metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(4-methyl­benzoato-κ2O:O′)lead(II)]-μ-nicotinamide-κ2N1:O]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 12 July 2010; accepted 14 July 2010; online 17 July 2010)

In the title compound, [Pb(C8H7O2)2(C6H6N2O)]n, the PbII ion is coordinated by two 4-methyl­benzoate (PMB) and one nicotinamide (NA) ligands while symmetry-related NA ligands bridge adjacent PbII ions, forming polymeric chains along the c axis. The carboxyl­ate groups in the two PMB ions are twisted away from the attached benzene ring by 22.9 (2) and 4.6 (2)°. The two benzene rings of the PMB ions are oriented at a dihedral angle of 83.7 (1)°. In a polymeric chain, the NA ligands are linked to PMB ions through intra­molecular N—H⋯O hydrogen bonds. In the crystal structure, adjacent polymeric chains inter­act via N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416-m1417.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627-m628.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037-m1038.],d[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365-m1366.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C8H7O2)2(C6H6N2O)]

  • Mr = 599.60

  • Monoclinic, P 21 /c

  • a = 14.1146 (3) Å

  • b = 7.7431 (2) Å

  • c = 19.2165 (4) Å

  • β = 102.322 (2)°

  • V = 2051.81 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.26 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.074, Tmax = 0.342

  • 19461 measured reflections

  • 5143 independent reflections

  • 4669 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.050

  • S = 1.03

  • 5143 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.7594 (19)
Pb1—O2 2.3141 (17)
Pb1—O3 2.4824 (18)
Pb1—O4 2.5672 (19)
Pb1—O5 2.6800 (16)
Pb1—N1i 2.661 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 (3) 2.02 (3) 2.835 (3) 158 (3)
N2—H2B⋯O2ii 0.86 (3) 2.11 (3) 2.946 (3) 167 (3)
C4—H4⋯O1iii 0.93 2.53 3.431 (3) 165
C11—H11⋯O1 0.93 2.59 3.253 (3) 129
C17—H17⋯O2ii 0.93 2.41 3.317 (3) 166
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the crystal structure of the title compound, each PbII ion is coordinated by two 4-methylbenzoate (PMB) and one nicotinamide (NA) ligands (Fig. 1), while symmetry related NA ligands bridge the PbII ions forming polymeric chains along the c axis (Fig. 2). The two PMB ions act as bidentate ligands, while the NA is monodentate ligand (Fig. 1). The crystal structures of similar complexes of CdII, CoII, MnII and ZnII ions, [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O, (II) (Hökelek et al., 2009a), [Co(C9H10NO2)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2009b), [Mn(C9H10NO2)2(C6H6N2O)(H2O)2], (IV) (Hökelek et al., 2009c), [Zn2(DENA)2(C7H5O3)4].2H2O, (V) (Hökelek & Necefoğlu, 1996) and [Zn(C8H8NO2)2(C6H6N2O)2].H2O, (VI) (Hökelek et al., 2009d) have also been reported. In (II), the two benzoate ions are coordinated to the Cd atom as bidentate ligands. In the other structures one of the benzoate ligands acts as a bidentate ligand, while the other is monodentate ligand.

The average Pb—O bond length (Table 1) is 2.5606 (18) Å and the Pb1 atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by -0.096 (10) Å and 0.403 (10) Å, respectively. The O1/C1/O2 and O3/C9/O4 carboxylate planes form dihedral angles of 22.9 (2)° and 4.6 (2)°, respectively, with benzene rings A(C2-C7) and B(C10-C15), while the angles between rings A, B and C (N1/C17-C21) are A/B = 83.7 (1), A/C = 65.4 (1) and B/C = 20.9 (1)°. An intramolecular N—H···O hydrogen bond (Table 2) links the NA ligand to one of the carboxylate groups of the PMB ions acting as a bidentate ligand. In (I), the O1—Pb1—O2 and O3—Pb1—O4 angles are 51.09 (6)° and 51.71 (5)°, respectively. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in (II), 60.70 (4)° in (III), 58.45 (9)° in (IV), 58.3 (3)° in (V), 60.03 (6)° in (VI) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway et al., 1984].

In the crystal structure, N—H···O and C—H···O hydrogen bonds (Table 2) link adjacent chains into a two-dimensional network parallel to the bc plane (Fig.2).

Related literature top

For niacin, see: Krishnamachari (1974) and for N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Experimental top

The title compound was prepared by the reaction of Pb(NO3)2 (1.656 g, 5 mmol) in H2O (50 ml) and nicotinamide (1.220 g, 10 mmol) in H2O (10 ml) with sodium 4-methylbenzoate (1.580 g, 10 mmol) in H2O (160 ml). The mixture was filtered and set aside to crystallize at ambient temperature for four weeks, giving colourless single crystals.

Refinement top

Atoms H2A and H2B of the NH2 group were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C–H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. One low angle reflection (100) was partially obscured by the beam stop and was omitted from the refinement. The highest peak and deepest hole are located 0.86 and 0.68 Å, respectively, from Pb1.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the crystal structure of the title compound, each PbII ion is coordinated by two 4-methylbenzoate (PMB) and one nicotinamide (NA) ligands (Fig. 1), while symmetry related NA ligands bridge the PbII ions forming polymeric chains along the c axis (Fig. 2). The two PMB ions act as bidentate ligands, while the NA is monodentate ligand (Fig. 1). The crystal structures of similar complexes of CdII, CoII, MnII and ZnII ions, [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O, (II) (Hökelek et al., 2009a), [Co(C9H10NO2)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2009b), [Mn(C9H10NO2)2(C6H6N2O)(H2O)2], (IV) (Hökelek et al., 2009c), [Zn2(DENA)2(C7H5O3)4].2H2O, (V) (Hökelek & Necefoğlu, 1996) and [Zn(C8H8NO2)2(C6H6N2O)2].H2O, (VI) (Hökelek et al., 2009d) have also been reported. In (II), the two benzoate ions are coordinated to the Cd atom as bidentate ligands. In the other structures one of the benzoate ligands acts as a bidentate ligand, while the other is monodentate ligand.

The average Pb—O bond length (Table 1) is 2.5606 (18) Å and the Pb1 atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by -0.096 (10) Å and 0.403 (10) Å, respectively. The O1/C1/O2 and O3/C9/O4 carboxylate planes form dihedral angles of 22.9 (2)° and 4.6 (2)°, respectively, with benzene rings A(C2-C7) and B(C10-C15), while the angles between rings A, B and C (N1/C17-C21) are A/B = 83.7 (1), A/C = 65.4 (1) and B/C = 20.9 (1)°. An intramolecular N—H···O hydrogen bond (Table 2) links the NA ligand to one of the carboxylate groups of the PMB ions acting as a bidentate ligand. In (I), the O1—Pb1—O2 and O3—Pb1—O4 angles are 51.09 (6)° and 51.71 (5)°, respectively. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in (II), 60.70 (4)° in (III), 58.45 (9)° in (IV), 58.3 (3)° in (V), 60.03 (6)° in (VI) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway et al., 1984].

In the crystal structure, N—H···O and C—H···O hydrogen bonds (Table 2) link adjacent chains into a two-dimensional network parallel to the bc plane (Fig.2).

For niacin, see: Krishnamachari (1974) and for N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Part of the polymeric chain of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operators: (') x, 1/2 - y, 1/2 + z; ('') x, 1/2 - y, z - 1/2. Dashed lines indicate hydrogen-bonding.
[Figure 2] Fig. 2. The crystal structure of the title complex.
catena-Poly[[bis(4-methylbenzoato-κ2O:O')lead(II)]- µ-nicotinamide-κ2N1:O] top
Crystal data top
[Pb(C8H7O2)2(C6H6N2O)]F(000) = 1152
Mr = 599.60Dx = 1.941 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9891 reflections
a = 14.1146 (3) Åθ = 2.4–28.4°
b = 7.7431 (2) ŵ = 8.26 mm1
c = 19.2165 (4) ÅT = 100 K
β = 102.322 (2)°Plate, colourless
V = 2051.81 (8) Å30.34 × 0.32 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5143 independent reflections
Radiation source: fine-focus sealed tube4669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1817
Tmin = 0.074, Tmax = 0.342k = 910
19461 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0216P)2 + 2.0622P]
where P = (Fo2 + 2Fc2)/3
5143 reflections(Δ/σ)max = 0.003
281 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Pb(C8H7O2)2(C6H6N2O)]V = 2051.81 (8) Å3
Mr = 599.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1146 (3) ŵ = 8.26 mm1
b = 7.7431 (2) ÅT = 100 K
c = 19.2165 (4) Å0.34 × 0.32 × 0.13 mm
β = 102.322 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5143 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4669 reflections with I > 2σ(I)
Tmin = 0.074, Tmax = 0.342Rint = 0.030
19461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.08 e Å3
5143 reflectionsΔρmin = 1.03 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.455879 (7)0.261390 (11)0.672516 (4)0.01364 (4)
O10.26579 (14)0.3383 (2)0.61028 (9)0.0203 (4)
O20.38915 (13)0.5234 (2)0.62939 (9)0.0165 (4)
O30.59356 (13)0.3990 (2)0.63203 (9)0.0187 (4)
O40.59623 (14)0.4377 (2)0.74604 (9)0.0198 (4)
O50.42873 (14)0.1659 (2)0.53563 (9)0.0207 (4)
N10.39370 (16)0.1149 (3)0.28403 (10)0.0148 (4)
N20.53688 (17)0.3091 (3)0.48605 (12)0.0185 (4)
H2A0.566 (2)0.351 (4)0.5262 (17)0.023 (8)*
H2B0.552 (2)0.347 (4)0.4480 (17)0.028 (8)*
C10.29883 (19)0.4848 (3)0.60520 (12)0.0154 (5)
C20.23623 (19)0.6286 (3)0.56937 (13)0.0157 (5)
C30.26372 (19)0.8006 (3)0.58144 (13)0.0176 (5)
H30.31890.82770.61570.021*
C40.2096 (2)0.9319 (3)0.54282 (13)0.0186 (5)
H40.22771.04640.55240.022*
C50.1285 (2)0.8938 (3)0.48978 (13)0.0198 (5)
C60.0983 (2)0.7224 (4)0.48013 (15)0.0227 (6)
H60.04230.69580.44660.027*
C70.1510 (2)0.5900 (3)0.52003 (13)0.0201 (5)
H70.12930.47640.51380.024*
C80.0763 (2)1.0343 (4)0.44306 (15)0.0275 (6)
H8A0.00961.00250.42650.041*
H8B0.10601.05070.40300.041*
H8C0.08001.13980.46980.041*
C90.63657 (19)0.4482 (3)0.69346 (12)0.0156 (5)
C100.73759 (19)0.5183 (3)0.70341 (13)0.0165 (5)
C110.7859 (2)0.5820 (3)0.76893 (13)0.0206 (5)
