metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido{N-methyl-N′-[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}­(thio­cyanato-κN)­copper(II)

aExperimental Center, Linyi Normal University, Linyi Shandong 276005, People's Republic of China
*Correspondence e-mail: xiaoerduoaa@hotmail.com

(Received 12 July 2010; accepted 12 July 2010; online 17 July 2010)

In the title mononuclear copper(II) compound, [CuBr(NCS)(C10H15N3)], the CuII atom is five-coordinated by three N atoms of the Schiff base ligand, the N atom of a thio­cyanate ligand and by one bromide ion forming a distorted square-pyramidal geometry. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯Br hydrogen bonds into chains propagating along [101].

Related literature

For general background to Schiff base–copper(II) complexes, see: Adhikary et al. (2009[Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573-3582.]); Al-Karawi (2009[Al-Karawi, A. J. M. (2009). Transition Met. Chem. 34, 891-897.]); Xiao & Zhang (2009[Xiao, J.-M. & Zhang, W. (2009). Inorg. Chem. Commun. 12, 1175-1178.]); Rajasekar et al. (2010[Rajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N. & Rahiman, A. K. (2010). J. Coord. Chem. 63, 136-146.]); Sang & Lin (2010[Sang, Y.-L. & Lin, X.-S. (2010). J. Coord. Chem. 63, 316-322.]); Qin et al. (2010[Qin, D.-D., Yang, Z.-Y., Zhang, F.-H., Du, B., Wang, P. & Li, T.-R. (2010). Inorg. Chem. Commun. 13, 727-729.]). For related copper complexes with square-pyramidal coordination, see: Wang et al. (2010[Wang, N., Xue, R., Li, B., Yang, Y.-P. & Cao, M. (2010). Acta Cryst. E66, m601-m602.]); Zhang et al. (2009[Zhang, X.-Q., Li, C.-Y., Bian, H.-D., Yu, Q. & Liang, H. (2009). Acta Cryst. E65, m1610.]); Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m2629.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(NCS)(C10H15N3)]

  • Mr = 378.78

  • Monoclinic, P 21 /n

  • a = 10.979 (2) Å

  • b = 11.407 (2) Å

  • c = 12.001 (3) Å

  • β = 109.033 (2)°

  • V = 1420.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.48 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.347, Tmax = 0.377

  • 8078 measured reflections

  • 3022 independent reflections

  • 1892 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.137

  • S = 0.97

  • 3022 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N4 1.949 (5)
Cu1—N2 1.965 (5)
Cu1—N1 2.019 (5)
Cu1—N3 2.044 (5)
Cu1—Br1 2.7228 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.90 (1) 2.69 (4) 3.494 (5) 150 (6)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(II) complexes with Schiff bases have been widely investigated in coordination chemistry and biological chemistry (Adhikary et al., 2009; Al-Karawi, 2009; Xiao & Zhang, 2009; Rajasekar et al., 2010; Sang & Lin, 2010; Qin et al., 2010). In the present paper, the title new copper complex with the Schiff base ligand Nmethyl-N'-(1-pyridin-2-ylethylidene)ethane-1,2-diamine, is reported.

The CuII atom in the title complex (Fig. 1) is five-coordinated by one pyridine N, one imine N, and one amine N atoms of a Schiff base ligand, by one bromide atom, and by one N atom of a thiocyanate ligand, forming a square-pyramidal geometry. The bond lengths (Table 1) related to the Cu atom are comparable with those observed in similar copper complexes with square-pyramidal geometry (Wang et al., 2010; Zhang et al., 2009; Wei et al., 2007).

In the crystal structure, molecules are linked through intermolecular N—H···Br hydrogen bonds (Table 2) to form chains running along the a axis (Fig. 2).

Related literature top

For general background to Schiff base–copper(II) complexes, see: Adhikary et al. (2009); Al-Karawi (2009); Xiao & Zhang (2009); Rajasekar et al. (2010); Sang & Lin (2010); Qin et al. (2010). For related copper complexes with square-pyramidal coordination, see: Wang et al. (2010); Zhang et al. (2009); Wei et al. (2007).

Experimental top

2-Acetylpyridine (0.1 mmol, 12.1 mg), ammonium thiocyanate (0.1 mmol, 7.6 mg), and copper bromide (0.1 mmol, 22.3 mg) were mixed and stirred in methanol (20 ml) at reflux for 2 h, to give a blue solution. The solution was cooled to room temperature, and blue block-shaped single crystals were formed by slow evaporation of the solution in air.

Refinement top

Atom H3A attached to N3 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C–H = 0.93-0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Structure description top

Copper(II) complexes with Schiff bases have been widely investigated in coordination chemistry and biological chemistry (Adhikary et al., 2009; Al-Karawi, 2009; Xiao & Zhang, 2009; Rajasekar et al., 2010; Sang & Lin, 2010; Qin et al., 2010). In the present paper, the title new copper complex with the Schiff base ligand Nmethyl-N'-(1-pyridin-2-ylethylidene)ethane-1,2-diamine, is reported.

The CuII atom in the title complex (Fig. 1) is five-coordinated by one pyridine N, one imine N, and one amine N atoms of a Schiff base ligand, by one bromide atom, and by one N atom of a thiocyanate ligand, forming a square-pyramidal geometry. The bond lengths (Table 1) related to the Cu atom are comparable with those observed in similar copper complexes with square-pyramidal geometry (Wang et al., 2010; Zhang et al., 2009; Wei et al., 2007).

In the crystal structure, molecules are linked through intermolecular N—H···Br hydrogen bonds (Table 2) to form chains running along the a axis (Fig. 2).

For general background to Schiff base–copper(II) complexes, see: Adhikary et al. (2009); Al-Karawi (2009); Xiao & Zhang (2009); Rajasekar et al. (2010); Sang & Lin (2010); Qin et al. (2010). For related copper complexes with square-pyramidal coordination, see: Wang et al. (2010); Zhang et al. (2009); Wei et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title complex, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Bromido{N-methyl-N'-[1-(2-pyridyl)ethylidene]ethane-1,2-diamine- κ3N,N',N''}(thiocyanato-κN)copper(II) top
Crystal data top
[CuBr(NCS)(C10H15N3)]F(000) = 756
Mr = 378.78Dx = 1.771 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2570 reflections
a = 10.979 (2) Åθ = 2.5–26.5°
b = 11.407 (2) ŵ = 4.48 mm1
c = 12.001 (3) ÅT = 298 K
β = 109.033 (2)°Block, blue
V = 1420.8 (5) Å30.30 × 0.27 × 0.27 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3022 independent reflections
Radiation source: fine-focus sealed tube1892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1314
Tmin = 0.347, Tmax = 0.377k = 1412
8078 measured reflectionsl = 158
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.86 e Å3
1 restraintΔρmin = 1.01 e Å3
Crystal data top
[CuBr(NCS)(C10H15N3)]V = 1420.8 (5) Å3
Mr = 378.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.979 (2) ŵ = 4.48 mm1
b = 11.407 (2) ÅT = 298 K
c = 12.001 (3) Å0.30 × 0.27 × 0.27 mm
β = 109.033 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1892 reflections with I > 2σ(I)
Tmin = 0.347, Tmax = 0.377Rint = 0.070
8078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.86 e Å3
3022 reflectionsΔρmin = 1.01 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18062 (6)0.60367 (6)0.05737 (6)0.0319 (2)
Br10.38736 (6)0.64845 (6)0.25208 (5)0.0412 (2)
N10.2487 (4)0.4486 (4)0.0218 (4)0.0292 (11)
N20.2631 (5)0.6533 (5)0.0577 (4)0.0356 (12)
N30.1033 (5)0.7682 (4)0.0253 (4)0.0405 (13)
N40.0715 (5)0.5412 (5)0.1429 (5)0.0451 (14)
S10.03147 (18)0.50606 (17)0.32203 (16)0.0522 (5)
C10.2396 (6)0.3440 (5)0.0690 (5)0.0390 (15)
H10.19170.33820.12000.047*
C20.2974 (7)0.2460 (6)0.0456 (7)0.0527 (19)
H20.28930.17480.08030.063*
C30.3683 (7)0.2534 (6)0.0307 (6)0.0528 (19)
H30.40900.18740.04740.063*
C40.3778 (6)0.3601 (6)0.0815 (6)0.0454 (17)
H40.42490.36720.13300.054*
C50.3152 (5)0.4572 (5)0.0541 (5)0.0314 (13)
C60.3174 (5)0.5760 (5)0.1021 (5)0.0331 (14)
C70.3743 (7)0.5979 (6)0.1975 (6)0.0519 (18)
H7A0.31790.56720.27060.078*
H7B0.45660.55970.17800.078*
H7C0.38510.68060.20520.078*
C80.2442 (7)0.7750 (6)0.0943 (6)0.0518 (18)
H8A0.17870.78140.17120.062*
H8B0.32380.80820.09870.062*
C90.2019 (7)0.8386 (6)0.0024 (6)0.0535 (19)
H9A0.27520.85040.06830.064*
H9B0.16690.91480.03220.064*
C100.0578 (8)0.8231 (6)0.1167 (6)0.064 (2)
H10A0.13060.84250.18420.096*
H10B0.00300.76920.13950.096*
H10C0.01040.89310.08550.096*
C110.0286 (5)0.5262 (5)0.2159 (5)0.0312 (14)
H3A0.038 (5)0.760 (6)0.043 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0334 (4)0.0328 (4)0.0350 (4)0.0035 (3)0.0184 (3)0.0024 (3)
Br10.0369 (4)0.0467 (4)0.0389 (4)0.0031 (3)0.0108 (3)0.0090 (3)
N10.028 (3)0.034 (3)0.029 (3)0.001 (2)0.014 (2)0.000 (2)
N20.030 (3)0.042 (3)0.036 (3)0.004 (2)0.013 (2)0.011 (2)
N30.049 (3)0.030 (3)0.043 (3)0.007 (2)0.014 (3)0.003 (2)
N40.039 (3)0.056 (4)0.050 (3)0.000 (3)0.028 (3)0.000 (3)
S10.0599 (12)0.0548 (11)0.0570 (11)0.0083 (9)0.0397 (10)0.0003 (9)
C10.041 (4)0.036 (4)0.040 (4)0.001 (3)0.015 (3)0.003 (3)
C20.052 (5)0.029 (4)0.071 (5)0.001 (3)0.012 (4)0.003 (3)
C30.055 (5)0.040 (5)0.057 (5)0.006 (3)0.009 (4)0.016 (4)
C40.039 (4)0.058 (5)0.042 (4)0.006 (3)0.017 (3)0.016 (3)
C50.026 (3)0.039 (4)0.028 (3)0.001 (3)0.008 (3)0.002 (3)
C60.023 (3)0.050 (4)0.029 (3)0.002 (3)0.013 (2)0.007 (3)
C70.046 (4)0.077 (5)0.041 (4)0.002 (4)0.026 (3)0.013 (4)
C80.056 (5)0.046 (5)0.066 (5)0.006 (3)0.036 (4)0.020 (4)
C90.055 (5)0.033 (4)0.065 (5)0.002 (3)0.008 (4)0.008 (3)
C100.079 (6)0.060 (5)0.054 (5)0.026 (4)0.022 (4)0.008 (4)
C110.022 (3)0.029 (3)0.044 (4)0.000 (2)0.012 (3)0.006 (3)
Geometric parameters (Å, º) top
Cu1—N41.949 (5)C3—C41.380 (9)
Cu1—N21.965 (5)C3—H30.93
Cu1—N12.019 (5)C4—C51.398 (8)
Cu1—N32.044 (5)C4—H40.93
Cu1—Br12.7228 (10)C5—C61.476 (8)
N1—C11.338 (7)C6—C71.494 (8)
N1—C51.343 (7)C7—H7A0.96
N2—C61.274 (7)C7—H7B0.96
N2—C81.451 (8)C7—H7C0.96
N3—C91.470 (9)C8—C91.514 (9)
N3—C101.484 (8)C8—H8A0.97
N3—H3A0.899 (10)C8—H8B0.97
N4—C111.135 (7)C9—H9A0.97
S1—C111.630 (7)C9—H9B0.97
C1—C21.359 (9)C10—H10A0.96
C1—H10.93C10—H10B0.96
C2—C31.384 (10)C10—H10C0.96
C2—H20.93
N4—Cu1—N2168.1 (2)C3—C4—H4120.6
N4—Cu1—N197.2 (2)C5—C4—H4120.6
N2—Cu1—N179.4 (2)N1—C5—C4121.3 (6)
N4—Cu1—N398.4 (2)N1—C5—C6114.4 (5)
N2—Cu1—N382.0 (2)C4—C5—C6124.3 (6)
N1—Cu1—N3157.5 (2)N2—C6—C5113.7 (5)
N4—Cu1—Br195.75 (16)N2—C6—C7125.1 (6)
N2—Cu1—Br195.90 (14)C5—C6—C7121.1 (6)
N1—Cu1—Br194.79 (12)C6—C7—H7A109.5
N3—Cu1—Br199.67 (15)C6—C7—H7B109.5
C1—N1—C5118.9 (5)H7A—C7—H7B109.5
C1—N1—Cu1127.4 (4)C6—C7—H7C109.5
C5—N1—Cu1113.6 (4)H7A—C7—H7C109.5
C6—N2—C8125.1 (5)H7B—C7—H7C109.5
C6—N2—Cu1118.7 (4)N2—C8—C9106.6 (5)
C8—N2—Cu1115.8 (4)N2—C8—H8A110.4
C9—N3—C10112.8 (5)C9—C8—H8A110.4
C9—N3—Cu1104.6 (4)N2—C8—H8B110.4
C10—N3—Cu1117.9 (4)C9—C8—H8B110.4
C9—N3—H3A106 (5)H8A—C8—H8B108.6
C10—N3—H3A111 (5)N3—C9—C8109.1 (5)
Cu1—N3—H3A104 (5)N3—C9—H9A109.9
C11—N4—Cu1160.6 (5)C8—C9—H9A109.9
N1—C1—C2122.8 (6)N3—C9—H9B109.9
N1—C1—H1118.6C8—C9—H9B109.9
C2—C1—H1118.6H9A—C9—H9B108.3
C1—C2—C3119.2 (7)N3—C10—H10A109.5
C1—C2—H2120.4N3—C10—H10B109.5
C3—C2—H2120.4H10A—C10—H10B109.5
C4—C3—C2119.1 (6)N3—C10—H10C109.5
C4—C3—H3120.5H10A—C10—H10C109.5
C2—C3—H3120.5H10B—C10—H10C109.5
C3—C4—C5118.7 (6)N4—C11—S1179.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br1i0.90 (1)2.69 (4)3.494 (5)150 (6)
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[CuBr(NCS)(C10H15N3)]
Mr378.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.979 (2), 11.407 (2), 12.001 (3)
β (°) 109.033 (2)
V3)1420.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.48
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.347, 0.377
No. of measured, independent and
observed [I > 2σ(I)] reflections
8078, 3022, 1892
Rint0.070
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.137, 0.97
No. of reflections3022
No. of parameters168
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 1.01

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N41.949 (5)Cu1—N32.044 (5)
Cu1—N21.965 (5)Cu1—Br12.7228 (10)
Cu1—N12.019 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br1i0.90 (1)2.69 (4)3.494 (5)150 (6)
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

The author acknowledges Linyi Normal University for supporting this work.

References

First citationAdhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem. 62, 3573–3582.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Karawi, A. J. M. (2009). Transition Met. Chem. 34, 891–897.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQin, D.-D., Yang, Z.-Y., Zhang, F.-H., Du, B., Wang, P. & Li, T.-R. (2010). Inorg. Chem. Commun. 13, 727–729.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N. & Rahiman, A. K. (2010). J. Coord. Chem. 63, 136–146.  Web of Science CrossRef CAS Google Scholar
First citationSang, Y.-L. & Lin, X.-S. (2010). J. Coord. Chem. 63, 316–322.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N., Xue, R., Li, B., Yang, Y.-P. & Cao, M. (2010). Acta Cryst. E66, m601–m602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m2629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, J.-M. & Zhang, W. (2009). Inorg. Chem. Commun. 12, 1175–1178.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X.-Q., Li, C.-Y., Bian, H.-D., Yu, Q. & Liang, H. (2009). Acta Cryst. E65, m1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds