organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,14-Di­bromo-2,11-di­thia­[3.3]para­cyclo­phane

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: zhuxingxun1986@sina.com

(Received 30 June 2010; accepted 20 July 2010; online 24 July 2010)

In the title compound, C16H14Br2S2 [systematic name: 12,52-dibromo-2,7-dithia-1,5(1,4)-dibenzenaocta­phane], the cen­troids of the two benzene rings are separated by 3.313 (5) Å. The crystal packing exhibits weak inter­molecular S⋯S contacts of 3.538 (2) Å.

Related literature

For the preparation of the title compound, see: Wang et al. (2003[Wang, W.-L., Xu, J. & Lai, Y.-H. (2003). Org. Lett. 5, 2765-2768.], 2006[Wang, W.-L., Xu, J., Sun, Z., Zhang, X., Lu, Y. & Lai, Y.-H. (2006). Macromolecules, 39, 7277-7285.]). For a related structure, see: Huang et al. (2010[Huang, S. & Wang, Q. (2010). Acta Cryst. E66, o1993.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Br2S2

  • Mr = 430.21

  • Orthorhombic, P b c a

  • a = 9.0563 (11) Å

  • b = 13.8931 (17) Å

  • c = 24.641 (3) Å

  • V = 3100.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.49 mm−1

  • T = 298 K

  • 0.26 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.330, Tmax = 0.610

  • 21950 measured reflections

  • 3372 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.12

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 0.99

  • 3372 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a contribution to a structural study of dithia[3.3]paracyclophane derivatives with the bromine sustituents (Huang et al., 2010), herewith we present the crystal structure of the title compound (Fig. 1).

The short distance of 3.313 (5) Å between the centroids of two benzene rings is less than the normal packing distance (3.4 Å) between the aromatic rings in organic compounds, thus supporting potential transannular π-π interaction between the rings in the cyclophane unit.

Related literature top

For the preparation of the title compound, see: Wang et al. (2003, 2006). For a related structure, see: Huang et al. (2010).

Experimental top

The dithiaparacyclophanes were prepared by coupling the corresponding pair of dithiol and dibromide under high dilution conditions (Wang et al., 2003, 2006). A solution with equimolar amounts of the dithiol and the dibromide in degassed THF (500 ml) was added dropwise under N2 over 12 h to a refluxing solution of K2CO3 (5 equiv) in EtOH (1.2 L). After an additional 2 h at the reflux temperature, the mixture was cooled and the solvent were removed. The resulting residue was treated with CH2Cl2(300 ml) and water (300 ml).The organic phase was separated, the aqueous extracted with CH2Cl2 three times. The combined organic layers were dried over Na2SO4, then solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2 petroleum ether (1:1, v/v) as eluent.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H =0.97 Å) and Uiso(H) =1.2Ueq(C) for methylene, and (C—H =0.96 Å) and Uiso(H)=1.5Ueq(C) for methyl.

Structure description top

As a contribution to a structural study of dithia[3.3]paracyclophane derivatives with the bromine sustituents (Huang et al., 2010), herewith we present the crystal structure of the title compound (Fig. 1).

The short distance of 3.313 (5) Å between the centroids of two benzene rings is less than the normal packing distance (3.4 Å) between the aromatic rings in organic compounds, thus supporting potential transannular π-π interaction between the rings in the cyclophane unit.

For the preparation of the title compound, see: Wang et al. (2003, 2006). For a related structure, see: Huang et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.
12,52-dibromo-2,7-dithia-1,5(1,4)-dibenzenaoctaphane top
Crystal data top
C16H14Br2S2F(000) = 1696
Mr = 430.21Dx = 1.839 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5026 reflections
a = 9.0563 (11) Åθ = 2.8–25.5°
b = 13.8931 (17) ŵ = 5.49 mm1
c = 24.641 (3) ÅT = 298 K
V = 3100.4 (7) Å3Block, colourless
Z = 80.26 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX
diffractometer
3372 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.12
phi and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.330, Tmax = 0.610k = 1717
21950 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H14Br2S2V = 3100.4 (7) Å3
Mr = 430.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.0563 (11) ŵ = 5.49 mm1
b = 13.8931 (17) ÅT = 298 K
c = 24.641 (3) Å0.26 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX
diffractometer
3372 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2150 reflections with I > 2σ(I)
Tmin = 0.330, Tmax = 0.610Rint = 0.12
21950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.99Δρmax = 0.93 e Å3
3372 reflectionsΔρmin = 0.38 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.01106 (5)0.31316 (4)0.233829 (17)0.05380 (18)
Br20.18330 (6)0.72155 (4)0.04515 (2)0.0638 (2)
C10.0858 (4)0.4030 (3)0.13260 (15)0.0325 (9)
C20.0281 (4)0.3739 (3)0.16606 (15)0.0324 (9)
C30.1766 (4)0.3880 (3)0.15182 (16)0.0364 (9)
H30.25090.36940.17570.044*
C40.2127 (4)0.4289 (3)0.10301 (17)0.0364 (9)
C50.0981 (4)0.4501 (3)0.06696 (15)0.0397 (10)
H50.11970.47260.03230.048*
C60.0453 (4)0.4379 (3)0.08239 (15)0.0366 (9)
H60.11940.45400.05790.044*
C70.3717 (4)0.4516 (3)0.0900 (2)0.0507 (11)
H7A0.41120.39840.06900.061*
H7B0.42600.45360.12390.061*
C80.3707 (5)0.6542 (3)0.1030 (2)0.0527 (12)
H8A0.43140.64330.13480.063*
H8B0.39860.71600.08780.063*
C90.2122 (4)0.6589 (3)0.12027 (16)0.0380 (10)
C100.1679 (4)0.6251 (3)0.16986 (17)0.0420 (10)
H100.23850.61040.19600.050*
C110.0198 (4)0.6126 (3)0.18176 (16)0.0353 (9)
H110.00710.58760.21530.042*
C120.0886 (4)0.6365 (3)0.14498 (15)0.0342 (9)
C130.0416 (5)0.6791 (3)0.09759 (17)0.0379 (10)
C140.1044 (5)0.6900 (3)0.08435 (17)0.0432 (10)
H140.13100.71810.05150.052*
C150.2488 (4)0.6110 (3)0.15519 (18)0.0492 (11)
H15A0.29630.60220.12030.059*
H15B0.29550.66590.17250.059*
C160.2467 (4)0.4062 (3)0.15006 (17)0.0435 (10)
H16A0.27150.34610.16790.052*
H16B0.30840.41200.11810.052*
S10.41002 (13)0.56115 (8)0.05360 (5)0.0539 (3)
S20.28742 (12)0.50583 (8)0.19606 (5)0.0497 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0655 (3)0.0599 (3)0.0360 (3)0.0119 (2)0.0004 (2)0.0092 (2)
Br20.0722 (4)0.0703 (4)0.0490 (3)0.0220 (3)0.0132 (2)0.0041 (3)
C10.034 (2)0.030 (2)0.033 (2)0.0036 (17)0.0022 (16)0.0072 (17)
C20.037 (2)0.033 (2)0.0276 (19)0.0034 (17)0.0013 (16)0.0008 (16)
C30.039 (2)0.032 (2)0.038 (2)0.0051 (18)0.0051 (18)0.0020 (18)
C40.035 (2)0.028 (2)0.046 (2)0.0032 (18)0.0047 (17)0.0039 (18)
C50.050 (3)0.039 (2)0.030 (2)0.006 (2)0.0070 (18)0.0010 (18)
C60.032 (2)0.043 (2)0.035 (2)0.0051 (19)0.0032 (17)0.0034 (19)
C70.034 (2)0.046 (3)0.072 (3)0.004 (2)0.014 (2)0.002 (2)
C80.040 (3)0.051 (3)0.067 (3)0.006 (2)0.016 (2)0.010 (2)
C90.039 (2)0.027 (2)0.047 (2)0.0050 (18)0.0051 (19)0.0080 (18)
C100.042 (3)0.041 (2)0.042 (2)0.003 (2)0.0049 (19)0.009 (2)
C110.039 (2)0.036 (2)0.031 (2)0.0020 (18)0.0074 (17)0.0042 (17)
C120.036 (2)0.033 (2)0.034 (2)0.0043 (18)0.0072 (17)0.0033 (17)
C130.045 (2)0.031 (2)0.038 (2)0.0117 (19)0.0023 (18)0.0021 (18)
C140.055 (3)0.034 (2)0.040 (2)0.002 (2)0.011 (2)0.0012 (19)
C150.038 (2)0.054 (3)0.056 (3)0.010 (2)0.007 (2)0.004 (2)
C160.033 (2)0.048 (3)0.049 (2)0.005 (2)0.002 (2)0.006 (2)
S10.0477 (7)0.0482 (7)0.0658 (8)0.0043 (6)0.0279 (6)0.0069 (6)
S20.0453 (7)0.0557 (7)0.0481 (6)0.0039 (6)0.0205 (5)0.0097 (6)
Geometric parameters (Å, º) top
Br1—C21.905 (4)C8—H8A0.9700
Br2—C131.914 (4)C8—H8B0.9700
C1—C61.379 (5)C9—C101.369 (6)
C1—C21.381 (5)C9—C141.387 (6)
C1—C161.519 (5)C10—C111.384 (5)
C2—C31.403 (5)C10—H100.9300
C3—C41.370 (5)C11—C121.377 (5)
C3—H30.9300C11—H110.9300
C4—C51.398 (5)C12—C131.377 (5)
C4—C71.508 (5)C12—C151.514 (6)
C5—C61.364 (5)C13—C141.370 (6)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—S21.809 (5)
C7—S11.800 (4)C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
C7—H7B0.9700C16—S21.827 (4)
C8—C91.498 (6)C16—H16A0.9700
C8—S11.811 (4)C16—H16B0.9700
C6—C1—C2116.1 (3)C10—C9—C8121.3 (4)
C6—C1—C16119.9 (4)C14—C9—C8120.5 (4)
C2—C1—C16123.8 (3)C9—C10—C11121.1 (4)
C1—C2—C3121.7 (3)C9—C10—H10119.5
C1—C2—Br1120.9 (3)C11—C10—H10119.5
C3—C2—Br1117.4 (3)C12—C11—C10121.4 (4)
C4—C3—C2120.4 (4)C12—C11—H11119.3
C4—C3—H3119.8C10—C11—H11119.3
C2—C3—H3119.8C11—C12—C13116.2 (3)
C3—C4—C5117.9 (4)C11—C12—C15121.2 (4)
C3—C4—C7120.1 (4)C13—C12—C15122.5 (4)
C5—C4—C7122.0 (4)C14—C13—C12123.2 (4)
C6—C5—C4120.3 (4)C14—C13—Br2116.9 (3)
C6—C5—H5119.9C12—C13—Br2119.8 (3)
C4—C5—H5119.9C13—C14—C9119.5 (4)
C5—C6—C1123.2 (4)C13—C14—H14120.2
C5—C6—H6118.4C9—C14—H14120.2
C1—C6—H6118.4C12—C15—S2117.8 (3)
C4—C7—S1117.8 (3)C12—C15—H15A107.9
C4—C7—H7A107.9S2—C15—H15A107.9
S1—C7—H7A107.9C12—C15—H15B107.9
C4—C7—H7B107.9S2—C15—H15B107.9
S1—C7—H7B107.9H15A—C15—H15B107.2
H7A—C7—H7B107.2C1—C16—S2113.0 (3)
C9—C8—S1114.2 (3)C1—C16—H16A109.0
C9—C8—H8A108.7S2—C16—H16A109.0
S1—C8—H8A108.7C1—C16—H16B109.0
C9—C8—H8B108.7S2—C16—H16B109.0
S1—C8—H8B108.7H16A—C16—H16B107.8
H8A—C8—H8B107.6C7—S1—C8103.3 (2)
C10—C9—C14118.0 (4)C15—S2—C16103.2 (2)
C6—C1—C2—C36.1 (5)C9—C10—C11—C122.1 (6)
C16—C1—C2—C3168.6 (4)C10—C11—C12—C134.2 (6)
C6—C1—C2—Br1174.1 (3)C10—C11—C12—C15172.1 (4)
C16—C1—C2—Br111.2 (5)C11—C12—C13—C146.0 (6)
C1—C2—C3—C41.9 (6)C15—C12—C13—C14170.3 (4)
Br1—C2—C3—C4178.3 (3)C11—C12—C13—Br2176.7 (3)
C2—C3—C4—C54.0 (6)C15—C12—C13—Br27.0 (5)
C2—C3—C4—C7174.8 (4)C12—C13—C14—C91.4 (6)
C3—C4—C5—C65.7 (6)Br2—C13—C14—C9178.8 (3)
C7—C4—C5—C6173.1 (4)C10—C9—C14—C135.1 (6)
C4—C5—C6—C11.4 (6)C8—C9—C14—C13169.4 (4)
C2—C1—C6—C54.4 (5)C11—C12—C15—S228.6 (5)
C16—C1—C6—C5170.4 (4)C13—C12—C15—S2147.5 (3)
C3—C4—C7—S1141.7 (3)C6—C1—C16—S2100.7 (4)
C5—C4—C7—S137.1 (5)C2—C1—C16—S273.7 (5)
S1—C8—C9—C10104.9 (4)C4—C7—S1—C870.3 (4)
S1—C8—C9—C1469.4 (5)C9—C8—S1—C764.4 (4)
C14—C9—C10—C116.8 (6)C12—C15—S2—C1674.8 (3)
C8—C9—C10—C11167.6 (4)C1—C16—S2—C1562.9 (3)

Experimental details

Crystal data
Chemical formulaC16H14Br2S2
Mr430.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)9.0563 (11), 13.8931 (17), 24.641 (3)
V3)3100.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)5.49
Crystal size (mm)0.26 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.330, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
21950, 3372, 2150
Rint0.12
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 0.99
No. of reflections3372
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.38

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to Xiang Gao Meng for the data collection.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, S. & Wang, Q. (2010). Acta Cryst. E66, o1993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W.-L., Xu, J. & Lai, Y.-H. (2003). Org. Lett. 5, 2765–2768.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, W.-L., Xu, J., Sun, Z., Zhang, X., Lu, Y. & Lai, Y.-H. (2006). Macromolecules, 39, 7277–7285.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds