organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy­methyl-1-(4-meth­­oxy­phen­yl)imidazolidine-2,4-dione

aSchool of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
*Correspondence e-mail: wangrunling2008@yahoo.cn

(Received 4 July 2010; accepted 7 July 2010; online 14 July 2010)

In the title mol­ecule, C11H12N2O4, the dihedral angle between the benzene ring and imidazolidine ring is 7.1 (5)°. In the crystal structure, the hy­droxy groups are involved in the formation of inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules related by translation into C(2) chains along the b axis.

Related literature

For related structures, see: Gerdil (1960[Gerdil, R. (1960). Acta Cryst. 13, 165-166.]); Sun et al. (2010[Sun, S.-X., Zhang, H., Cheng, X.-C., Wang, R.-L. & Dong, W.-L. (2010). Acta Cryst. E66, o1308.]). For details of the synthesis, see Niwata et al. (1997[Niwata, S., Fukami, H., Sumida, M., Ito, A., Kakutani, S., Saitoh, M., Suzuki, K., Imoto, M., Shibata, H., Imajo, S., Kiso, Y., Tanaka, T., Nakazato, H., Ishihara, T., Takai, S., Yamamoto, D., Shiota, N., Miyazaki, M., Okunishi, H., Kinoshita, A., Urata, H. & Arakawa, K. (1997). J. Med. Chem. 40, 2156-2163.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O4

  • Mr = 236.23

  • Monoclinic, P 21 /c

  • a = 21.280 (4) Å

  • b = 6.3309 (13) Å

  • c = 7.8813 (16) Å

  • β = 100.52 (3)°

  • V = 1043.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.986

  • 7503 measured reflections

  • 1841 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.09

  • 1841 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.92 2.7346 (17) 174
Symmetry code: (i) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the research of novel antidiabetic agents, we found that imidazolidine-2,4-dione derivatives had potent antidiabetic activities. The crystal structure of the title compound was determined to investigate the relationship between structure and antidiabetic activity.

In the title compound, all bond lengths and angles are normal and in a good agreement with those reported previously (Gerdil, 1960; Sun et al., 2010). The dihedral angle between the benzene ring (C2—C7) and imidazolidine ring (C9—C10/N1/N2) is 7.1 (5)°. In the crystal structure, the hydroxy groups are involved in formaton of intermolecular O—H···O hydrogen bonds (Table 1), which link the molecules related by translation along axis b into linear chains.

Related literature top

For related structures, see: Gerdil (1960); Sun et al. (2010). For details of the synthesis, see Niwata et al. (1997).

Experimental top

A mixture of 1-(4-methoxyphenyl)imidazolidine-2,4-dione (0.27 g, 1.32 mmol), 37% formaldehyde (2.1 ml, 27.9 mmol), and methanol (8 ml) was stirred at 70 ° C for 2 h. After the reaction, water (8 ml) was added and the precipitate was filtered and washed with water to give 3-(hydroxymethyl)-1-(4-methoxyphenyl)imidazolidine-2,4-dione (0.27 g, 90% yield) (Niwata et al., 1997). Crystals suitable for X-ray diffraction were obtained through slow evaporation of a solution of the pure title compound in dichloromethane/methanol (1/1 by volume).

Refinement top

All H atoms were found on difference maps, with C—H = 0.95–0.99 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms and 1.5Ueq(C,O) for the methyl and hydroxy H atoms.

Structure description top

During the research of novel antidiabetic agents, we found that imidazolidine-2,4-dione derivatives had potent antidiabetic activities. The crystal structure of the title compound was determined to investigate the relationship between structure and antidiabetic activity.

In the title compound, all bond lengths and angles are normal and in a good agreement with those reported previously (Gerdil, 1960; Sun et al., 2010). The dihedral angle between the benzene ring (C2—C7) and imidazolidine ring (C9—C10/N1/N2) is 7.1 (5)°. In the crystal structure, the hydroxy groups are involved in formaton of intermolecular O—H···O hydrogen bonds (Table 1), which link the molecules related by translation along axis b into linear chains.

For related structures, see: Gerdil (1960); Sun et al. (2010). For details of the synthesis, see Niwata et al. (1997).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.
3-Hydroxymethyl-1-(4-methoxyphenyl)imidazolidine-2,4-dione top
Crystal data top
C11H12N2O4F(000) = 496
Mr = 236.23Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2988 reflections
a = 21.280 (4) Åθ = 2.0–27.9°
b = 6.3309 (13) ŵ = 0.12 mm1
c = 7.8813 (16) ÅT = 113 K
β = 100.52 (3)°Platelet, colorless
V = 1043.9 (4) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1841 independent reflections
Radiation source: rotating anode1540 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω and φ scansh = 2523
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.977, Tmax = 0.986l = 79
7503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0281P]
where P = (Fo2 + 2Fc2)/3
1841 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H12N2O4V = 1043.9 (4) Å3
Mr = 236.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.280 (4) ŵ = 0.12 mm1
b = 6.3309 (13) ÅT = 113 K
c = 7.8813 (16) Å0.20 × 0.18 × 0.12 mm
β = 100.52 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1841 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1540 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.986Rint = 0.042
7503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
1841 reflectionsΔρmin = 0.23 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06206 (5)0.43299 (18)0.14946 (13)0.0262 (3)
O20.31479 (5)0.92240 (17)0.56402 (13)0.0239 (3)
O30.41891 (6)0.98695 (18)0.93286 (14)0.0310 (3)
H30.42471.11160.91190.046*
O40.43355 (5)0.41010 (18)0.88227 (13)0.0263 (3)
N10.29378 (6)0.5666 (2)0.60155 (15)0.0189 (3)
N20.38408 (6)0.7058 (2)0.74760 (15)0.0198 (3)
C10.02888 (8)0.2377 (3)0.1525 (2)0.0333 (4)
H1A0.05360.12590.11510.050*
H1B0.01180.24630.07670.050*
H1C0.02250.20950.26790.050*
C20.11895 (7)0.4547 (3)0.26381 (19)0.0207 (4)
C30.14827 (7)0.6511 (3)0.26585 (19)0.0229 (4)
H3A0.12920.75680.19210.027*
C40.20547 (7)0.6918 (3)0.37598 (19)0.0216 (4)
H40.22430.82440.37680.026*
C50.23490 (7)0.5332 (3)0.48603 (18)0.0188 (4)
C60.20577 (7)0.3369 (3)0.48223 (18)0.0208 (4)
H60.22520.23020.55440.025*
C70.14802 (7)0.2966 (3)0.3726 (2)0.0234 (4)
H70.12900.16440.37220.028*
C80.32780 (7)0.7496 (2)0.62781 (19)0.0188 (4)
C90.38857 (7)0.4969 (3)0.78904 (18)0.0208 (4)
C100.32821 (7)0.3927 (3)0.69862 (18)0.0208 (4)
H10A0.33740.28130.62220.025*
H10B0.30410.33420.78070.025*
C110.43450 (7)0.8604 (3)0.79990 (19)0.0237 (4)
H11A0.47480.78870.84000.028*
H11B0.43920.94820.70210.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (6)0.0278 (7)0.0292 (6)0.0026 (5)0.0022 (5)0.0004 (5)
O20.0255 (6)0.0176 (6)0.0282 (6)0.0021 (5)0.0038 (5)0.0026 (5)
O30.0468 (8)0.0223 (7)0.0258 (6)0.0109 (6)0.0117 (5)0.0066 (5)
O40.0242 (6)0.0259 (7)0.0264 (6)0.0028 (5)0.0021 (5)0.0016 (5)
N10.0182 (7)0.0165 (7)0.0207 (7)0.0004 (5)0.0000 (5)0.0008 (5)
N20.0198 (7)0.0196 (7)0.0196 (7)0.0036 (5)0.0026 (5)0.0025 (5)
C10.0251 (9)0.0371 (11)0.0347 (9)0.0111 (8)0.0024 (7)0.0010 (8)
C20.0170 (8)0.0262 (9)0.0189 (8)0.0003 (6)0.0029 (6)0.0035 (7)
C30.0215 (8)0.0233 (9)0.0234 (8)0.0019 (7)0.0028 (6)0.0033 (7)
C40.0213 (8)0.0189 (8)0.0247 (8)0.0008 (6)0.0046 (6)0.0014 (7)
C50.0180 (8)0.0214 (8)0.0175 (8)0.0004 (6)0.0048 (6)0.0021 (6)
C60.0207 (8)0.0195 (9)0.0216 (8)0.0005 (6)0.0024 (6)0.0019 (6)
C70.0231 (8)0.0208 (9)0.0262 (8)0.0049 (7)0.0040 (6)0.0017 (7)
C80.0188 (8)0.0205 (8)0.0182 (8)0.0021 (6)0.0063 (6)0.0023 (6)
C90.0224 (8)0.0222 (9)0.0182 (8)0.0012 (7)0.0049 (6)0.0027 (6)
C100.0222 (8)0.0181 (8)0.0211 (8)0.0004 (6)0.0017 (6)0.0001 (6)
C110.0206 (8)0.0267 (9)0.0235 (8)0.0069 (7)0.0032 (6)0.0034 (7)
Geometric parameters (Å, º) top
O1—C21.3778 (18)C2—C71.388 (2)
O1—C11.426 (2)C2—C31.390 (2)
O2—C81.2147 (19)C3—C41.384 (2)
O3—C111.406 (2)C3—H3A0.9300
O3—H30.8200C4—C51.398 (2)
O4—C91.2252 (19)C4—H40.9300
N1—C81.3614 (19)C5—C61.387 (2)
N1—C51.4238 (19)C6—C71.391 (2)
N1—C101.460 (2)C6—H60.9300
N2—C91.361 (2)C7—H70.9300
N2—C81.411 (2)C9—C101.503 (2)
N2—C111.4556 (19)C10—H10A0.9700
C1—H1A0.9600C10—H10B0.9700
C1—H1B0.9600C11—H11A0.9700
C1—H1C0.9600C11—H11B0.9700
C2—O1—C1117.01 (13)C4—C5—N1122.16 (14)
C11—O3—H3109.5C5—C6—C7121.23 (15)
C8—N1—C5127.24 (13)C5—C6—H6119.4
C8—N1—C10111.11 (12)C7—C6—H6119.4
C5—N1—C10121.46 (13)C2—C7—C6119.68 (15)
C9—N2—C8111.44 (12)C2—C7—H7120.2
C9—N2—C11124.73 (13)C6—C7—H7120.2
C8—N2—C11123.31 (13)O2—C8—N1128.95 (14)
O1—C1—H1A109.5O2—C8—N2123.76 (14)
O1—C1—H1B109.5N1—C8—N2107.30 (13)
H1A—C1—H1B109.5O4—C9—N2126.35 (15)
O1—C1—H1C109.5O4—C9—C10126.42 (16)
H1A—C1—H1C109.5N2—C9—C10107.23 (12)
H1B—C1—H1C109.5N1—C10—C9102.77 (13)
O1—C2—C7124.84 (15)N1—C10—H10A111.2
O1—C2—C3115.85 (14)C9—C10—H10A111.2
C7—C2—C3119.31 (15)N1—C10—H10B111.2
C4—C3—C2121.01 (15)C9—C10—H10B111.2
C4—C3—H3A119.5H10A—C10—H10B109.1
C2—C3—H3A119.5O3—C11—N2109.40 (12)
C3—C4—C5119.91 (15)O3—C11—H11A109.8
C3—C4—H4120.0N2—C11—H11A109.8
C5—C4—H4120.0O3—C11—H11B109.8
C6—C5—C4118.84 (14)N2—C11—H11B109.8
C6—C5—N1119.00 (14)H11A—C11—H11B108.2
C1—O1—C2—C74.5 (2)C10—N1—C8—O2177.46 (15)
C1—O1—C2—C3176.06 (14)C5—N1—C8—N2177.40 (13)
O1—C2—C3—C4179.71 (13)C10—N1—C8—N22.44 (17)
C7—C2—C3—C40.8 (2)C9—N2—C8—O2175.85 (14)
C2—C3—C4—C50.7 (2)C11—N2—C8—O23.8 (2)
C3—C4—C5—C60.0 (2)C9—N2—C8—N14.06 (17)
C3—C4—C5—N1179.89 (14)C11—N2—C8—N1176.11 (12)
C8—N1—C5—C6177.26 (14)C8—N2—C9—O4175.87 (14)
C10—N1—C5—C68.2 (2)C11—N2—C9—O44.0 (2)
C8—N1—C5—C42.8 (2)C8—N2—C9—C103.93 (17)
C10—N1—C5—C4171.66 (14)C11—N2—C9—C10175.84 (12)
C4—C5—C6—C70.5 (2)C8—N1—C10—C90.15 (15)
N1—C5—C6—C7179.56 (14)C5—N1—C10—C9175.45 (13)
O1—C2—C7—C6179.69 (13)O4—C9—C10—N1177.52 (15)
C3—C2—C7—C60.2 (2)N2—C9—C10—N12.27 (15)
C5—C6—C7—C20.4 (2)C9—N2—C11—O3105.04 (16)
C5—N1—C8—O22.5 (3)C8—N2—C11—O383.98 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.922.7346 (17)174
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H12N2O4
Mr236.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)21.280 (4), 6.3309 (13), 7.8813 (16)
β (°) 100.52 (3)
V3)1043.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.977, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7503, 1841, 1540
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.09
No. of reflections1841
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.922.7346 (17)174.0
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant No. 20972112), the Key Program of Tianjin Natural Science Foundation (grant No. 09JCZDJC21600), the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant No. 20091202110010) and the Tianjin Medical University Science Foundation (grant No. 2009ky16).

References

First citationGerdil, R. (1960). Acta Cryst. 13, 165–166.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNiwata, S., Fukami, H., Sumida, M., Ito, A., Kakutani, S., Saitoh, M., Suzuki, K., Imoto, M., Shibata, H., Imajo, S., Kiso, Y., Tanaka, T., Nakazato, H., Ishihara, T., Takai, S., Yamamoto, D., Shiota, N., Miyazaki, M., Okunishi, H., Kinoshita, A., Urata, H. & Arakawa, K. (1997). J. Med. Chem. 40, 2156–2163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S.-X., Zhang, H., Cheng, X.-C., Wang, R.-L. & Dong, W.-L. (2010). Acta Cryst. E66, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds