (6) |
N4—Cu1—N3 | 98.4 (2) | N1—C5—C6 | 114.4 (5) |
N2—Cu1—N3 | 82.0 (2) | C4—C5—C6 | 124.3 (6) |
N1—Cu1—N3 | 157.5 (2) | N2—C6—C5 | 113.7 (5) |
N4—Cu1—Br1 | 95.75 (16) | N2—C6—C7 | 125.1 (6) |
N2—Cu1—Br1 | 95.90 (14) | C5—C6—C7 | 121.1 (6) |
N1—Cu1—Br1 | 94.79 (12) | C6—C7—H7A | 109.5 |
N3—Cu1—Br1 | 99.67 (15) | C6—C7—H7B | 109.5 |
C1—N1—C5 | 118.9 (5) | H7A—C7—H7B | 109.5 |
C1—N1—Cu1 | 127.4 (4) | C6—C7—H7C | 109.5 |
C5—N1—Cu1 | 113.6 (4) | H7A—C7—H7C | 109.5 |
C6—N2—C8 | 125.1 (5) | H7B—C7—H7C | 109.5 |
C6—N2—Cu1 | 118.7 (4) | N2—C8—C9 | 106.6 (5) |
C8—N2—Cu1 | 115.8 (4) | N2—C8—H8A | 110.4 |
C9—N3—C10 | 112.8 (5) | C9—C8—H8A | 110.4 |
C9—N3—Cu1 | 104.6 (4) | N2—C8—H8B | 110.4 |
C10—N3—Cu1 | 117.9 (4) | C9—C8—H8B | 110.4 |
C9—N3—H3A | 106 (5) | H8A—C8—H8B | 108.6 |
C10—N3—H3A | 111 (5) | N3—C9—C8 | 109.1 (5) |
Cu1—N3—H3A | 104 (5) | N3—C9—H9A | 109.9 |
C11—N4—Cu1 | 160.6 (5) | C8—C9—H9A | 109.9 |
N1—C1—C2 | 122.8 (6) | N3—C9—H9B | 109.9 |
N1—C1—H1 | 118.6 | C8—C9—H9B | 109.9 |
C2—C1—H1 | 118.6 | H9A—C9—H9B | 108.3 |
C1—C2—C3 | 119.2 (7) | N3—C10—H10A | 109.5 |
C1—C2—H2 | 120.4 | N3—C10—H10B | 109.5 |
C3—C2—H2 | 120.4 | H10A—C10—H10B | 109.5 |
C4—C3—C2 | 119.1 (6) | N3—C10—H10C | 109.5 |
C4—C3—H3 | 120.5 | H10A—C10—H10C | 109.5 |
C2—C3—H3 | 120.5 | H10B—C10—H10C | 109.5 |
C3—C4—C5 | 118.7 (6) | N4—C11—S1 | 179.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1i | 0.90 (1) | 2.69 (4) | 3.494 (5) | 150 (6) |
Symmetry code: (i) x−1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuBr(NCS)(C10H15N3)] |
Mr | 378.78 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 10.979 (2), 11.407 (2), 12.001 (3) |
β (°) | 109.033 (2) |
V (Å3) | 1420.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.48 |
Crystal size (mm) | 0.30 × 0.27 × 0.27 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.347, 0.377 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8078, 3022, 1892 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.137, 0.97 |
No. of reflections | 3022 |
No. of parameters | 168 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.86, −1.01 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N4 | 1.949 (5) | Cu1—N3 | 2.044 (5) |
Cu1—N2 | 1.965 (5) | Cu1—Br1 | 2.7228 (10) |
Cu1—N1 | 2.019 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1i | 0.90 (1) | 2.69 (4) | 3.494 (5) | 150 (6) |
Symmetry code: (i) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
The author acknowledges Linyi Normal University for supporting this work.
References
Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573–3582. Web of Science CSD CrossRef CAS Google Scholar
Al-Karawi, A. J. M. (2009). Transition Met. Chem. 34, 891–897. Web of Science CrossRef CAS Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Qin, D.-D., Yang, Z.-Y., Zhang, F.-H., Du, B., Wang, P. & Li, T.-R. (2010). Inorg. Chem. Commun. 13, 727–729. Web of Science CSD CrossRef CAS Google Scholar
Rajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N. & Rahiman, A. K. (2010). J. Coord. Chem. 63, 136–146. Web of Science CrossRef CAS Google Scholar
Sang, Y.-L. & Lin, X.-S. (2010). J. Coord. Chem. 63, 316–322. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, N., Xue, R., Li, B., Yang, Y.-P. & Cao, M. (2010). Acta Cryst. E66, m601–m602. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m2629. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, J.-M. & Zhang, W. (2009). Inorg. Chem. Commun. 12, 1175–1178. Web of Science CrossRef CAS Google Scholar
Zhang, X.-Q., Li, C.-Y., Bian, H.-D., Yu, Q. & Liang, H. (2009). Acta Cryst. E65, m1610. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper(II) complexes with Schiff bases have been widely investigated in coordination chemistry and biological chemistry (Adhikary et al., 2009; Al-Karawi, 2009; Xiao & Zhang, 2009; Rajasekar et al., 2010; Sang & Lin, 2010; Qin et al., 2010). In the present paper, the title new copper complex with the Schiff base ligand Nmethyl-N'-(1-pyridin-2-ylethylidene)ethane-1,2-diamine, is reported.
The CuII atom in the title complex (Fig. 1) is five-coordinated by one pyridine N, one imine N, and one amine N atoms of a Schiff base ligand, by one bromide atom, and by one N atom of a thiocyanate ligand, forming a square-pyramidal geometry. The bond lengths (Table 1) related to the Cu atom are comparable with those observed in similar copper complexes with square-pyramidal geometry (Wang et al., 2010; Zhang et al., 2009; Wei et al., 2007).
In the crystal structure, molecules are linked through intermolecular N—H···Br hydrogen bonds (Table 2) to form chains running along the a axis (Fig. 2).