H110.75470.58340.80700.025*
C120.8796 (2)0.6431 (3)0.77827 (14)0.0246 (6)
H120.91030.68770.82230.030*
C130.9291 (2)0.6390 (3)0.72244 (15)0.0230 (6)
C140.8792 (2)0.5788 (3)0.65661 (14)0.0227 (6)
H140.90990.57870.61840.027*
C150.7850 (2)0.5191 (3)0.64661 (13)0.0195 (5)
H150.75310.47940.60210.023*
C161.0339 (2)0.6892 (4)0.73324 (19)0.0350 (7)
H16A1.04360.75590.69320.053*
H16B1.07330.58700.73750.053*
H16C1.05200.75680.77590.053*
C170.43980 (18)0.1755 (3)0.34748 (12)0.0138 (5)
H170.49330.24680.34940.017*
C180.41142 (18)0.1368 (3)0.41091 (12)0.0137 (5)
C190.33353 (19)0.0266 (3)0.40765 (13)0.0181 (5)
H190.31330.00390.44900.022*
C200.2860 (2)0.0379 (3)0.34251 (13)0.0199 (5)
H200.23370.11250.33930.024*
C210.31782 (19)0.0106 (3)0.28202 (13)0.0173 (5)
H210.28490.03110.23810.021*
C220.46060 (19)0.2068 (3)0.48252 (13)0.0146 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01661 (6)0.01381 (6)0.01057 (5)0.00062 (3)0.00306 (4)0.00089 (3)
O10.0239 (11)0.0159 (9)0.0209 (9)0.0031 (7)0.0044 (8)0.0029 (7)
O20.0174 (10)0.0166 (9)0.0150 (8)0.0008 (7)0.0023 (7)0.0036 (6)
O30.0175 (10)0.0249 (10)0.0129 (8)0.0021 (7)0.0018 (7)0.0025 (7)
O40.0211 (10)0.0244 (10)0.0144 (8)0.0013 (7)0.0051 (7)0.0013 (7)
O50.0240 (11)0.0265 (10)0.0129 (8)0.0046 (8)0.0071 (7)0.0005 (7)
N10.0165 (11)0.0153 (10)0.0124 (9)0.0012 (8)0.0028 (8)0.0010 (7)
N20.0227 (12)0.0222 (11)0.0110 (10)0.0050 (9)0.0046 (9)0.0013 (9)
C10.0197 (14)0.0187 (12)0.0086 (10)0.0009 (9)0.0045 (9)0.0008 (8)
C20.0160 (13)0.0183 (12)0.0142 (11)0.0002 (9)0.0061 (10)0.0008 (9)
C30.0169 (13)0.0197 (12)0.0164 (12)0.0023 (10)0.0037 (10)0.0008 (10)
C40.0226 (15)0.0160 (12)0.0187 (12)0.0002 (10)0.0079 (11)0.0017 (9)
C50.0206 (14)0.0216 (13)0.0190 (12)0.0046 (10)0.0084 (11)0.0022 (10)
C60.0177 (14)0.0254 (14)0.0229 (14)0.0031 (10)0.0006 (11)0.0025 (10)
C70.0188 (14)0.0196 (13)0.0207 (12)0.0011 (10)0.0016 (11)0.0002 (10)
C80.0293 (17)0.0268 (15)0.0265 (14)0.0090 (12)0.0065 (12)0.0062 (11)
C90.0174 (13)0.0152 (12)0.0139 (11)0.0038 (9)0.0029 (10)0.0002 (9)
C100.0171 (14)0.0145 (12)0.0159 (11)0.0027 (9)0.0008 (10)0.0005 (9)
C110.0221 (15)0.0212 (13)0.0171 (12)0.0050 (10)0.0010 (10)0.0021 (10)
C120.0246 (16)0.0228 (14)0.0210 (13)0.0019 (11)0.0073 (11)0.0050 (10)
C130.0208 (15)0.0138 (12)0.0308 (14)0.0003 (10)0.0028 (11)0.0003 (10)
C140.0226 (15)0.0224 (14)0.0237 (13)0.0006 (11)0.0061 (11)0.0026 (10)
C150.0192 (14)0.0213 (13)0.0171 (12)0.0027 (10)0.0021 (10)0.0005 (9)
C160.0229 (17)0.0277 (16)0.0500 (19)0.0039 (13)0.0019 (14)0.0004 (14)
C170.0139 (12)0.0131 (12)0.0144 (11)0.0002 (9)0.0034 (9)0.0002 (8)
C180.0151 (13)0.0135 (11)0.0120 (11)0.0022 (9)0.0020 (9)0.0003 (8)
C190.0179 (14)0.0232 (13)0.0147 (11)0.0011 (10)0.0071 (10)0.0017 (9)
C200.0165 (14)0.0242 (14)0.0185 (12)0.0061 (10)0.0025 (10)0.0018 (10)
C210.0168 (14)0.0213 (13)0.0126 (11)0.0010 (10)0.0004 (10)0.0009 (9)
C220.0172 (13)0.0141 (11)0.0127 (11)0.0018 (9)0.0034 (9)0.0003 (9)
Geometric parameters (Å, º) top
Pb1—O12.7594 (19)C9—O31.265 (3)
Pb1—O22.3141 (17)C9—C101.499 (4)
Pb1—O32.4824 (18)C10—C111.388 (3)
Pb1—O42.5672 (19)C10—C151.397 (4)
Pb1—O52.6800 (16)C11—C121.380 (4)
Pb1—N1i2.661 (2)C11—H110.93
O1—C11.239 (3)C12—H120.93
O2—C11.295 (3)C13—C121.400 (4)
O4—C91.264 (3)C13—C141.391 (4)
N1—Pb1ii2.661 (2)C13—C161.500 (4)
N2—C221.327 (4)C14—H140.93
N2—H2A0.86 (3)C15—C141.382 (4)
N2—H2B0.85 (3)C15—H150.93
C1—C21.495 (3)C16—H16A0.96
C2—C71.396 (4)C16—H16B0.96
C3—C21.393 (4)C16—H16C0.96
C3—C41.388 (4)C17—N11.338 (3)
C3—H30.93C17—C181.394 (3)
C4—C51.393 (4)C17—H170.93
C4—H40.93C18—C191.383 (3)
C5—C81.500 (4)C18—C221.504 (3)
C6—C51.394 (4)C19—C201.381 (3)
C6—C71.396 (4)C19—H190.93
C6—H60.93C20—H200.93
C7—H70.93C21—N11.335 (3)
C8—H8A0.96C21—C201.384 (3)
C8—H8B0.96C21—H210.93
C8—H8C0.96C22—O51.241 (3)
O2—Pb1—O378.32 (6)C5—C8—H8C109.5
O2—Pb1—O486.45 (6)H8A—C8—H8B109.5
O3—Pb1—O451.71 (5)H8A—C8—H8C109.5
O2—Pb1—N1i78.11 (6)H8B—C8—H8C109.5
O3—Pb1—N1i120.84 (6)O4—C9—O3121.2 (2)
O4—Pb1—N1i73.37 (6)O4—C9—C10120.0 (2)
O2—Pb1—O585.89 (6)O3—C9—C10118.8 (2)
O3—Pb1—O576.61 (5)C11—C10—C15118.9 (3)
O4—Pb1—O5128.23 (5)C11—C10—C9120.9 (2)
N1i—Pb1—O5152.50 (6)C15—C10—C9120.2 (2)
O2—Pb1—O151.09 (6)C10—C11—H11119.6
O3—Pb1—O1121.69 (5)C12—C11—C10120.8 (3)
O4—Pb1—O1133.51 (5)C12—C11—H11119.6
N1i—Pb1—O179.28 (6)C11—C12—C13120.9 (2)
O5—Pb1—O173.26 (6)C11—C12—H12119.5
C1—O1—Pb183.35 (15)C13—C12—H12119.5
C1—O2—Pb1102.76 (14)C12—C13—C16121.8 (3)
C9—O3—Pb195.09 (15)C14—C13—C12117.7 (3)
C9—O4—Pb191.18 (15)C14—C13—C16120.4 (3)
C22—O5—Pb1137.38 (17)C13—C14—H14119.2
C21—N1—C17118.0 (2)C15—C14—C13121.6 (3)
C21—N1—Pb1ii126.49 (15)C15—C14—H14119.2
C17—N1—Pb1ii115.32 (16)C10—C15—H15120.0
C22—N2—H2A120 (2)C14—C15—C10120.0 (2)
C22—N2—H2B120 (2)C14—C15—H15120.0
H2A—N2—H2B119 (3)C13—C16—H16A109.5
O1—C1—O2122.8 (2)C13—C16—H16B109.5
O1—C1—C2121.5 (2)C13—C16—H16C109.5
O2—C1—C2115.7 (2)H16A—C16—H16B109.5
C3—C2—C1121.3 (2)H16A—C16—H16C109.5
C3—C2—C7119.2 (2)H16B—C16—H16C109.5
C7—C2—C1119.5 (2)N1—C17—C18123.1 (2)
C4—C3—C2120.6 (2)N1—C17—H17118.4
C4—C3—H3119.7C18—C17—H17118.4
C2—C3—H3119.7C17—C18—C22124.0 (2)
C3—C4—C5120.6 (2)C19—C18—C17117.8 (2)
C3—C4—H4119.7C19—C18—C22118.1 (2)
C5—C4—H4119.7C18—C19—H19120.3
C4—C5—C6118.6 (2)C20—C19—C18119.5 (2)
C4—C5—C8120.4 (2)C20—C19—H19120.3
C6—C5—C8120.9 (3)C19—C20—C21118.8 (2)
C5—C6—C7121.0 (3)C19—C20—H20120.6
C5—C6—H6119.5C21—C20—H20120.6
C7—C6—H6119.5N1—C21—C20122.8 (2)
C2—C7—H7120.1N1—C21—H21118.6
C6—C7—C2119.8 (2)C20—C21—H21118.6
C6—C7—H7120.1O5—C22—N2122.9 (2)
C5—C8—H8A109.5O5—C22—C18118.9 (2)
C5—C8—H8B109.5N2—C22—C18118.2 (2)
O2—Pb1—O1—C11.22 (13)C2—C3—C4—C51.9 (4)
O3—Pb1—O1—C135.24 (15)C3—C4—C5—C65.0 (4)
O4—Pb1—O1—C130.06 (16)C3—C4—C5—C8173.6 (2)
O5—Pb1—O1—C197.21 (14)C7—C6—C5—C43.4 (4)
N1i—Pb1—O1—C184.52 (14)C7—C6—C5—C8175.2 (3)
O1—Pb1—O2—C11.19 (12)C5—C6—C7—C21.3 (4)
O3—Pb1—O2—C1147.72 (14)O4—C9—O3—Pb19.4 (2)
O4—Pb1—O2—C1160.67 (14)C10—C9—O3—Pb1169.95 (19)
O5—Pb1—O2—C170.57 (14)O3—C9—C10—C11176.7 (2)
N1i—Pb1—O2—C186.93 (14)O3—C9—C10—C153.8 (4)
O1—Pb1—O3—C9127.94 (14)O4—C9—C10—C113.9 (4)
O2—Pb1—O3—C999.77 (15)O4—C9—C10—C15175.6 (2)
O4—Pb1—O3—C95.02 (13)C9—C10—C11—C12178.7 (2)
O5—Pb1—O3—C9171.72 (15)C15—C10—C11—C120.8 (4)
N1i—Pb1—O3—C931.39 (16)C9—C10—C15—C14178.0 (2)
O1—Pb1—O4—C9105.01 (15)C11—C10—C15—C141.5 (4)
O2—Pb1—O4—C982.92 (14)C10—C11—C12—C131.4 (4)
O3—Pb1—O4—C95.01 (13)C14—C13—C12—C112.9 (4)
O5—Pb1—O4—C90.98 (17)C16—C13—C12—C11174.1 (3)
N1i—Pb1—O4—C9161.56 (15)C12—C13—C14—C152.2 (4)
O1—Pb1—O5—C22116.6 (3)C16—C13—C14—C15174.9 (3)
O2—Pb1—O5—C2266.1 (3)C10—C15—C14—C130.0 (4)
O3—Pb1—O5—C2212.9 (3)C18—C17—N1—Pb1ii174.19 (18)
O4—Pb1—O5—C2216.1 (3)C18—C17—N1—C211.0 (4)
N1i—Pb1—O5—C22120.2 (3)N1—C17—C18—C191.9 (4)
Pb1—O1—C1—O22.0 (2)N1—C17—C18—C22178.5 (2)
Pb1—O1—C1—C2177.1 (2)C17—C18—C19—C201.2 (4)
Pb1—O2—C1—O12.5 (3)C22—C18—C19—C20179.1 (2)
Pb1—O2—C1—C2176.69 (16)C17—C18—C22—O5179.1 (2)
Pb1—O4—C9—O39.0 (2)C17—C18—C22—N21.3 (4)
Pb1—O4—C9—C10170.3 (2)C19—C18—C22—O51.3 (4)
O1—C1—C2—C3160.7 (2)C19—C18—C22—N2178.3 (2)
O1—C1—C2—C722.6 (3)C18—C19—C20—C210.2 (4)
O2—C1—C2—C320.1 (3)C20—C21—N1—Pb1ii175.19 (19)
O2—C1—C2—C7156.5 (2)C20—C21—N1—C170.6 (4)
C1—C2—C7—C6172.3 (2)N1—C21—C20—C191.2 (4)
C3—C2—C7—C64.4 (4)N2—C22—O5—Pb110.7 (4)
C4—C3—C2—C1173.8 (2)C18—C22—O5—Pb1169.76 (16)
C4—C3—C2—C72.8 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.86 (3)2.02 (3)2.835 (3)158 (3)
N2—H2B···O2iii0.86 (3)2.11 (3)2.946 (3)167 (3)
C4—H4···O1iv0.932.533.431 (3)165
C11—H11···O10.932.593.253 (3)129
C17—H17···O2iii0.932.413.317 (3)166
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pb(C8H7O2)2(C6H6N2O)]
Mr599.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.1146 (3), 7.7431 (2), 19.2165 (4)
β (°) 102.322 (2)
V3)2051.81 (8)
Z4
Radiation typeMo Kα
µ (mm1)8.26
Crystal size (mm)0.34 × 0.32 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.074, 0.342
No. of measured, independent and
observed [I > 2σ(I)] reflections
19461, 5143, 4669
Rint0.030
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.03
No. of reflections5143
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 1.03

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pb1—O12.7594 (19)Pb1—O42.5672 (19)
Pb1—O22.3141 (17)Pb1—O52.6800 (16)
Pb1—O32.4824 (18)Pb1—N1i2.661 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.86 (3)2.02 (3)2.835 (3)158 (3)
N2—H2B···O2ii0.86 (3)2.11 (3)2.946 (3)167 (3)
C4—H4···O1iii0.932.533.431 (3)165
C11—H11···O10.932.593.253 (3)129
C17—H17···O2ii0.932.413.317 (3)166
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds