organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,8-Di­bromo-14,15,17,18-tetra­methyl-2,11-di­thia­[3.3]para­cyclo­phane

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: jxsdhsy@163.com

(Received 26 June 2010; accepted 6 July 2010; online 10 July 2010)

In the title mol­ecule [systematic name: 12,15-dibromo-52,53,55,56-tetramethyl-3,7-dithia-1,5(1,4)-dibenzenacyclooctaphane], C20H22Br2S2, the distance between the centroids of the two benzene rings is 3.326 (4) Å, and their mean planes are almost parallel, forming a dihedral angle of 1.05 (7)°. The crystal packing exhibits no inter­molecular contacts shorter than the sum of van der Waals radii.

Related literature

For the preparation of the title compound, see: Wang et al. (2006[Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277-7285.]). For the crystal structures of related compounds, see: Sun et al. (2008[Sun, J., Huo, Y., Wu, R., Li, J. & Ma, Y. (2008). Acta Cryst. E64, o650.]); Clément et al. (2009[Clément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, o528.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22Br2S2

  • Mr = 486.32

  • Monoclinic, P 21 /c

  • a = 15.298 (3) Å

  • b = 12.340 (2) Å

  • c = 10.0160 (18) Å

  • β = 91.864 (3)°

  • V = 1889.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.51 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 12364 measured reflections

  • 3922 independent reflections

  • 2690 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 0.94

  • 3922 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a contribution to a structural studies of paracyclophane compounds (Sun et al., 2008; Clément et al., 2009), we present here the crystal structure of the title compound (I).

In (I) (Fig. 1), the distance between the centroids of two benzene rings is 3.326 (4) Å, and their mean planes are almost parallel forming a dihedral angle of 1.05 (7)°. The crystal packing exhibits no intermolecular contacts shorter than the sum of van der Waals radii

Related literature top

For the preparation of the title compound, see: Wang et al. (2006). For the crystal structures of related compounds, see: Sun et al. (2008); Clément et al. (2009).

Experimental top

The title compound has been prepared following the known procedure (Wang et al., 2006). A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene and 1,4-dibromomethyl-2,3,5,6-tetramethylbenzene in degassed THF(500 mL) was added dropwise under N2 over 12 h to a refluxing solution of potassium carbonate(5 equiv) in EtOH(1.2L). After an additional 2 h at the reflux temperature, the mixture was cooled and the solvent were removed. The resulting residue was treated with CH2Cl2(300 mL) and water(300 mL). The organic phase was separated, the aqueous extracted with CH2Cl2 three times. The combined organic layers was dried over Na2SO4,then solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether(1:1,v/v) as eluent. The product was further purified by recrystallization from toluene.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H =0.97 Å) and Uiso(H) = 1.2Ueq(C) for methylene, and (C—H =0.96 Å) and Uiso(H) = 1.5Ueq(C) for methyl.

Structure description top

As a contribution to a structural studies of paracyclophane compounds (Sun et al., 2008; Clément et al., 2009), we present here the crystal structure of the title compound (I).

In (I) (Fig. 1), the distance between the centroids of two benzene rings is 3.326 (4) Å, and their mean planes are almost parallel forming a dihedral angle of 1.05 (7)°. The crystal packing exhibits no intermolecular contacts shorter than the sum of van der Waals radii

For the preparation of the title compound, see: Wang et al. (2006). For the crystal structures of related compounds, see: Sun et al. (2008); Clément et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.
12,15-Dibromo-52,53,55,56-tetramethyl-3,7-dithia- 1,5(1,4)-dibenzenacyclooctaphane top
Crystal data top
C20H22Br2S2F(000) = 976
Mr = 486.32Dx = 1.709 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3874 reflections
a = 15.298 (3) Åθ = 2.6–23.9°
b = 12.340 (2) ŵ = 4.51 mm1
c = 10.0160 (18) ÅT = 298 K
β = 91.864 (3)°Block, colourless
V = 1889.8 (6) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2690 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
phi and ω scansh = 1219
12364 measured reflectionsk = 1514
3922 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
3922 reflections(Δ/σ)max = 0.013
221 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H22Br2S2V = 1889.8 (6) Å3
Mr = 486.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.298 (3) ŵ = 4.51 mm1
b = 12.340 (2) ÅT = 298 K
c = 10.0160 (18) Å0.23 × 0.20 × 0.20 mm
β = 91.864 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2690 reflections with I > 2σ(I)
12364 measured reflectionsRint = 0.075
3922 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.94Δρmax = 0.51 e Å3
3922 reflectionsΔρmin = 0.31 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63291 (3)0.24847 (3)0.69722 (4)0.06216 (15)
Br20.86653 (3)0.03415 (3)1.12714 (4)0.06978 (17)
C10.7941 (2)0.1625 (2)0.8090 (3)0.0407 (8)
C20.7035 (2)0.1602 (2)0.8134 (3)0.0398 (7)
C30.6607 (2)0.0921 (3)0.8980 (3)0.0445 (8)
H30.59980.09110.89610.053*
C40.7068 (2)0.0249 (2)0.9864 (3)0.0436 (8)
C50.7961 (2)0.0389 (2)0.9945 (3)0.0434 (8)
C60.8387 (2)0.1043 (2)0.9067 (3)0.0448 (8)
H60.89940.10940.91340.054*
C70.8438 (3)0.2189 (3)0.7015 (4)0.0579 (10)
H7A0.80250.24250.63200.069*
H7B0.87130.28320.73960.069*
C80.8677 (2)0.0337 (3)0.5289 (3)0.0493 (9)
H8A0.91040.01170.48630.059*
H8B0.83390.07000.45850.059*
C90.8064 (2)0.0394 (2)0.6037 (3)0.0336 (7)
C100.7159 (2)0.0343 (2)0.5758 (3)0.0351 (7)
C110.65953 (19)0.0939 (2)0.6546 (3)0.0344 (7)
C120.69283 (19)0.1594 (2)0.7578 (3)0.0339 (7)
C130.7842 (2)0.1727 (2)0.7759 (3)0.0340 (7)
C140.84008 (19)0.1132 (2)0.6990 (3)0.0351 (7)
C150.6794 (2)0.0317 (3)0.4589 (3)0.0533 (9)
H15A0.61900.01320.44230.080*
H15B0.68400.10750.47960.080*
H15C0.71190.01620.38080.080*
C160.5615 (2)0.0846 (3)0.6279 (4)0.0524 (9)
H16A0.54250.01290.65030.079*
H16B0.54820.09840.53510.079*
H16C0.53180.13660.68150.079*
C170.9379 (2)0.1285 (3)0.7171 (4)0.0555 (9)
H17A0.95180.20410.71090.083*
H17B0.96710.08940.64870.083*
H17C0.95690.10160.80320.083*
C180.8205 (3)0.2505 (3)0.8816 (4)0.0532 (9)
H18A0.88320.24630.88500.080*
H18B0.79860.23130.96710.080*
H18C0.80280.32310.85930.080*
C190.6313 (2)0.2168 (3)0.8503 (4)0.0478 (8)
H19A0.58830.25610.79590.057*
H19B0.66470.26970.90210.057*
C200.6574 (3)0.0609 (3)1.0634 (4)0.0615 (10)
H20A0.69900.11411.09780.074*
H20B0.63100.02651.13930.074*
S10.92690 (6)0.13702 (8)0.62621 (10)0.0536 (2)
S20.57294 (6)0.13011 (8)0.96634 (10)0.0572 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0655 (3)0.0568 (3)0.0643 (3)0.01722 (19)0.0036 (2)0.00873 (18)
Br20.0857 (3)0.0680 (3)0.0542 (2)0.0013 (2)0.0199 (2)0.00657 (19)
C10.046 (2)0.0305 (16)0.0458 (18)0.0047 (15)0.0098 (15)0.0078 (14)
C20.049 (2)0.0323 (16)0.0383 (16)0.0038 (15)0.0036 (14)0.0041 (13)
C30.042 (2)0.046 (2)0.0456 (18)0.0015 (16)0.0131 (15)0.0034 (15)
C40.057 (2)0.0401 (18)0.0345 (16)0.0056 (16)0.0110 (15)0.0066 (14)
C50.056 (2)0.0407 (18)0.0332 (16)0.0002 (16)0.0047 (15)0.0063 (14)
C60.0415 (19)0.0441 (19)0.0489 (19)0.0059 (15)0.0015 (16)0.0058 (16)
C70.059 (2)0.0427 (19)0.073 (3)0.0030 (17)0.021 (2)0.0133 (18)
C80.050 (2)0.055 (2)0.0434 (19)0.0080 (17)0.0094 (16)0.0000 (15)
C90.0344 (18)0.0372 (16)0.0298 (14)0.0046 (13)0.0075 (12)0.0063 (12)
C100.0409 (19)0.0344 (16)0.0301 (14)0.0028 (14)0.0002 (13)0.0044 (12)
C110.0294 (17)0.0383 (17)0.0354 (15)0.0014 (13)0.0021 (13)0.0062 (13)
C120.0345 (17)0.0303 (15)0.0371 (15)0.0023 (13)0.0063 (13)0.0041 (12)
C130.0367 (18)0.0319 (15)0.0333 (15)0.0031 (14)0.0006 (13)0.0025 (12)
C140.0275 (16)0.0396 (17)0.0380 (16)0.0027 (13)0.0004 (13)0.0107 (13)
C150.052 (2)0.057 (2)0.050 (2)0.0062 (18)0.0023 (17)0.0121 (17)
C160.0309 (19)0.064 (2)0.062 (2)0.0022 (17)0.0018 (16)0.0051 (18)
C170.0326 (19)0.065 (2)0.068 (2)0.0055 (17)0.0016 (17)0.0039 (19)
C180.058 (2)0.052 (2)0.0492 (19)0.0119 (17)0.0032 (17)0.0060 (17)
C190.046 (2)0.0409 (18)0.057 (2)0.0046 (16)0.0119 (17)0.0045 (16)
C200.080 (3)0.061 (2)0.044 (2)0.009 (2)0.0095 (19)0.0028 (17)
S10.0425 (5)0.0564 (6)0.0626 (6)0.0154 (4)0.0150 (4)0.0023 (4)
S20.0486 (6)0.0601 (6)0.0643 (6)0.0107 (5)0.0255 (5)0.0004 (5)
Geometric parameters (Å, º) top
Br1—C21.904 (3)C11—C161.519 (4)
Br2—C51.909 (3)C12—C131.413 (4)
C1—C61.378 (4)C12—C191.517 (4)
C1—C21.388 (4)C13—C141.381 (4)
C1—C71.509 (5)C13—C181.521 (4)
C2—C31.374 (4)C14—C171.514 (4)
C3—C41.389 (5)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.377 (5)C15—H15C0.9600
C4—C201.524 (5)C16—H16A0.9600
C5—C61.373 (5)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—S11.808 (4)C17—H17A0.9600
C7—H7A0.9700C17—H17B0.9600
C7—H7B0.9700C17—H17C0.9600
C8—C91.516 (4)C18—H18A0.9600
C8—S11.826 (3)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700C19—S21.833 (4)
C9—C141.405 (4)C19—H19A0.9700
C9—C101.405 (4)C19—H19B0.9700
C10—C111.397 (4)C20—S21.807 (4)
C10—C151.518 (4)C20—H20A0.9700
C11—C121.396 (4)C20—H20B0.9700
C6—C1—C2116.1 (3)C14—C13—C18120.3 (3)
C6—C1—C7119.9 (3)C12—C13—C18120.0 (3)
C2—C1—C7124.0 (3)C13—C14—C9120.3 (3)
C3—C2—C1121.9 (3)C13—C14—C17119.7 (3)
C3—C2—Br1117.0 (3)C9—C14—C17120.1 (3)
C1—C2—Br1121.0 (2)C10—C15—H15A109.5
C2—C3—C4121.0 (3)C10—C15—H15B109.5
C2—C3—H3119.5H15A—C15—H15B109.5
C4—C3—H3119.5C10—C15—H15C109.5
C5—C4—C3116.4 (3)H15A—C15—H15C109.5
C5—C4—C20124.4 (3)H15B—C15—H15C109.5
C3—C4—C20119.2 (3)C11—C16—H16A109.5
C6—C5—C4121.8 (3)C11—C16—H16B109.5
C6—C5—Br2117.0 (3)H16A—C16—H16B109.5
C4—C5—Br2121.2 (3)C11—C16—H16C109.5
C5—C6—C1121.8 (3)H16A—C16—H16C109.5
C5—C6—H6119.1H16B—C16—H16C109.5
C1—C6—H6119.1C14—C17—H17A109.5
C1—C7—S1114.7 (2)C14—C17—H17B109.5
C1—C7—H7A108.6H17A—C17—H17B109.5
S1—C7—H7A108.6C14—C17—H17C109.5
C1—C7—H7B108.6H17A—C17—H17C109.5
S1—C7—H7B108.6H17B—C17—H17C109.5
H7A—C7—H7B107.6C13—C18—H18A109.5
C9—C8—S1117.1 (2)C13—C18—H18B109.5
C9—C8—H8A108.0H18A—C18—H18B109.5
S1—C8—H8A108.0C13—C18—H18C109.5
C9—C8—H8B108.0H18A—C18—H18C109.5
S1—C8—H8B108.0H18B—C18—H18C109.5
H8A—C8—H8B107.3C12—C19—S2116.1 (2)
C14—C9—C10120.1 (3)C12—C19—H19A108.3
C14—C9—C8120.2 (3)S2—C19—H19A108.3
C10—C9—C8119.8 (3)C12—C19—H19B108.3
C11—C10—C9119.1 (3)S2—C19—H19B108.3
C11—C10—C15120.0 (3)H19A—C19—H19B107.4
C9—C10—C15120.9 (3)C4—C20—S2114.4 (2)
C12—C11—C10120.4 (3)C4—C20—H20A108.7
C12—C11—C16120.5 (3)S2—C20—H20A108.7
C10—C11—C16119.0 (3)C4—C20—H20B108.7
C11—C12—C13119.8 (3)S2—C20—H20B108.7
C11—C12—C19120.2 (3)H20A—C20—H20B107.6
C13—C12—C19119.9 (3)C7—S1—C8105.64 (18)
C14—C13—C12119.7 (3)C20—S2—C19105.24 (19)
C6—C1—C2—C38.7 (4)C9—C10—C11—C16177.5 (3)
C7—C1—C2—C3167.8 (3)C15—C10—C11—C164.6 (4)
C6—C1—C2—Br1173.4 (2)C10—C11—C12—C135.2 (4)
C7—C1—C2—Br110.1 (4)C16—C11—C12—C13176.0 (3)
C1—C2—C3—C42.1 (5)C10—C11—C12—C19175.0 (3)
Br1—C2—C3—C4179.9 (2)C16—C11—C12—C193.8 (4)
C2—C3—C4—C56.9 (5)C11—C12—C13—C145.7 (4)
C2—C3—C4—C20171.0 (3)C19—C12—C13—C14174.5 (3)
C3—C4—C5—C69.1 (5)C11—C12—C13—C18175.4 (3)
C20—C4—C5—C6168.6 (3)C19—C12—C13—C184.4 (4)
C3—C4—C5—Br2171.9 (2)C12—C13—C14—C90.4 (4)
C20—C4—C5—Br210.3 (4)C18—C13—C14—C9178.5 (3)
C4—C5—C6—C12.5 (5)C12—C13—C14—C17179.2 (3)
Br2—C5—C6—C1178.5 (2)C18—C13—C14—C172.0 (4)
C2—C1—C6—C56.5 (4)C10—C9—C14—C137.0 (4)
C7—C1—C6—C5170.2 (3)C8—C9—C14—C13174.0 (3)
C6—C1—C7—S146.5 (4)C10—C9—C14—C17172.5 (3)
C2—C1—C7—S1130.0 (3)C8—C9—C14—C176.4 (4)
S1—C8—C9—C1466.8 (4)C11—C12—C19—S270.2 (3)
S1—C8—C9—C10114.2 (3)C13—C12—C19—S2110.0 (3)
C14—C9—C10—C117.5 (4)C5—C4—C20—S2136.9 (3)
C8—C9—C10—C11173.5 (3)C3—C4—C20—S240.8 (4)
C14—C9—C10—C15170.4 (3)C1—C7—S1—C869.5 (3)
C8—C9—C10—C158.5 (4)C9—C8—S1—C758.3 (3)
C9—C10—C11—C121.4 (4)C4—C20—S2—C1971.1 (3)
C15—C10—C11—C12176.5 (3)C12—C19—S2—C2058.3 (3)

Experimental details

Crystal data
Chemical formulaC20H22Br2S2
Mr486.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.298 (3), 12.340 (2), 10.0160 (18)
β (°) 91.864 (3)
V3)1889.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12364, 3922, 2690
Rint0.075
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 0.94
No. of reflections3922
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.31

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to Xianggao Meng for the data collection.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationClément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, o528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Huo, Y., Wu, R., Li, J. & Ma, Y. (2008). Acta Cryst. E64, o650.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277–7285.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds