metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,2-Bis(di­phenyl­phosphino)ethane]­chlorido(η5-penta­methyl­cyclo­penta­dien­yl)iron(II) di­chloro­methane solvate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: ouyaping123@126.com

(Received 23 June 2010; accepted 6 July 2010; online 10 July 2010)

In the title compound, [Fe(C10H15)Cl(C26H24P2)]·CH2Cl2, the FeII atom is coordinated by two P atoms from a 1,2-bis­(diphenyl­phosphino)ethane ligand [Fe—P = 2.2130 (7) and 2.2231 (7) Å], a chloride anion [Fe—Cl = 2.3329 (7) Å] and a penta­methyl­cyclo­penta­dienyl (Cp*) ligand [Fe—centroid(Cp*) = 1.732 (3) Å] in a typical piano-stool geometry. In the crystal structure, the complex and solvent mol­ecules are paired via weak C—H⋯Cl inter­actions.

Related literature

For related structures, see: Tilset et al. (2001[Tilset, M., Fjeldahl, I., Hamon, J.-R., Hamon, P., Toupet, L., Saillard, J.-Y., Costuas, K. & Haynes, A. (2001). J. Am. Chem. Soc. 123, 9984-10000.]); Argouarch et al. (2002[Argouarch, G., Hamon, P., Toupet, L., Hamon, J.-R. & Lapinte, C. (2002). Organometallics, 21, 1341-1348.]). For the preparation of the title compound, see: Roger et al. (1991[Roger, C., Hamon, P., Toupet, L., Rabaa, H., Saillard, J.-Y., Hamon, J.-R. & Lapinte, C. (1991). Organometallics, 10, 1045-1054.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H15)Cl(C26H24P2)]·CH2Cl2

  • Mr = 709.84

  • Triclinic, [P \overline 1]

  • a = 10.3602 (6) Å

  • b = 10.9552 (6) Å

  • c = 17.0781 (10) Å

  • α = 80.228 (1)°

  • β = 72.526 (1)°

  • γ = 72.363 (1)°

  • V = 1755.35 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 11390 measured reflections

  • 6799 independent reflections

  • 6294 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.08

  • 6799 reflections

  • 393 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C37—H37A⋯Cl1i 0.97 2.66 3.525 (5) 149
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound Fe(Cp*)(dppe)Cl, widely applied to many fields of organometallic chemistry, was yielded from the reaction of Fe(dppe)Cl (dppe=1,2-bis(diphenylphosphino)ethane) with LiCp* (Cp* = η5-pentamethylcylopentadienyl) in THF (Roger et al., 1991). Because of the labile character of the Fe—Cl bond, the chlorine atom can be replaced by various groups such as acetonitrile, iodine, methyl and so on.

Herewith we report the crystal structure of the title compound (I) (Fig. 1). The molecule exhibits a pseudooctahedral geometry, similar to that observed in close compounds (Roger et al.1991). When FeII was oxidized to FeIII (Tilset et al., 2001), the Fe—Cl bond length changed from 2.3329 (7) Å in (I) to 2.237 (1) Å. In addtion, as compared with the crystal structure of the Cp*(dppp)FeCl (dppp = 1,3- bis(diphenylphosphino)propane) (Argouarch et al. , 2002), the title compound shows a weak decreasing of the iron C5-ring centroid distance of ca 0.014 Å, an shortening of ca 0.017 Å in the Fe—P bond distances, and the Fe—Cl bond length also shows a decreasing of ca 0.013 Å, The major difference between these two structures deals with an decreasing of 7.11° of the P1—Fe—P2 angle in the title compound.

In the crystal structure of (I), the complex and solvent molecules are paired via the weak C—H···Cl interaction (Table 1).

Related literature top

For related structures, see: Tilset et al. (2001); Argouarch et al. (2002). For the preparation of the title compound, see: Roger et al. (1991).

Experimental top

The title compound was synthesized according to the literature procedure of Roger et al. (1991)

Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane: n-hexane (1: 10) at room temperature.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H =0.97 Å) and Uiso(H) =1.2Ueq(C) for methylene, and (C—H =0.96 Å) and Uiso(H) =1.5Ueq(C) for methyl.

Structure description top

The compound Fe(Cp*)(dppe)Cl, widely applied to many fields of organometallic chemistry, was yielded from the reaction of Fe(dppe)Cl (dppe=1,2-bis(diphenylphosphino)ethane) with LiCp* (Cp* = η5-pentamethylcylopentadienyl) in THF (Roger et al., 1991). Because of the labile character of the Fe—Cl bond, the chlorine atom can be replaced by various groups such as acetonitrile, iodine, methyl and so on.

Herewith we report the crystal structure of the title compound (I) (Fig. 1). The molecule exhibits a pseudooctahedral geometry, similar to that observed in close compounds (Roger et al.1991). When FeII was oxidized to FeIII (Tilset et al., 2001), the Fe—Cl bond length changed from 2.3329 (7) Å in (I) to 2.237 (1) Å. In addtion, as compared with the crystal structure of the Cp*(dppp)FeCl (dppp = 1,3- bis(diphenylphosphino)propane) (Argouarch et al. , 2002), the title compound shows a weak decreasing of the iron C5-ring centroid distance of ca 0.014 Å, an shortening of ca 0.017 Å in the Fe—P bond distances, and the Fe—Cl bond length also shows a decreasing of ca 0.013 Å, The major difference between these two structures deals with an decreasing of 7.11° of the P1—Fe—P2 angle in the title compound.

In the crystal structure of (I), the complex and solvent molecules are paired via the weak C—H···Cl interaction (Table 1).

For related structures, see: Tilset et al. (2001); Argouarch et al. (2002). For the preparation of the title compound, see: Roger et al. (1991).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.
[1,2-Bis(diphenylphosphino)ethane]chlorido(η5- pentamethylcyclopentadienyl)iron(II) dichloromethane solvate top
Crystal data top
[Fe(C10H15)Cl(C26H24P2)]·CH2Cl2Z = 2
Mr = 709.84F(000) = 740
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3602 (6) ÅCell parameters from 7338 reflections
b = 10.9552 (6) Åθ = 2.2–28.3°
c = 17.0781 (10) ŵ = 0.77 mm1
α = 80.228 (1)°T = 298 K
β = 72.526 (1)°Block, black
γ = 72.363 (1)°0.16 × 0.12 × 0.10 mm
V = 1755.35 (17) Å3
Data collection top
Bruker SMART APEX
diffractometer
6294 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
phi and ω scansh = 1112
11390 measured reflectionsk = 1313
6799 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.9515P]
where P = (Fo2 + 2Fc2)/3
6799 reflections(Δ/σ)max = 0.020
393 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Fe(C10H15)Cl(C26H24P2)]·CH2Cl2γ = 72.363 (1)°
Mr = 709.84V = 1755.35 (17) Å3
Triclinic, P1Z = 2
a = 10.3602 (6) ÅMo Kα radiation
b = 10.9552 (6) ŵ = 0.77 mm1
c = 17.0781 (10) ÅT = 298 K
α = 80.228 (1)°0.16 × 0.12 × 0.10 mm
β = 72.526 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6294 reflections with I > 2σ(I)
11390 measured reflectionsRint = 0.068
6799 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.08Δρmax = 0.72 e Å3
6799 reflectionsΔρmin = 0.58 e Å3
393 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.95385 (3)0.37080 (3)0.30569 (2)0.03219 (11)
C11.0165 (3)0.3967 (3)0.40903 (16)0.0479 (6)
C20.9207 (3)0.3200 (3)0.43532 (16)0.0466 (6)
C30.7921 (3)0.3930 (3)0.41626 (17)0.0483 (6)
C40.8099 (3)0.5155 (3)0.37841 (17)0.0481 (6)
C50.9498 (3)0.5162 (3)0.37144 (16)0.0472 (6)
C61.1602 (4)0.3620 (4)0.4222 (2)0.0658 (9)
H6A1.15350.38500.47540.099*
H6B1.21780.40750.38030.099*
H6C1.20140.27110.41950.099*
C70.9394 (4)0.1946 (3)0.48748 (19)0.0649 (9)
H7A1.03580.14550.47180.097*
H7B0.88060.14730.47970.097*
H7C0.91380.21060.54440.097*
C80.6559 (3)0.3552 (4)0.4485 (2)0.0663 (9)
H8A0.62370.35900.50720.099*
H8B0.67050.26930.43560.099*
H8C0.58660.41340.42330.099*
C90.6948 (4)0.6308 (3)0.3621 (2)0.0688 (9)
H9A0.65260.67760.41020.103*
H9B0.62490.60300.34890.103*
H9C0.73340.68540.31660.103*
C101.0146 (4)0.6262 (3)0.3375 (2)0.0682 (9)
H10A0.95600.69000.30780.102*
H10B1.10590.59520.30090.102*
H10C1.02330.66350.38190.102*
C110.9552 (3)0.6064 (2)0.13781 (16)0.0417 (6)
C121.0955 (3)0.5985 (3)0.09845 (18)0.0500 (7)
H121.16170.51900.09660.060*
C131.1379 (4)0.7081 (4)0.0619 (2)0.0665 (9)
H131.23190.70160.03510.080*
C141.0417 (5)0.8257 (4)0.0651 (2)0.0736 (11)
H141.07060.89900.04080.088*
C150.9037 (5)0.8359 (3)0.1037 (3)0.0747 (11)
H150.83860.91600.10530.090*
C160.8595 (4)0.7265 (3)0.1408 (2)0.0595 (8)
H160.76530.73430.16760.071*
C170.7250 (3)0.4944 (2)0.17511 (18)0.0435 (6)
C180.6963 (3)0.5441 (3)0.1002 (2)0.0582 (8)
H180.76440.57150.05750.070*
C190.5669 (4)0.5535 (3)0.0881 (3)0.0714 (10)
H190.54880.58620.03730.086*
C200.4666 (4)0.5148 (3)0.1508 (3)0.0737 (11)
H200.37980.52140.14270.088*
C210.4916 (3)0.4668 (3)0.2249 (3)0.0715 (10)
H210.42230.44010.26710.086*
C220.6206 (3)0.4571 (3)0.2380 (2)0.0547 (7)
H220.63670.42550.28930.066*
C230.9982 (3)0.3413 (2)0.11234 (15)0.0382 (5)
H23A0.96690.36840.06250.046*
H23B1.09820.33290.09830.046*
C240.9683 (3)0.2132 (3)0.15037 (16)0.0445 (6)
H24A1.04060.14390.12150.053*
H24B0.87880.21150.14420.053*
C250.8213 (3)0.1078 (2)0.30821 (17)0.0416 (6)
C260.6979 (3)0.1437 (3)0.2836 (2)0.0568 (8)
H260.68900.20430.23890.068*
C270.5875 (4)0.0900 (4)0.3249 (3)0.0744 (10)
H270.50500.11540.30820.089*
C280.6002 (4)0.0003 (4)0.3904 (3)0.0781 (11)
H280.52590.03530.41850.094*
C290.7222 (4)0.0387 (4)0.4142 (2)0.0707 (10)
H290.73140.10150.45780.085*
C300.8313 (3)0.0146 (3)0.3742 (2)0.0545 (7)
H300.91330.01200.39150.065*
C311.1146 (3)0.0457 (2)0.26583 (17)0.0417 (6)
C321.1362 (3)0.0595 (3)0.2243 (2)0.0578 (8)
H321.07540.05760.19340.069*
C331.2464 (4)0.1675 (3)0.2278 (3)0.0730 (10)
H331.25950.23720.19910.088*
C341.3360 (4)0.1718 (3)0.2733 (3)0.0782 (11)
H341.41120.24390.27500.094*
C351.3147 (4)0.0698 (3)0.3163 (3)0.0725 (11)
H351.37410.07410.34870.087*
C361.2052 (3)0.0403 (3)0.3121 (2)0.0530 (7)
H361.19320.11010.34040.064*
C370.4319 (4)0.1030 (4)0.1072 (3)0.0876 (13)
H37A0.36420.13890.15630.105*
H37B0.45790.01020.11810.105*
Cl11.18883 (6)0.34236 (6)0.23193 (4)0.04042 (15)
Cl20.58023 (17)0.15815 (17)0.08710 (12)0.1323 (5)
Cl30.35420 (14)0.14422 (14)0.02585 (10)0.1191 (5)
P10.90294 (6)0.46011 (6)0.18851 (4)0.03401 (15)
P20.96362 (7)0.18735 (6)0.26212 (4)0.03444 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0365 (2)0.03331 (19)0.02797 (18)0.01183 (14)0.00562 (14)0.00660 (13)
C10.0632 (17)0.0583 (16)0.0295 (13)0.0246 (14)0.0098 (12)0.0123 (11)
C20.0634 (17)0.0497 (15)0.0282 (12)0.0205 (13)0.0068 (12)0.0074 (11)
C30.0532 (16)0.0529 (15)0.0355 (14)0.0193 (13)0.0043 (12)0.0151 (11)
C40.0552 (16)0.0436 (14)0.0383 (14)0.0109 (12)0.0023 (12)0.0161 (11)
C50.0670 (18)0.0444 (14)0.0345 (13)0.0241 (13)0.0047 (12)0.0142 (11)
C60.075 (2)0.092 (2)0.0468 (17)0.0333 (19)0.0251 (16)0.0113 (16)
C70.095 (3)0.067 (2)0.0370 (15)0.0325 (18)0.0165 (16)0.0047 (14)
C80.0575 (19)0.077 (2)0.0541 (19)0.0268 (16)0.0121 (15)0.0122 (16)
C90.071 (2)0.0476 (17)0.071 (2)0.0035 (15)0.0017 (17)0.0203 (15)
C100.099 (3)0.0580 (18)0.060 (2)0.0431 (18)0.0129 (18)0.0131 (15)
C110.0522 (15)0.0394 (13)0.0397 (14)0.0158 (11)0.0208 (12)0.0019 (10)
C120.0559 (16)0.0535 (16)0.0482 (16)0.0233 (13)0.0235 (13)0.0092 (13)
C130.081 (2)0.076 (2)0.061 (2)0.0483 (19)0.0330 (18)0.0204 (17)
C140.111 (3)0.062 (2)0.071 (2)0.051 (2)0.045 (2)0.0202 (17)
C150.105 (3)0.0415 (17)0.084 (3)0.0155 (18)0.044 (2)0.0050 (16)
C160.068 (2)0.0417 (15)0.070 (2)0.0116 (14)0.0242 (17)0.0009 (14)
C170.0343 (13)0.0403 (13)0.0580 (17)0.0060 (10)0.0172 (12)0.0079 (12)
C180.0499 (16)0.0641 (19)0.064 (2)0.0121 (14)0.0249 (15)0.0021 (15)
C190.063 (2)0.070 (2)0.094 (3)0.0097 (17)0.048 (2)0.0045 (19)
C200.0471 (18)0.061 (2)0.122 (4)0.0085 (15)0.040 (2)0.011 (2)
C210.0415 (16)0.066 (2)0.104 (3)0.0166 (15)0.0137 (18)0.006 (2)
C220.0405 (15)0.0524 (16)0.069 (2)0.0103 (12)0.0128 (14)0.0052 (14)
C230.0399 (13)0.0436 (13)0.0306 (12)0.0076 (10)0.0105 (10)0.0062 (10)
C240.0586 (16)0.0443 (14)0.0364 (13)0.0158 (12)0.0165 (12)0.0083 (11)
C250.0458 (14)0.0364 (12)0.0493 (15)0.0170 (11)0.0153 (12)0.0055 (11)
C260.0545 (17)0.0531 (16)0.072 (2)0.0225 (14)0.0283 (16)0.0048 (15)
C270.0554 (19)0.087 (3)0.096 (3)0.0339 (18)0.0317 (19)0.001 (2)
C280.074 (2)0.090 (3)0.084 (3)0.054 (2)0.018 (2)0.009 (2)
C290.081 (2)0.069 (2)0.071 (2)0.0411 (19)0.0255 (19)0.0181 (18)
C300.0574 (17)0.0519 (16)0.0608 (19)0.0227 (14)0.0230 (15)0.0060 (14)
C310.0419 (13)0.0374 (13)0.0477 (15)0.0112 (10)0.0149 (11)0.0020 (11)
C320.0593 (18)0.0441 (15)0.075 (2)0.0039 (13)0.0280 (16)0.0165 (14)
C330.068 (2)0.0434 (16)0.102 (3)0.0038 (15)0.023 (2)0.0225 (17)
C340.059 (2)0.0476 (18)0.123 (4)0.0012 (15)0.036 (2)0.001 (2)
C350.066 (2)0.063 (2)0.104 (3)0.0207 (16)0.054 (2)0.016 (2)
C360.0641 (18)0.0459 (15)0.0601 (18)0.0211 (13)0.0313 (15)0.0047 (13)
C370.084 (3)0.076 (3)0.075 (3)0.005 (2)0.006 (2)0.012 (2)
Cl10.0364 (3)0.0493 (3)0.0372 (3)0.0141 (3)0.0090 (2)0.0046 (2)
Cl20.1170 (11)0.1362 (12)0.1477 (15)0.0448 (9)0.0342 (10)0.0046 (10)
Cl30.0988 (9)0.1187 (10)0.1126 (10)0.0251 (7)0.0276 (8)0.0385 (8)
P10.0327 (3)0.0344 (3)0.0348 (3)0.0081 (2)0.0093 (2)0.0036 (2)
P20.0384 (3)0.0325 (3)0.0360 (3)0.0109 (2)0.0124 (3)0.0054 (2)
Geometric parameters (Å, º) top
Fe1—C52.083 (3)C17—C181.385 (4)
Fe1—C42.099 (3)C17—P11.843 (3)
Fe1—C32.107 (3)C18—C191.388 (4)
Fe1—C22.138 (3)C18—H180.9300
Fe1—C12.141 (3)C19—C201.361 (6)
Fe1—P12.2130 (7)C19—H190.9300
Fe1—P22.2231 (7)C20—C211.353 (6)
Fe1—Cl12.3329 (7)C20—H200.9300
C1—C21.415 (4)C21—C221.391 (4)
C1—C51.427 (4)C21—H210.9300
C1—C61.497 (4)C22—H220.9300
C2—C31.431 (4)C23—C241.523 (4)
C2—C71.498 (4)C23—P11.840 (3)
C3—C41.428 (4)C23—H23A0.9700
C3—C81.509 (4)C23—H23B0.9700
C4—C51.421 (4)C24—P21.869 (3)
C4—C91.504 (4)C24—H24A0.9700
C5—C101.502 (4)C24—H24B0.9700
C6—H6A0.9600C25—C261.389 (4)
C6—H6B0.9600C25—C301.393 (4)
C6—H6C0.9600C25—P21.844 (3)
C7—H7A0.9600C26—C271.391 (5)
C7—H7B0.9600C26—H260.9300
C7—H7C0.9600C27—C281.371 (5)
C8—H8A0.9600C27—H270.9300
C8—H8B0.9600C28—C291.367 (5)
C8—H8C0.9600C28—H280.9300
C9—H9A0.9600C29—C301.374 (4)
C9—H9B0.9600C29—H290.9300
C9—H9C0.9600C30—H300.9300
C10—H10A0.9600C31—C361.380 (4)
C10—H10B0.9600C31—C321.381 (4)
C10—H10C0.9600C31—P21.848 (3)
C11—C161.385 (4)C32—C331.379 (4)
C11—C121.389 (4)C32—H320.9300
C11—P11.840 (3)C33—C341.364 (6)
C12—C131.387 (4)C33—H330.9300
C12—H120.9300C34—C351.367 (6)
C13—C141.367 (5)C34—H340.9300
C13—H130.9300C35—C361.392 (4)
C14—C151.361 (6)C35—H350.9300
C14—H140.9300C36—H360.9300
C15—C161.396 (5)C37—Cl21.737 (5)
C15—H150.9300C37—Cl31.739 (5)
C16—H160.9300C37—H37A0.9700
C17—C221.382 (4)C37—H37B0.9700
C5—Fe1—C439.73 (12)C14—C13—H13119.9
C5—Fe1—C366.75 (11)C12—C13—H13119.9
C4—Fe1—C339.69 (11)C15—C14—C13120.2 (3)
C5—Fe1—C266.10 (11)C15—C14—H14119.9
C4—Fe1—C266.01 (11)C13—C14—H14119.9
C3—Fe1—C239.39 (11)C14—C15—C16120.3 (3)
C5—Fe1—C139.46 (11)C14—C15—H15119.9
C4—Fe1—C165.79 (12)C16—C15—H15119.9
C3—Fe1—C165.65 (11)C11—C16—C15120.4 (3)
C2—Fe1—C138.61 (11)C11—C16—H16119.8
C5—Fe1—P1108.21 (8)C15—C16—H16119.8
C4—Fe1—P195.87 (8)C22—C17—C18118.4 (3)
C3—Fe1—P1118.90 (9)C22—C17—P1119.7 (2)
C2—Fe1—P1158.27 (8)C18—C17—P1121.5 (2)
C1—Fe1—P1145.86 (8)C17—C18—C19120.7 (3)
C5—Fe1—P2166.77 (8)C17—C18—H18119.6
C4—Fe1—P2139.69 (8)C19—C18—H18119.6
C3—Fe1—P2105.83 (8)C20—C19—C18119.6 (4)
C2—Fe1—P2101.07 (8)C20—C19—H19120.2
C1—Fe1—P2128.04 (8)C18—C19—H19120.2
P1—Fe1—P284.91 (3)C21—C20—C19120.8 (3)
C5—Fe1—Cl194.68 (8)C21—C20—H20119.6
C4—Fe1—Cl1132.57 (8)C19—C20—H20119.6
C3—Fe1—Cl1151.83 (9)C20—C21—C22120.2 (3)
C2—Fe1—Cl1114.63 (8)C20—C21—H21119.9
C1—Fe1—Cl186.47 (8)C22—C21—H21119.9
P1—Fe1—Cl186.26 (2)C17—C22—C21120.2 (3)
P2—Fe1—Cl187.74 (2)C17—C22—H22119.9
C2—C1—C5108.2 (3)C21—C22—H22119.9
C2—C1—C6126.1 (3)C24—C23—P1107.85 (17)
C5—C1—C6125.6 (3)C24—C23—H23A110.1
C2—C1—Fe170.55 (15)P1—C23—H23A110.1
C5—C1—Fe168.08 (15)C24—C23—H23B110.1
C6—C1—Fe1129.5 (2)P1—C23—H23B110.1
C1—C2—C3108.1 (2)H23A—C23—H23B108.4
C1—C2—C7126.3 (3)C23—C24—P2111.12 (17)
C3—C2—C7124.8 (3)C23—C24—H24A109.4
C1—C2—Fe170.83 (15)P2—C24—H24A109.4
C3—C2—Fe169.16 (15)C23—C24—H24B109.4
C7—C2—Fe1133.8 (2)P2—C24—H24B109.4
C4—C3—C2107.7 (2)H24A—C24—H24B108.0
C4—C3—C8126.9 (3)C26—C25—C30117.7 (3)
C2—C3—C8124.1 (3)C26—C25—P2122.4 (2)
C4—C3—Fe169.82 (15)C30—C25—P2119.8 (2)
C2—C3—Fe171.45 (15)C25—C26—C27120.8 (3)
C8—C3—Fe1134.4 (2)C25—C26—H26119.6
C5—C4—C3108.0 (3)C27—C26—H26119.6
C5—C4—C9125.4 (3)C28—C27—C26120.0 (3)
C3—C4—C9125.8 (3)C28—C27—H27120.0
C5—C4—Fe169.56 (15)C26—C27—H27120.0
C3—C4—Fe170.49 (15)C29—C28—C27119.9 (3)
C9—C4—Fe1133.3 (2)C29—C28—H28120.1
C4—C5—C1107.9 (2)C27—C28—H28120.1
C4—C5—C10126.9 (3)C28—C29—C30120.5 (3)
C1—C5—C10125.1 (3)C28—C29—H29119.7
C4—C5—Fe170.71 (15)C30—C29—H29119.7
C1—C5—Fe172.47 (14)C29—C30—C25121.1 (3)
C10—C5—Fe1126.3 (2)C29—C30—H30119.4
C1—C6—H6A109.5C25—C30—H30119.4
C1—C6—H6B109.5C36—C31—C32118.5 (3)
H6A—C6—H6B109.5C36—C31—P2121.2 (2)
C1—C6—H6C109.5C32—C31—P2120.3 (2)
H6A—C6—H6C109.5C33—C32—C31121.3 (3)
H6B—C6—H6C109.5C33—C32—H32119.4
C2—C7—H7A109.5C31—C32—H32119.4
C2—C7—H7B109.5C34—C33—C32119.9 (3)
H7A—C7—H7B109.5C34—C33—H33120.0
C2—C7—H7C109.5C32—C33—H33120.0
H7A—C7—H7C109.5C33—C34—C35119.8 (3)
H7B—C7—H7C109.5C33—C34—H34120.1
C3—C8—H8A109.5C35—C34—H34120.1
C3—C8—H8B109.5C34—C35—C36120.7 (3)
H8A—C8—H8B109.5C34—C35—H35119.7
C3—C8—H8C109.5C36—C35—H35119.7
H8A—C8—H8C109.5C31—C36—C35119.9 (3)
H8B—C8—H8C109.5C31—C36—H36120.1
C4—C9—H9A109.5C35—C36—H36120.1
C4—C9—H9B109.5Cl2—C37—Cl3112.4 (2)
H9A—C9—H9B109.5Cl2—C37—H37A109.1
C4—C9—H9C109.5Cl3—C37—H37A109.1
H9A—C9—H9C109.5Cl2—C37—H37B109.1
H9B—C9—H9C109.5Cl3—C37—H37B109.1
C5—C10—H10A109.5H37A—C37—H37B107.9
C5—C10—H10B109.5C23—P1—C11103.51 (12)
H10A—C10—H10B109.5C23—P1—C1799.36 (12)
C5—C10—H10C109.5C11—P1—C17102.04 (12)
H10A—C10—H10C109.5C23—P1—Fe1106.38 (8)
H10B—C10—H10C109.5C11—P1—Fe1120.12 (8)
C16—C11—C12118.3 (3)C17—P1—Fe1122.14 (10)
C16—C11—P1121.9 (2)C25—P2—C3198.42 (12)
C12—C11—P1119.7 (2)C25—P2—C24103.13 (12)
C13—C12—C11120.6 (3)C31—P2—C24102.74 (13)
C13—C12—H12119.7C25—P2—Fe1120.52 (9)
C11—C12—H12119.7C31—P2—Fe1120.06 (9)
C14—C13—C12120.2 (3)C24—P2—Fe1109.43 (8)
C5—Fe1—C1—C2120.0 (2)P2—Fe1—C5—C495.4 (4)
C4—Fe1—C1—C281.30 (18)Cl1—Fe1—C5—C4164.46 (15)
C3—Fe1—C1—C237.57 (17)C4—Fe1—C5—C1116.9 (2)
P1—Fe1—C1—C2143.70 (15)C3—Fe1—C5—C179.38 (18)
P2—Fe1—C1—C253.92 (19)C2—Fe1—C5—C136.24 (17)
Cl1—Fe1—C1—C2138.27 (16)P1—Fe1—C5—C1166.26 (14)
C4—Fe1—C1—C538.69 (17)P2—Fe1—C5—C121.4 (5)
C3—Fe1—C1—C582.42 (18)Cl1—Fe1—C5—C178.66 (16)
C2—Fe1—C1—C5120.0 (2)C4—Fe1—C5—C10122.1 (4)
P1—Fe1—C1—C523.7 (2)C3—Fe1—C5—C10159.6 (3)
P2—Fe1—C1—C5173.90 (13)C2—Fe1—C5—C10157.3 (3)
Cl1—Fe1—C1—C5101.74 (16)C1—Fe1—C5—C10121.0 (4)
C5—Fe1—C1—C6118.8 (3)P1—Fe1—C5—C1045.2 (3)
C4—Fe1—C1—C6157.5 (3)P2—Fe1—C5—C10142.4 (3)
C3—Fe1—C1—C6158.8 (3)Cl1—Fe1—C5—C1042.4 (3)
C2—Fe1—C1—C6121.2 (3)C16—C11—C12—C131.1 (4)
P1—Fe1—C1—C695.1 (3)P1—C11—C12—C13178.2 (2)
P2—Fe1—C1—C667.3 (3)C11—C12—C13—C140.8 (5)
Cl1—Fe1—C1—C617.0 (3)C12—C13—C14—C150.5 (5)
C5—C1—C2—C31.6 (3)C13—C14—C15—C160.5 (6)
C6—C1—C2—C3175.4 (3)C12—C11—C16—C151.1 (5)
Fe1—C1—C2—C359.37 (18)P1—C11—C16—C15178.1 (3)
C5—C1—C2—C7171.4 (3)C14—C15—C16—C110.8 (6)
C6—C1—C2—C75.6 (5)C22—C17—C18—C191.4 (5)
Fe1—C1—C2—C7130.8 (3)P1—C17—C18—C19171.5 (3)
C5—C1—C2—Fe157.78 (18)C17—C18—C19—C200.7 (5)
C6—C1—C2—Fe1125.3 (3)C18—C19—C20—C210.2 (6)
C5—Fe1—C2—C137.02 (17)C19—C20—C21—C220.4 (6)
C4—Fe1—C2—C180.67 (19)C18—C17—C22—C211.6 (4)
C3—Fe1—C2—C1118.9 (2)P1—C17—C22—C21171.4 (3)
P1—Fe1—C2—C1116.1 (2)C20—C21—C22—C171.2 (5)
P2—Fe1—C2—C1139.57 (16)P1—C23—C24—P238.7 (2)
Cl1—Fe1—C2—C146.96 (18)C30—C25—C26—C271.4 (5)
C5—Fe1—C2—C381.91 (18)P2—C25—C26—C27173.9 (3)
C4—Fe1—C2—C338.25 (16)C25—C26—C27—C280.6 (6)
C1—Fe1—C2—C3118.9 (2)C26—C27—C28—C290.9 (7)
P1—Fe1—C2—C32.8 (3)C27—C28—C29—C301.5 (7)
P2—Fe1—C2—C3101.51 (15)C28—C29—C30—C250.6 (6)
Cl1—Fe1—C2—C3165.88 (14)C26—C25—C30—C290.8 (5)
C5—Fe1—C2—C7159.4 (4)P2—C25—C30—C29174.6 (3)
C4—Fe1—C2—C7157.0 (4)C36—C31—C32—C330.7 (5)
C3—Fe1—C2—C7118.7 (4)P2—C31—C32—C33178.5 (3)
C1—Fe1—C2—C7122.4 (4)C31—C32—C33—C340.4 (6)
P1—Fe1—C2—C7121.5 (3)C32—C33—C34—C351.0 (6)
P2—Fe1—C2—C717.2 (3)C33—C34—C35—C362.1 (6)
Cl1—Fe1—C2—C775.4 (3)C32—C31—C36—C350.4 (5)
C1—C2—C3—C40.3 (3)P2—C31—C36—C35177.4 (3)
C7—C2—C3—C4169.7 (3)C34—C35—C36—C311.8 (5)
Fe1—C2—C3—C460.75 (18)C24—C23—P1—C11176.94 (17)
C1—C2—C3—C8168.0 (3)C24—C23—P1—C1778.17 (19)
C7—C2—C3—C82.0 (4)C24—C23—P1—Fe149.45 (18)
Fe1—C2—C3—C8131.6 (3)C16—C11—P1—C23137.7 (2)
C1—C2—C3—Fe160.42 (18)C12—C11—P1—C2345.3 (2)
C7—C2—C3—Fe1129.6 (3)C16—C11—P1—C1734.9 (3)
C5—Fe1—C3—C437.54 (18)C12—C11—P1—C17148.1 (2)
C2—Fe1—C3—C4117.7 (2)C16—C11—P1—Fe1103.9 (2)
C1—Fe1—C3—C480.82 (19)C12—C11—P1—Fe173.0 (2)
P1—Fe1—C3—C461.16 (19)C22—C17—P1—C23112.4 (2)
P2—Fe1—C3—C4154.09 (16)C18—C17—P1—C2360.4 (3)
Cl1—Fe1—C3—C489.7 (2)C22—C17—P1—C11141.5 (2)
C5—Fe1—C3—C280.12 (18)C18—C17—P1—C1145.7 (3)
C4—Fe1—C3—C2117.7 (2)C22—C17—P1—Fe13.8 (3)
C1—Fe1—C3—C236.84 (16)C18—C17—P1—Fe1176.6 (2)
P1—Fe1—C3—C2178.83 (13)C5—Fe1—P1—C23149.05 (12)
P2—Fe1—C3—C288.24 (15)C4—Fe1—P1—C23172.21 (12)
Cl1—Fe1—C3—C228.0 (3)C3—Fe1—P1—C23137.99 (12)
C5—Fe1—C3—C8159.9 (4)C2—Fe1—P1—C23140.0 (2)
C4—Fe1—C3—C8122.3 (4)C1—Fe1—P1—C23133.44 (17)
C2—Fe1—C3—C8120.0 (4)P2—Fe1—P1—C2332.71 (9)
C1—Fe1—C3—C8156.8 (4)Cl1—Fe1—P1—C2355.35 (9)
P1—Fe1—C3—C861.2 (3)C5—Fe1—P1—C1132.17 (14)
P2—Fe1—C3—C831.8 (3)C4—Fe1—P1—C1170.91 (13)
Cl1—Fe1—C3—C8148.0 (3)C3—Fe1—P1—C11105.13 (14)
C2—C3—C4—C52.1 (3)C2—Fe1—P1—C11103.1 (2)
C8—C3—C4—C5169.3 (3)C1—Fe1—P1—C1116.57 (18)
Fe1—C3—C4—C559.66 (18)P2—Fe1—P1—C11149.59 (11)
C2—C3—C4—C9168.4 (3)Cl1—Fe1—P1—C1161.53 (11)
C8—C3—C4—C91.2 (5)C5—Fe1—P1—C1798.31 (13)
Fe1—C3—C4—C9129.8 (3)C4—Fe1—P1—C1759.57 (13)
C2—C3—C4—Fe161.79 (18)C3—Fe1—P1—C1725.36 (14)
C8—C3—C4—Fe1131.0 (3)C2—Fe1—P1—C1727.4 (2)
C3—Fe1—C4—C5118.9 (2)C1—Fe1—P1—C17113.92 (17)
C2—Fe1—C4—C580.90 (18)P2—Fe1—P1—C1779.93 (10)
C1—Fe1—C4—C538.43 (16)Cl1—Fe1—P1—C17167.98 (10)
P1—Fe1—C4—C5111.57 (15)C26—C25—P2—C31144.9 (3)
P2—Fe1—C4—C5159.38 (13)C30—C25—P2—C3139.8 (3)
Cl1—Fe1—C4—C521.3 (2)C26—C25—P2—C2439.7 (3)
C5—Fe1—C4—C3118.9 (2)C30—C25—P2—C24145.1 (2)
C2—Fe1—C4—C337.97 (17)C26—C25—P2—Fe182.6 (3)
C1—Fe1—C4—C380.44 (19)C30—C25—P2—Fe192.6 (2)
P1—Fe1—C4—C3129.56 (16)C36—C31—P2—C25117.4 (2)
P2—Fe1—C4—C340.5 (2)C32—C31—P2—C2560.3 (3)
Cl1—Fe1—C4—C3140.13 (15)C36—C31—P2—C24137.0 (2)
C5—Fe1—C4—C9119.9 (4)C32—C31—P2—C2445.3 (3)
C3—Fe1—C4—C9121.3 (4)C36—C31—P2—Fe115.3 (3)
C2—Fe1—C4—C9159.2 (3)C32—C31—P2—Fe1167.0 (2)
C1—Fe1—C4—C9158.3 (3)C23—C24—P2—C25142.49 (19)
P1—Fe1—C4—C98.3 (3)C23—C24—P2—C31115.57 (19)
P2—Fe1—C4—C980.7 (3)C23—C24—P2—Fe113.1 (2)
Cl1—Fe1—C4—C998.6 (3)C5—Fe1—P2—C2567.0 (4)
C3—C4—C5—C13.1 (3)C4—Fe1—P2—C2512.55 (17)
C9—C4—C5—C1167.4 (3)C3—Fe1—P2—C2512.99 (14)
Fe1—C4—C5—C163.35 (18)C2—Fe1—P2—C2553.26 (13)
C3—C4—C5—C10178.3 (3)C1—Fe1—P2—C2584.18 (14)
C9—C4—C5—C107.7 (5)P1—Fe1—P2—C25105.63 (10)
Fe1—C4—C5—C10121.5 (3)Cl1—Fe1—P2—C25167.92 (10)
C3—C4—C5—Fe160.25 (18)C5—Fe1—P2—C3155.5 (4)
C9—C4—C5—Fe1129.2 (3)C4—Fe1—P2—C31135.06 (16)
C2—C1—C5—C42.9 (3)C3—Fe1—P2—C31109.51 (14)
C6—C1—C5—C4174.1 (3)C2—Fe1—P2—C3169.25 (13)
Fe1—C1—C5—C462.22 (18)C1—Fe1—P2—C3138.32 (15)
C2—C1—C5—C10178.2 (3)P1—Fe1—P2—C31131.86 (10)
C6—C1—C5—C101.2 (4)Cl1—Fe1—P2—C3145.42 (10)
Fe1—C1—C5—C10122.5 (3)C5—Fe1—P2—C24173.8 (4)
C2—C1—C5—Fe159.31 (18)C4—Fe1—P2—C24106.63 (16)
C6—C1—C5—Fe1123.7 (3)C3—Fe1—P2—C24132.17 (13)
C3—Fe1—C5—C437.50 (17)C2—Fe1—P2—C24172.44 (13)
C2—Fe1—C5—C480.64 (18)C1—Fe1—P2—C24156.64 (14)
C1—Fe1—C5—C4116.9 (2)P1—Fe1—P2—C2413.55 (10)
P1—Fe1—C5—C476.86 (16)Cl1—Fe1—P2—C2472.90 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C37—H37A···Cl1i0.972.663.525 (5)149
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C10H15)Cl(C26H24P2)]·CH2Cl2
Mr709.84
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.3602 (6), 10.9552 (6), 17.0781 (10)
α, β, γ (°)80.228 (1), 72.526 (1), 72.363 (1)
V3)1755.35 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11390, 6799, 6294
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.08
No. of reflections6799
No. of parameters393
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.58

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C37—H37A···Cl1i0.972.663.525 (5)149
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are grateful to Xianggao Meng for the data collection.

References

First citationArgouarch, G., Hamon, P., Toupet, L., Hamon, J.-R. & Lapinte, C. (2002). Organometallics, 21, 1341–1348.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRoger, C., Hamon, P., Toupet, L., Rabaa, H., Saillard, J.-Y., Hamon, J.-R. & Lapinte, C. (1991). Organometallics, 10, 1045–1054.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTilset, M., Fjeldahl, I., Hamon, J.-R., Hamon, P., Toupet, L., Saillard, J.-Y., Costuas, K. & Haynes, A. (2001). J. Am. Chem. Soc. 123, 9984–10000.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds