organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfanyl-2,5-di­phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 17 May 2010; accepted 15 July 2010; online 21 July 2010)

In the title compound, C22H18OS, the 2-phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 29.18 (6)°. The dihedral angle between the 5-phenyl ring and the benzofuran plane is 20.42 (5)°. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯π inter­actions.

Related literature

For the crystal structures of similar 3-alkyl­sulfanyl-2,5-diaryl-1-benzofuran derivatives, see: Choi, et al. (2006[Choi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796-o4797.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18OS

  • Mr = 330.42

  • Monoclinic, P 21

  • a = 10.4968 (3) Å

  • b = 7.2025 (2) Å

  • c = 12.0783 (3) Å

  • β = 112.474 (1)°

  • V = 843.81 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 174 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.966

  • 7930 measured reflections

  • 3380 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.06

  • 3380 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1271 Friedel pairs

  • Flack parameter: 0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 (5-phen­yl) and C15–C20 (2-phen­yl) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.95 2.73 3.592 (3) 152
C14—H14⋯Cg2ii 0.95 2.79 3.549 (3) 138
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds containing benzofuran skeleton show interesting pharmacological properties such as antifungal (Aslam et al.., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) activity. These compounds occur in nature (Akgul & Anil, 2003; Soekamto et al.., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-alkylsulfanyl-2,5-diaryl-1-benzofuran analogues (Choi et al.., 2006, 2010), we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes in the monoclinic space group P21. The benzofuran unit is essentially planar, with a mean deviation of 0.020 (1) Å from the least-squares plane defined by the nine constituent atoms. In the molecule, the benzofuran plane makes dihedral angles of 29.18 (6) and 20.42 (5)° with the 2-phenyl ring and the 5-phenyl ring, respectively. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···π interactions; the first one between the 5-phenyl H atom and the 5-phenyl ring of an adjacent molecule, with a C10—H10···Cg1i, and the second one between the 5-phenyl H atom and the 2-phenyl ring of a neighbouring molecule, with a C14—H14···Cg2ii, respectively (Table 1, Cg1 and Cg2 are the centroids of the C9–C14 phenyl ring and the C15–C20 phenyl ring, respectively, for symmetry operators see Fig. 2 legend).

Related literature top

For the crystal structures of similar 3-alkylsulfanyl-2,5-diaryl-1-benzofuran derivatives, see: Choi, et al. (2006, 2010). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

Zinc chloride (300 mg, 2.2 mmol) was added to a stirred solution of 4-phenylphenol (375 mg, 2.2 mmol) and 2-chloro-2-(ethylsulfanyl)acetophenone (472 mg, 2.2 mmol) in dichloromethane (30 mL) at room temperature, and stirring was continued at the same temperature for 1hr. The reaction was quenched by the addition of water and the organic layer separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 46%, m.p. 368–369 K; Rf = 0.51 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 0.95 Å for methylene and 0.99 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene, 1.5Ueq(C) for methyl H atoms.

Structure description top

The compounds containing benzofuran skeleton show interesting pharmacological properties such as antifungal (Aslam et al.., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) activity. These compounds occur in nature (Akgul & Anil, 2003; Soekamto et al.., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-alkylsulfanyl-2,5-diaryl-1-benzofuran analogues (Choi et al.., 2006, 2010), we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes in the monoclinic space group P21. The benzofuran unit is essentially planar, with a mean deviation of 0.020 (1) Å from the least-squares plane defined by the nine constituent atoms. In the molecule, the benzofuran plane makes dihedral angles of 29.18 (6) and 20.42 (5)° with the 2-phenyl ring and the 5-phenyl ring, respectively. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···π interactions; the first one between the 5-phenyl H atom and the 5-phenyl ring of an adjacent molecule, with a C10—H10···Cg1i, and the second one between the 5-phenyl H atom and the 2-phenyl ring of a neighbouring molecule, with a C14—H14···Cg2ii, respectively (Table 1, Cg1 and Cg2 are the centroids of the C9–C14 phenyl ring and the C15–C20 phenyl ring, respectively, for symmetry operators see Fig. 2 legend).

For the crystal structures of similar 3-alkylsulfanyl-2,5-diaryl-1-benzofuran derivatives, see: Choi, et al. (2006, 2010). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small circles of arbitrary radius.
[Figure 2] Fig. 2. C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x, y - 1/2, - z + 1; (ii) - x + 1, y + 1/2, - z + 1; (iii) - x, y + 1/2, - z + 1; (iv) - x + 1, y - 1/2, - z + 1.]
3-Ethylsulfanyl-2,5-diphenyl-1-benzofuran top
Crystal data top
C22H18OSF(000) = 348
Mr = 330.42Dx = 1.300 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5754 reflections
a = 10.4968 (3) Åθ = 2.2–27.6°
b = 7.2025 (2) ŵ = 0.20 mm1
c = 12.0783 (3) ÅT = 174 K
β = 112.474 (1)°Block, colourless
V = 843.81 (4) Å30.24 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3380 independent reflections
Radiation source: rotating anode3229 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.8°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 89
Tmin = 0.954, Tmax = 0.966l = 1515
7930 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.1018P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3380 reflectionsΔρmax = 0.20 e Å3
218 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 1271 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C22H18OSV = 843.81 (4) Å3
Mr = 330.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4968 (3) ŵ = 0.20 mm1
b = 7.2025 (2) ÅT = 174 K
c = 12.0783 (3) Å0.24 × 0.20 × 0.18 mm
β = 112.474 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3380 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3229 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.966Rint = 0.028
7930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.24 e Å3
3380 reflectionsAbsolute structure: Flack (1983), 1271 Friedel pairs
218 parametersAbsolute structure parameter: 0.05 (6)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.52254 (4)0.25661 (7)0.85171 (3)0.03269 (11)
O0.64105 (10)0.32731 (17)0.57860 (9)0.0280 (2)
C10.54722 (15)0.2879 (2)0.71715 (13)0.0257 (3)
C20.43709 (15)0.2982 (2)0.60132 (13)0.0247 (3)
C30.29352 (15)0.2969 (2)0.55943 (13)0.0252 (3)
H30.24850.28150.61380.030*
C40.21667 (15)0.3182 (2)0.43754 (13)0.0247 (3)
C50.28644 (16)0.3366 (2)0.35838 (14)0.0278 (3)
H50.23360.34770.27490.033*
C60.42891 (16)0.3391 (3)0.39822 (14)0.0293 (3)
H60.47470.35190.34440.035*
C70.50068 (15)0.3221 (2)0.51984 (14)0.0259 (3)
C80.66776 (15)0.3084 (2)0.69972 (14)0.0266 (3)
C90.06340 (15)0.3277 (2)0.39132 (13)0.0242 (3)
C100.00910 (15)0.2388 (3)0.45240 (14)0.0275 (3)
H100.03950.16590.52120.033*
C110.15161 (15)0.2563 (3)0.41335 (15)0.0323 (3)
H110.19960.19590.45580.039*
C120.22321 (17)0.3606 (3)0.31357 (17)0.0350 (4)
H120.32030.37410.28790.042*
C130.15343 (18)0.4461 (3)0.25046 (16)0.0365 (4)
H130.20310.51600.18050.044*
C140.01146 (17)0.4299 (3)0.28911 (15)0.0301 (4)
H140.03540.48930.24540.036*
C150.81365 (15)0.3226 (2)0.77699 (14)0.0274 (3)
C160.86570 (16)0.2563 (3)0.89490 (15)0.0353 (4)
H160.80560.19920.92690.042*
C171.00454 (18)0.2741 (3)0.96477 (16)0.0404 (4)
H171.03930.22871.04470.048*
C181.09330 (19)0.3569 (3)0.91986 (19)0.0394 (4)
H181.18840.36900.96870.047*
C191.04281 (18)0.4221 (3)0.80334 (18)0.0374 (4)
H191.10370.47930.77230.045*
C200.90512 (17)0.4049 (2)0.73196 (16)0.0313 (4)
H200.87180.44910.65180.038*
C210.45785 (19)0.4872 (3)0.86615 (17)0.0391 (4)
H21A0.38150.51990.79000.047*
H21B0.42030.48410.92990.047*
C220.5674 (2)0.6348 (3)0.89573 (19)0.0489 (5)
H22A0.60860.63390.83540.073*
H22B0.63890.61000.97490.073*
H22C0.52600.75660.89620.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0348 (2)0.0388 (2)0.02657 (19)0.00208 (19)0.01411 (16)0.00605 (19)
O0.0247 (5)0.0343 (6)0.0265 (5)0.0002 (5)0.0113 (4)0.0006 (5)
C10.0280 (7)0.0243 (9)0.0257 (7)0.0003 (6)0.0112 (6)0.0029 (6)
C20.0298 (7)0.0220 (9)0.0242 (7)0.0011 (6)0.0124 (6)0.0006 (6)
C30.0266 (7)0.0251 (9)0.0268 (7)0.0011 (6)0.0135 (6)0.0002 (6)
C40.0264 (7)0.0222 (8)0.0275 (7)0.0027 (6)0.0124 (6)0.0017 (6)
C50.0306 (8)0.0316 (9)0.0221 (7)0.0020 (7)0.0110 (6)0.0007 (7)
C60.0322 (8)0.0334 (9)0.0278 (8)0.0022 (7)0.0175 (7)0.0015 (7)
C70.0237 (7)0.0268 (8)0.0288 (8)0.0006 (6)0.0120 (6)0.0013 (7)
C80.0298 (7)0.0240 (8)0.0264 (7)0.0028 (6)0.0113 (6)0.0008 (6)
C90.0268 (7)0.0211 (7)0.0244 (7)0.0009 (6)0.0096 (6)0.0038 (6)
C100.0276 (7)0.0260 (8)0.0293 (7)0.0020 (7)0.0115 (6)0.0007 (7)
C110.0306 (8)0.0299 (8)0.0402 (8)0.0039 (8)0.0177 (7)0.0030 (9)
C120.0238 (8)0.0355 (10)0.0425 (10)0.0022 (7)0.0090 (7)0.0037 (8)
C130.0309 (9)0.0362 (10)0.0352 (9)0.0012 (7)0.0047 (8)0.0045 (8)
C140.0300 (9)0.0293 (9)0.0303 (8)0.0038 (7)0.0107 (7)0.0020 (7)
C150.0261 (7)0.0229 (8)0.0331 (8)0.0021 (7)0.0112 (7)0.0017 (7)
C160.0308 (8)0.0367 (9)0.0378 (8)0.0019 (8)0.0123 (7)0.0029 (9)
C170.0362 (9)0.0421 (12)0.0347 (8)0.0047 (9)0.0046 (7)0.0023 (9)
C180.0260 (8)0.0352 (10)0.0491 (11)0.0029 (7)0.0054 (8)0.0021 (9)
C190.0300 (9)0.0327 (10)0.0504 (11)0.0002 (7)0.0163 (8)0.0014 (9)
C200.0284 (8)0.0275 (9)0.0375 (9)0.0024 (7)0.0119 (7)0.0026 (7)
C210.0408 (10)0.0484 (12)0.0320 (9)0.0039 (9)0.0181 (8)0.0019 (8)
C220.0638 (13)0.0459 (12)0.0350 (10)0.0056 (10)0.0168 (10)0.0048 (9)
Geometric parameters (Å, º) top
S—C11.755 (1)C12—C131.387 (3)
S—C211.828 (2)C12—H120.9500
O—C71.370 (2)C13—C141.386 (2)
O—C81.387 (2)C13—H130.9500
C1—C81.368 (2)C14—H140.9500
C1—C21.436 (2)C15—C161.400 (2)
C2—C31.394 (2)C15—C201.403 (2)
C2—C71.395 (2)C16—C171.383 (2)
C3—C41.391 (2)C16—H160.9500
C3—H30.9500C17—C181.380 (3)
C4—C51.416 (2)C17—H170.9500
C4—C91.489 (2)C18—C191.383 (3)
C5—C61.385 (2)C18—H180.9500
C5—H50.9500C19—C201.377 (2)
C6—C71.376 (2)C19—H190.9500
C6—H60.9500C20—H200.9500
C8—C151.461 (2)C21—C221.505 (3)
C9—C141.394 (2)C21—H21A0.9900
C9—C101.401 (2)C21—H21B0.9900
C10—C111.392 (2)C22—H22A0.9800
C10—H100.9500C22—H22B0.9800
C11—C121.375 (3)C22—H22C0.9800
C11—H110.9500
C1—S—C2199.40 (8)C13—C12—H12120.1
C7—O—C8106.70 (11)C14—C13—C12120.22 (17)
C8—C1—C2106.98 (13)C14—C13—H13119.9
C8—C1—S128.97 (12)C12—C13—H13119.9
C2—C1—S124.05 (11)C13—C14—C9120.83 (15)
C3—C2—C7119.15 (14)C13—C14—H14119.6
C3—C2—C1135.14 (13)C9—C14—H14119.6
C7—C2—C1105.64 (13)C16—C15—C20118.66 (15)
C4—C3—C2119.50 (12)C16—C15—C8122.16 (14)
C4—C3—H3120.2C20—C15—C8119.18 (15)
C2—C3—H3120.2C17—C16—C15119.99 (16)
C3—C4—C5119.01 (13)C17—C16—H16120.0
C3—C4—C9120.55 (12)C15—C16—H16120.0
C5—C4—C9120.42 (14)C18—C17—C16120.83 (17)
C6—C5—C4122.36 (14)C18—C17—H17119.6
C6—C5—H5118.8C16—C17—H17119.6
C4—C5—H5118.8C17—C18—C19119.55 (17)
C7—C6—C5116.58 (13)C17—C18—H18120.2
C7—C6—H6121.7C19—C18—H18120.2
C5—C6—H6121.7C20—C19—C18120.60 (16)
O—C7—C6126.30 (13)C20—C19—H19119.7
O—C7—C2110.36 (13)C18—C19—H19119.7
C6—C7—C2123.34 (14)C19—C20—C15120.36 (16)
C1—C8—O110.31 (13)C19—C20—H20119.8
C1—C8—C15135.63 (14)C15—C20—H20119.8
O—C8—C15114.01 (12)C22—C21—S112.73 (14)
C14—C9—C10118.17 (14)C22—C21—H21A109.0
C14—C9—C4121.24 (13)S—C21—H21A109.0
C10—C9—C4120.55 (14)C22—C21—H21B109.0
C11—C10—C9120.68 (16)S—C21—H21B109.0
C11—C10—H10119.7H21A—C21—H21B107.8
C9—C10—H10119.7C21—C22—H22A109.5
C12—C11—C10120.21 (15)C21—C22—H22B109.5
C12—C11—H11119.9H22A—C22—H22B109.5
C10—C11—H11119.9C21—C22—H22C109.5
C11—C12—C13119.87 (15)H22A—C22—H22C109.5
C11—C12—H12120.1H22B—C22—H22C109.5
C21—S—C1—C8106.15 (17)C7—O—C8—C15176.39 (13)
C21—S—C1—C273.27 (15)C3—C4—C9—C14149.59 (16)
C8—C1—C2—C3176.13 (17)C5—C4—C9—C1428.4 (2)
S—C1—C2—C33.4 (3)C3—C4—C9—C1028.1 (2)
C8—C1—C2—C70.84 (18)C5—C4—C9—C10153.88 (17)
S—C1—C2—C7179.64 (12)C14—C9—C10—C111.5 (2)
C7—C2—C3—C40.4 (2)C4—C9—C10—C11176.25 (16)
C1—C2—C3—C4177.06 (16)C9—C10—C11—C120.3 (3)
C2—C3—C4—C51.4 (2)C10—C11—C12—C131.1 (3)
C2—C3—C4—C9176.65 (14)C11—C12—C13—C141.3 (3)
C3—C4—C5—C61.8 (3)C12—C13—C14—C90.2 (3)
C9—C4—C5—C6176.31 (15)C10—C9—C14—C131.2 (3)
C4—C5—C6—C70.2 (3)C4—C9—C14—C13176.49 (16)
C8—O—C7—C6178.86 (16)C1—C8—C15—C1621.8 (3)
C8—O—C7—C20.62 (18)O—C8—C15—C16161.40 (16)
C5—C6—C7—O177.68 (15)C1—C8—C15—C20158.25 (19)
C5—C6—C7—C21.7 (3)O—C8—C15—C2018.5 (2)
C3—C2—C7—O177.43 (13)C20—C15—C16—C170.5 (3)
C1—C2—C7—O0.13 (18)C8—C15—C16—C17179.59 (17)
C3—C2—C7—C62.1 (3)C15—C16—C17—C180.1 (3)
C1—C2—C7—C6179.63 (16)C16—C17—C18—C190.3 (3)
C2—C1—C8—O1.26 (18)C17—C18—C19—C200.1 (3)
S—C1—C8—O179.25 (12)C18—C19—C20—C150.7 (3)
C2—C1—C8—C15175.57 (17)C16—C15—C20—C190.9 (3)
S—C1—C8—C153.9 (3)C8—C15—C20—C19179.21 (16)
C7—O—C8—C11.18 (17)C1—S—C21—C2270.50 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 (5-phenyl) and C15–C20 (2-phenyl) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.733.592 (3)152
C14—H14···Cg2ii0.952.793.549 (3)138
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H18OS
Mr330.42
Crystal system, space groupMonoclinic, P21
Temperature (K)174
a, b, c (Å)10.4968 (3), 7.2025 (2), 12.0783 (3)
β (°) 112.474 (1)
V3)843.81 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
7930, 3380, 3229
Rint0.028
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.06
No. of reflections3380
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24
Absolute structureFlack (1983), 1271 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 (5-phenyl) and C15–C20 (2-phenyl) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.733.592 (3)151.7
C14—H14···Cg2ii0.952.793.549 (3)138.1
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796–o4797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds