organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridinium 2-hy­dr­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2010; accepted 27 July 2010; online 31 July 2010)

In the title compound, C5H6BrN2+·C7H5O3, the 2-amino-5-bromo­pyridinium cation and 2-hy­droxy­benzoate anion are essentially planar with maximum deviations of 0.020 (1) and 0.018 (2) Å, respectively. The anion is stabilized by an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, the cations and anions are linked by N—H⋯O hydrogen bonds into chains propagating along [010]. The chains contain R22(8) ring motifs. The structure is further stabilized by ππ stacking inter­actions [centroid–centroid distances = 3.4908 (10) and 3.5927 (10) Å] and also features short Br⋯O contacts [2.9671 (13) Å].

Related literature

For details of non-covalent inter­actions, see: Remenar et al. (2003[Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmaàn, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456-8457.]); Sokolov et al. (2006[Sokolov, A. N., Friŝĉić, T. & MacGillivray, L. R. (2006). J. Am. Chem. Soc. 128, 2806-2807.]). For the importance of salicylic acid, see: Sticher et al. (1997[Sticher, L., Mauch-Mani, B. & Métraux, J.-P. (1997). Annu. Rev. Phytopathol. 35, 235-270.]); Rairdan & Delaney (2002[Rairdan, G. J. & Delaney, T. P. (2002). Genetics, 161, 803-811.]); Nawrath & Métraux (1999[Nawrath, C. & Métraux, J.-P. (1999). Plant Cell, 11, 1393-1404.]); Wildermuth et al. (2001[Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. (2001). Nature (London), 414, 562-565.]). For related structures, see: Quah et al. (2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879.], 2010a[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1932.],b[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1935-o1936.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6BrN2+·C7H5O3

  • Mr = 311.14

  • Monoclinic, P 21 /c

  • a = 8.9498 (2) Å

  • b = 10.8673 (2) Å

  • c = 13.1277 (3) Å

  • β = 108.704 (1)°

  • V = 1209.37 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.40 mm−1

  • T = 100 K

  • 0.48 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.291, Tmax = 0.572

  • 13299 measured reflections

  • 3559 independent reflections

  • 2942 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.070

  • S = 1.12

  • 3559 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.89 (3) 1.66 (3) 2.500 (2) 157 (2)
N1—H1N⋯O3 0.96 (2) 1.66 (2) 2.611 (2) 172 (2)
N2—H1N2⋯O2 0.85 (3) 1.98 (2) 2.818 (2) 170 (2)
N2—H2N2⋯O1i 0.82 (2) 2.14 (2) 2.917 (2) 160 (2)
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak noncovalent interactions, such as hydrogen bonds, π···π stacking and C—H···π interactions (Remenar et al., 2003; Sokolov et al., 2006). Salicylic acid (SA) plays a central role in resistance and defense induction in responses from pathogen attacks and also its role in the activation of the hypersensitive response (HR), a form of programmed cell death associated with resistance of plants. Mutants or transgenic plants impaired in the accumulation of SA cannot mount efficient defense responses to pathogens after infection (Sticher et al., 1997). SA depletion by transgenic expression of a bacterial SA hydroxylase encoded by NahG abolishes local and systemic resistance responses to various pathogens (Rairdan & Delaney, 2002). This has been confirmed by the use of Arabidopsis mutants impaired in SA accumulation after pathogen infection (sid1/eds5, sid2), showing higher susceptibility to fungal and bacterial pathogens (Nawrath & Métraux 1999; Wildermuth et al., 2001). The present study is aimed at understanding the hydrogen-bonding networks in the title compound, (I).

The asymmetric unit of title compound (Fig. 1), contains a 2-amino-5-bromopyridinium cation and a 2-hydroxybenzoate anion. In the 2-amino-5-bromopyridinium cation, a wide angle [122.29 (15)°] is subtended at the protonated N1 atom. The 2-amino-5-bromopyridinium cation and 2-hydroxybenzoate anion are essentially planar, with maximum a deviation of 0.020 (1) Å for atom Br1 and 0.018 (2) Å for atom C11, respectively. The anion is stabilized by an intramolecular O1—H1O1···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O3 and O2) via intermolecular N1—H1N···O3 and N2—H1N2..O2 hydrogen bonds forming R22(8) ring motifs. The cation-anion pairs are linked by N2—H2N2···O1 hydrogen bonds into chains propagating along [010]. The crystal structure is further consolidated by π-π interactions between the pyridinium rings at (x,y,z) and (1-x, 1-y, 2-z) [centroid-centroid distance = 3.4908 (10) Å], and that between benzene and pyridinium rings at (x,y,z) and (2-x, 1-y, 2-z), respectively [centroid-centroid distance = 3.5927 (10) Å]. There is a Br1···O3(1-x, 1/2+y, 3/2-z) contact [2.9671 (13) Å] which is shorter than the sum of van der Waals radii of the oxygen and bromine atoms.

Related literature top

For details of non-covalent interactions, see: Remenar et al. (2003); Sokolov et al. (2006). For the importance of salicylic acid, see: Sticher et al. (1997); Rairdan & Delaney (2002); Nawrath & Métraux (1999); Wildermuth et al. (2001). For related structures, see: Quah et al. (2008, 2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and salicylic acid (34.5 mg, Merck) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier map and allowed to refine freely [O1–H1O1 = 0.89 (3) Å and N–H = 0.82 (2)–0.96 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak noncovalent interactions, such as hydrogen bonds, π···π stacking and C—H···π interactions (Remenar et al., 2003; Sokolov et al., 2006). Salicylic acid (SA) plays a central role in resistance and defense induction in responses from pathogen attacks and also its role in the activation of the hypersensitive response (HR), a form of programmed cell death associated with resistance of plants. Mutants or transgenic plants impaired in the accumulation of SA cannot mount efficient defense responses to pathogens after infection (Sticher et al., 1997). SA depletion by transgenic expression of a bacterial SA hydroxylase encoded by NahG abolishes local and systemic resistance responses to various pathogens (Rairdan & Delaney, 2002). This has been confirmed by the use of Arabidopsis mutants impaired in SA accumulation after pathogen infection (sid1/eds5, sid2), showing higher susceptibility to fungal and bacterial pathogens (Nawrath & Métraux 1999; Wildermuth et al., 2001). The present study is aimed at understanding the hydrogen-bonding networks in the title compound, (I).

The asymmetric unit of title compound (Fig. 1), contains a 2-amino-5-bromopyridinium cation and a 2-hydroxybenzoate anion. In the 2-amino-5-bromopyridinium cation, a wide angle [122.29 (15)°] is subtended at the protonated N1 atom. The 2-amino-5-bromopyridinium cation and 2-hydroxybenzoate anion are essentially planar, with maximum a deviation of 0.020 (1) Å for atom Br1 and 0.018 (2) Å for atom C11, respectively. The anion is stabilized by an intramolecular O1—H1O1···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O3 and O2) via intermolecular N1—H1N···O3 and N2—H1N2..O2 hydrogen bonds forming R22(8) ring motifs. The cation-anion pairs are linked by N2—H2N2···O1 hydrogen bonds into chains propagating along [010]. The crystal structure is further consolidated by π-π interactions between the pyridinium rings at (x,y,z) and (1-x, 1-y, 2-z) [centroid-centroid distance = 3.4908 (10) Å], and that between benzene and pyridinium rings at (x,y,z) and (2-x, 1-y, 2-z), respectively [centroid-centroid distance = 3.5927 (10) Å]. There is a Br1···O3(1-x, 1/2+y, 3/2-z) contact [2.9671 (13) Å] which is shorter than the sum of van der Waals radii of the oxygen and bromine atoms.

For details of non-covalent interactions, see: Remenar et al. (2003); Sokolov et al. (2006). For the importance of salicylic acid, see: Sticher et al. (1997); Rairdan & Delaney (2002); Nawrath & Métraux (1999); Wildermuth et al. (2001). For related structures, see: Quah et al. (2008, 2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The two ionic units of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-Amino-5-bromopyridinium 2-hydroxybenzoate top
Crystal data top
C5H6BrN2+·C7H5O3F(000) = 624
Mr = 311.14Dx = 1.709 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6239 reflections
a = 8.9498 (2) Åθ = 2.4–30.1°
b = 10.8673 (2) ŵ = 3.40 mm1
c = 13.1277 (3) ÅT = 100 K
β = 108.704 (1)°Block, yellow
V = 1209.37 (4) Å30.48 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3559 independent reflections
Radiation source: fine-focus sealed tube2942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1112
Tmin = 0.291, Tmax = 0.572k = 1215
13299 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.5751P]
where P = (Fo2 + 2Fc2)/3
3559 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C5H6BrN2+·C7H5O3V = 1209.37 (4) Å3
Mr = 311.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9498 (2) ŵ = 3.40 mm1
b = 10.8673 (2) ÅT = 100 K
c = 13.1277 (3) Å0.48 × 0.27 × 0.19 mm
β = 108.704 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3559 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2942 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 0.572Rint = 0.023
13299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.62 e Å3
3559 reflectionsΔρmin = 0.48 e Å3
179 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.88434 (14)0.35437 (12)0.92381 (10)0.0225 (3)
O20.98836 (15)0.30956 (12)1.09830 (10)0.0237 (3)
O11.18787 (16)0.14189 (12)1.16207 (10)0.0235 (3)
C111.07156 (18)0.19199 (15)0.97440 (13)0.0161 (3)
C61.1749 (2)0.12215 (15)1.05740 (13)0.0189 (3)
C101.06367 (18)0.16877 (16)0.86826 (13)0.0181 (3)
H100.99570.21490.81300.022*
C91.1556 (2)0.07793 (17)0.84408 (14)0.0215 (3)
H91.14890.06250.77310.026*
C120.97397 (19)0.29196 (16)0.99973 (13)0.0178 (3)
C81.2582 (2)0.00999 (18)0.92745 (15)0.0257 (4)
H81.32070.05070.91170.031*
C71.2685 (2)0.03150 (17)1.03343 (14)0.0244 (4)
H71.33770.01431.08840.029*
H1O11.121 (3)0.204 (3)1.158 (2)0.049 (8)*
Br10.370641 (18)0.746039 (15)0.758163 (13)0.01948 (6)
C50.71709 (18)0.56266 (15)1.06422 (13)0.0164 (3)
C10.61778 (19)0.58819 (16)0.87434 (13)0.0178 (3)
H10.62200.56620.80690.021*
N20.81671 (17)0.50520 (14)1.14774 (12)0.0196 (3)
N10.71750 (16)0.53391 (13)0.96389 (11)0.0169 (3)
C30.5063 (2)0.70608 (16)0.98575 (14)0.0191 (3)
H30.43330.76370.99260.023*
C20.51201 (18)0.67430 (15)0.88258 (13)0.0174 (3)
C40.60740 (19)0.65257 (16)1.07473 (13)0.0192 (3)
H40.60500.67471.14260.023*
H1N0.784 (3)0.468 (2)0.9560 (19)0.038 (7)*
H1N20.878 (3)0.452 (2)1.1347 (17)0.027 (6)*
H2N20.820 (2)0.5260 (19)1.2082 (18)0.021 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0232 (6)0.0249 (6)0.0173 (6)0.0073 (5)0.0036 (5)0.0019 (5)
O20.0309 (6)0.0257 (7)0.0153 (6)0.0064 (5)0.0085 (5)0.0012 (5)
O10.0318 (7)0.0240 (7)0.0143 (6)0.0055 (5)0.0070 (5)0.0035 (5)
C110.0163 (7)0.0153 (8)0.0166 (7)0.0016 (6)0.0053 (6)0.0021 (6)
C60.0236 (8)0.0165 (8)0.0166 (8)0.0021 (6)0.0063 (6)0.0006 (6)
C100.0181 (7)0.0187 (8)0.0158 (7)0.0003 (6)0.0031 (6)0.0003 (6)
C90.0247 (8)0.0235 (9)0.0165 (8)0.0025 (7)0.0067 (6)0.0026 (7)
C120.0173 (7)0.0184 (7)0.0175 (8)0.0007 (6)0.0052 (6)0.0021 (6)
C80.0322 (9)0.0220 (9)0.0237 (9)0.0087 (7)0.0100 (8)0.0008 (7)
C70.0307 (9)0.0210 (9)0.0196 (8)0.0077 (7)0.0054 (7)0.0048 (7)
Br10.02043 (9)0.01984 (10)0.01686 (9)0.00136 (6)0.00414 (6)0.00213 (6)
C50.0174 (7)0.0165 (7)0.0153 (7)0.0037 (6)0.0051 (6)0.0022 (6)
C10.0194 (7)0.0205 (8)0.0140 (7)0.0023 (6)0.0059 (6)0.0012 (6)
N20.0209 (7)0.0213 (7)0.0158 (7)0.0039 (6)0.0048 (6)0.0009 (6)
N10.0184 (6)0.0178 (7)0.0145 (6)0.0003 (5)0.0054 (5)0.0016 (5)
C30.0203 (7)0.0183 (8)0.0207 (8)0.0018 (6)0.0094 (6)0.0004 (7)
C20.0172 (7)0.0175 (8)0.0161 (7)0.0002 (6)0.0035 (6)0.0010 (6)
C40.0216 (7)0.0193 (8)0.0175 (8)0.0004 (6)0.0073 (6)0.0029 (6)
Geometric parameters (Å, º) top
O3—C121.259 (2)Br1—C21.8844 (16)
O2—C121.273 (2)C5—N21.327 (2)
O1—C61.358 (2)C5—N11.355 (2)
O1—H1O10.89 (3)C5—C41.423 (2)
C11—C101.395 (2)C1—C21.360 (2)
C11—C61.404 (2)C1—N11.361 (2)
C11—C121.497 (2)C1—H10.93
C6—C71.393 (2)N2—H1N20.86 (2)
C10—C91.386 (2)N2—H2N20.82 (2)
C10—H100.93N1—H1N0.96 (2)
C9—C81.393 (2)C3—C41.358 (2)
C9—H90.93C3—C21.414 (2)
C8—C71.384 (3)C3—H30.93
C8—H80.93C4—H40.93
C7—H70.93
C6—O1—H1O1102.4 (18)N2—C5—N1118.96 (15)
C10—C11—C6119.14 (15)N2—C5—C4123.01 (15)
C10—C11—C12120.45 (15)N1—C5—C4118.02 (15)
C6—C11—C12120.40 (15)C2—C1—N1120.65 (15)
O1—C6—C7118.53 (15)C2—C1—H1119.7
O1—C6—C11121.39 (15)N1—C1—H1119.7
C7—C6—C11120.07 (15)C5—N2—H1N2117.4 (14)
C9—C10—C11120.93 (15)C5—N2—H2N2118.5 (15)
C9—C10—H10119.5H1N2—N2—H2N2124 (2)
C11—C10—H10119.5C5—N1—C1122.29 (15)
C10—C9—C8119.19 (16)C5—N1—H1N118.3 (14)
C10—C9—H9120.4C1—N1—H1N119.2 (14)
C8—C9—H9120.4C4—C3—C2120.04 (15)
O3—C12—O2123.71 (16)C4—C3—H3120.0
O3—C12—C11118.98 (15)C2—C3—H3120.0
O2—C12—C11117.31 (15)C1—C2—C3118.94 (15)
C7—C8—C9120.98 (17)C1—C2—Br1120.45 (12)
C7—C8—H8119.5C3—C2—Br1120.58 (12)
C9—C8—H8119.5C3—C4—C5120.05 (15)
C8—C7—C6119.69 (16)C3—C4—H4120.0
C8—C7—H7120.2C5—C4—H4120.0
C6—C7—H7120.2
C10—C11—C6—O1179.45 (15)O1—C6—C7—C8179.66 (17)
C12—C11—C6—O10.9 (2)C11—C6—C7—C80.5 (3)
C10—C11—C6—C70.3 (2)N2—C5—N1—C1179.40 (15)
C12—C11—C6—C7178.24 (16)C4—C5—N1—C10.2 (2)
C6—C11—C10—C90.2 (2)C2—C1—N1—C50.3 (2)
C12—C11—C10—C9178.82 (16)N1—C1—C2—C30.5 (2)
C11—C10—C9—C80.6 (3)N1—C1—C2—Br1178.37 (12)
C10—C11—C12—O30.3 (2)C4—C3—C2—C11.2 (3)
C6—C11—C12—O3178.84 (15)C4—C3—C2—Br1179.13 (13)
C10—C11—C12—O2179.02 (15)C2—C3—C4—C51.3 (3)
C6—C11—C12—O20.4 (2)N2—C5—C4—C3178.60 (16)
C10—C9—C8—C70.4 (3)N1—C5—C4—C30.5 (2)
C9—C8—C7—C60.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.89 (3)1.66 (3)2.500 (2)157 (2)
N1—H1N···O30.96 (2)1.66 (2)2.611 (2)172 (2)
N2—H1N2···O20.85 (3)1.98 (2)2.818 (2)170 (2)
N2—H2N2···O1i0.82 (2)2.14 (2)2.917 (2)160 (2)
Symmetry code: (i) x+2, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·C7H5O3
Mr311.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9498 (2), 10.8673 (2), 13.1277 (3)
β (°) 108.704 (1)
V3)1209.37 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.40
Crystal size (mm)0.48 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.291, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
13299, 3559, 2942
Rint0.023
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.12
No. of reflections3559
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.89 (3)1.66 (3)2.500 (2)157 (2)
N1—H1N···O30.96 (2)1.66 (2)2.611 (2)172 (2)
N2—H1N2···O20.85 (3)1.98 (2)2.818 (2)170 (2)
N2—H2N2···O1i0.82 (2)2.14 (2)2.917 (2)160 (2)
Symmetry code: (i) x+2, y+1/2, z+5/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of a USM fellowship and HM also thanks USM for the award of postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNawrath, C. & Métraux, J.-P. (1999). Plant Cell, 11, 1393–1404.  CrossRef PubMed CAS Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1935–o1936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRairdan, G. J. & Delaney, T. P. (2002). Genetics, 161, 803–811.  Web of Science PubMed CAS Google Scholar
First citationRemenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmaàn, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456–8457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, A. N., Friŝĉić, T. & MacGillivray, L. R. (2006). J. Am. Chem. Soc. 128, 2806–2807.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSticher, L., Mauch-Mani, B. & Métraux, J.-P. (1997). Annu. Rev. Phytopathol. 35, 235–270.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. (2001). Nature (London), 414, 562–565.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds