organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Vadimezan: 2-(5,6-di­methyl-9-oxo-9H-xanthen-4-yl)acetic acid

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: huyang@mail.hz.zj.cn

(Received 11 July 2010; accepted 15 July 2010; online 21 July 2010)

In the title mol­ecule, C17H14O4, the C atom of the carboxyl group deviates by 1.221 (3) Å from the plane [maximum deviation = 0.0122(2) Å] of the tricycic ring system. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, and ππ inter­actions [centroid–centroid distances = 3.491 (3), 3.591 (3), 3.639 (3) and 3.735 (3) Å] link these dimers into layers parallel to the ac plane. Weak inter­molecular C—H⋯O inter­actions further consolidate the crystal packing.

Related literature

For general background to and recent reviews of vascular-disrupting agents and the development of Vadimezan (DMXAA, ASA404), a promising small-mol­ecule tumor-vascular disrupting agent in phase III clinical trials, see: McKeage & Baguley (2010[McKeage, M. J. & Baguley, B. C. (2010). Cancer, 116, 1859-1871.]); Head & Jameson (2010[Head, M. & Jameson, M. B. (2010). Expert Opin. Inv. Drug. 19, 295-304.]); Ching (2008[Ching, L. M. (2008). Drugs Future, 33, 561-569.]); Patterson & Rustin (2007[Patterson, D. A. & Rustin, G. J. S. (2007). Clin. Oncol. 19, 443-456.]); Hinnen & Eskens (2007[Hinnen, P. & Eskens, F. A. L. M. (2007). Brit. J. Cancer, 96, 1159-1165.]); Lippert (2007[Lippert, J. W. (2007). Bioorg. Med. Chem. 15, 605-615.]). For a recent clinical study of Vadimezan, see: Pili et al. (2010[Pili, R., Rosenthal, M. A., Mainwaring, P. N., Van Hazel, G., Srinivas, S., Dreicer, R., Goel, S., Leach, J., Wong, S. & Clingan, P. (2010). Clin. Cancer Res. 16, 2906-2914.]); McKeage et al. (2008[McKeage, M. J., Von Pawel, J., Reck, M., Jameson, M. B., Rosenthal, M. A., Sullivan, R., Gibbs, D., Mainwaring, P. N., Serke, M., Lafitte, J. J., Chouaid, C., Freitag, L. & Quoix, E. (2008). Br. J. Cancer, 99, 2006-2012.], 2009[McKeage, M. J., Reck, M., Jameson, M. B., Rosenthal, M. A., Gibbs, D., Mainwaring, P. N., Freitag, L., Sullivan, R. & Von Pawel, J. (2009). Lung Cancer, 65, 192-197.]). For studies of the mol­ecular mechanisms and signal pathways of Vadimezan, see: Zhan et al. (2010[Zhan, X., Finlay, G., Ross, J. & Baguley, B. (2010). Cell. Oncol. 32, 187.]); Cheng et al. (2010[Cheng, G. J., Sun, J., Fridlender, Z. G., Wang, L. C. S., Ching, L. M. & Albelda, S. M. (2010). J. Biol. Chem. 285, 10553-10562.]); Roberts et al. (2008[Roberts, Z. J., Ching, L. M. & Vogel, S. N. (2008). J. Interf. Cytok. Res. 28, 133-139.]). For the biological and pharmacological activity of Vadimezan analogues with structure–activity relationships, see: Gobbi et al. (2006[Gobbi, S., Belluti, F., Bisi, A., Piazzi, L., Rampa, A., Zampiron, A., Barbera, M., Caputo, A. & Carrara, M. (2006). Bioorg. Med. Chem. 14, 4101-4109.]); Woon et al. (2005[Woon, S. T., Reddy, C. B., Drummond, C. J., Schooltink, M. A., Baguley, B. C., Kieda, C. & Ching, L. M. (2005). Oncol. Res. 15, 351-364.]). For the synthesis and spectroscopic data for Vadimezan, see: Yang & Denny (2009[Yang, S. J. & Denny, W. A. (2009). Tetrahedron Lett. 50, 3945-3947.]); Atwell et al. (2002[Atwell, G. J., Yang, S. J. & Denny, W. A. (2002). Eur. J. Med. Chem. 37, 825-828.]). For related xanthone structures, see: Yu et al. (2008[Yu, P., Shen, X., Hu, C., Meehan, E. J. & Chen, L. (2008). Acta Cryst. E64, o651-o652.]); Zhang et al. (2007[Zhang, H.-F., Sun, B.-S., Zhao, X.-H. & Yan, F.-Y. (2007). Acta Cryst. E63, o863-o864.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O4

  • Mr = 282.28

  • Triclinic, [P \overline 1]

  • a = 6.7854 (19) Å

  • b = 9.826 (3) Å

  • c = 10.532 (3) Å

  • α = 71.435 (7)°

  • β = 82.741 (9)°

  • γ = 83.142 (9)°

  • V = 658.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 163 K

  • 0.50 × 0.50 × 0.37 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 6284 measured reflections

  • 2955 independent reflections

  • 2304 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.00

  • 2955 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O3iii 1.00 (2) 1.63 (2) 2.633 (1) 173.25 (2)
C16—H16B⋯O4iv 0.99 2.52 3.460 (1) 158 (1)
Symmetry codes: (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC. (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tumor vascular disrupting agents (VDA) cause the established vascular structure inside a solid tumor to collapse, depriving the tumor of blood, oxygen and nutrients it needs to survive (McKeage et al., 2010; Head et al., 2010; Ching, 2008; Patterson et al., 2007; Hinnen et al., 2007; Lippert, 2007). A number of new drug-based VDAs have been developed that are believed to be highly efficient, low toxic, and several of them are currently undergoing clinical trials, among which Vadimezan is the most advanced in Phase III clinical development (Pili et al., 2010; McKeage et al., 2009; McKeage et al., 2008). The study of antitumor mechanisms and signal pathways of Vadimezan is carried out (Zhan et al., 2010; Cheng et al., 2010; Roberts et al., 2008), as well as the structure modification of xanthones (Gobbi et al., 2006; Woon et al., 2005).

The molecular structure of Vadimezan is very important and necessary in understanding of the compound and may help to further elucidate its antivascular effect for the treatment of human cancer. Its crystal structure is reported for the first time in this paper. The structure (Figure 1) is similar to other xanthones reported with an essential planar three-ring skeleton and the C atom of the carboxyl group deviates at 1.221 (3) Å from the tricycle plane. In the crystal structure, intermolecular O—H···O (Table 2) hydrogen bonds link the molecules into centrosymmetric dimers, and π-π interactions (Table 1) link these dimers into layers parallel to ac plane. Weak intermolecular C—H···O interactions (Table 2) consolidate further the crystal packing (Fig. 2).

Related literature top

For general background to and recent reviews of vascular-disrupting agents and the development of Vadimezan (DMXAA, ASA404), a promising small-molecule tumor-vascular disrupting agent in phase III clinical trials, see: McKeage et al. (2010); Head et al. (2010); Ching (2008); Patterson et al. (2007); Hinnen et al. (2007); Lippert (2007). For a recent clinical study of Vadimezan, see: Pili et al. (2010); McKeage et al. (2008, 2009). For studies of the molecular mechanisms and signal pathways of Vadimezan, see: Zhan et al. (2010); Cheng et al. (2010); Roberts et al. (2008). For the biological and pharmacological activity of Vadimezan analogues with structure–activity relationships, see: Gobbi et al. (2006); Woon et al. (2005). For the synthesis and spectroscopic data for Vadimezan, see: Yang et al. (2009); Atwell et al. (2002). For related xanthone structures, see: Yu et al. (2008); Zhang et al. (2007).

Experimental top

Vadimezan was prepared from 3,4-dimethylanthranilic acid according to literature method (Atwell et al., 2002). Diazotization of 3,4-dimethylanthranilic acid with NaNO2 and then treatment with KI led to 3,4-dimethyl-2-iodobenzoic acid, which was coupled with 2-hydroxyphenylacetic acid catalyzed by TDA-1 and Cu(I) in dried DMSO to obtain 2-[2-(carboxylmethyl)phenoxy]-3,4-dimethylbenzoic acid. Finally, ring closure in sulfuric acid led to 5,6-dimethyl-9-oxoxanthene-4-acetic acid: white solid; mp: 529–532 K; PHPLC 98.2%; IR νmax (KBr)/cm-1: 2970, 1708, 1650, 1602, 1411, 1330, 1212, 768; 1H NMR (DMSO-d6, 500 MHz) δ: 12.60 (s, 1H, COOH), 8.07 (dd, J1 = 1.5 Hz, J2 = 8.0 Hz, 1H, Ar), 7.89 (d, J = 8.0 Hz, 1H, Ar), 7.78 (dd, J1 = 1.3 Hz, J2 = 7.3 Hz, 1H, Ar), 7.40 (t, J = 7.5 Hz, 1H, Ar), 7.24 (d, J = 8.5 Hz, 1H, Ar), 3.95 (s, 2H, Ar—CH2), 2.39 (s, 3H, Ar—CH3), 2.36 (s, 3H, Ar—CH3); EIMS m/z(%): 282(M+, 77), 238 (42), 237 (100), 236 (26), 223 (17), 209 (37), 195 (12), 165 (28).

Refinement top

H atom attached to carboxyl O atom was located in a difference map and refined with bond restraint O—H = 1.00 (2) Å. C-bound H atoms were positioned geometrically (C—H 0.95 - 0.99 Å). All H atoms were refined as riding, with Uiso(H) = 1.2 - 1.5 Ueq of the parent atoms. Hydrogen atoms attached to C14 are disordered with a refined site occupancy factor 0.50 for each H14A, H14B, H14C, H14D, H14E and H14F.

Structure description top

Tumor vascular disrupting agents (VDA) cause the established vascular structure inside a solid tumor to collapse, depriving the tumor of blood, oxygen and nutrients it needs to survive (McKeage et al., 2010; Head et al., 2010; Ching, 2008; Patterson et al., 2007; Hinnen et al., 2007; Lippert, 2007). A number of new drug-based VDAs have been developed that are believed to be highly efficient, low toxic, and several of them are currently undergoing clinical trials, among which Vadimezan is the most advanced in Phase III clinical development (Pili et al., 2010; McKeage et al., 2009; McKeage et al., 2008). The study of antitumor mechanisms and signal pathways of Vadimezan is carried out (Zhan et al., 2010; Cheng et al., 2010; Roberts et al., 2008), as well as the structure modification of xanthones (Gobbi et al., 2006; Woon et al., 2005).

The molecular structure of Vadimezan is very important and necessary in understanding of the compound and may help to further elucidate its antivascular effect for the treatment of human cancer. Its crystal structure is reported for the first time in this paper. The structure (Figure 1) is similar to other xanthones reported with an essential planar three-ring skeleton and the C atom of the carboxyl group deviates at 1.221 (3) Å from the tricycle plane. In the crystal structure, intermolecular O—H···O (Table 2) hydrogen bonds link the molecules into centrosymmetric dimers, and π-π interactions (Table 1) link these dimers into layers parallel to ac plane. Weak intermolecular C—H···O interactions (Table 2) consolidate further the crystal packing (Fig. 2).

For general background to and recent reviews of vascular-disrupting agents and the development of Vadimezan (DMXAA, ASA404), a promising small-molecule tumor-vascular disrupting agent in phase III clinical trials, see: McKeage et al. (2010); Head et al. (2010); Ching (2008); Patterson et al. (2007); Hinnen et al. (2007); Lippert (2007). For a recent clinical study of Vadimezan, see: Pili et al. (2010); McKeage et al. (2008, 2009). For studies of the molecular mechanisms and signal pathways of Vadimezan, see: Zhan et al. (2010); Cheng et al. (2010); Roberts et al. (2008). For the biological and pharmacological activity of Vadimezan analogues with structure–activity relationships, see: Gobbi et al. (2006); Woon et al. (2005). For the synthesis and spectroscopic data for Vadimezan, see: Yang et al. (2009); Atwell et al. (2002). For related xanthone structures, see: Yu et al. (2008); Zhang et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown with 30% probability displacement ellipsoids. One component of rotationally disordered methyl group (C14) is shown.
[Figure 2] Fig. 2. A portion of the packing diagram of (I) showing intermolecular hydrogen bonds as dashed lines.
2-(5,6-dimethyl-9-oxo-9H-xanthen-4-yl)acetic acid top
Crystal data top
C17H14O4Z = 2
Mr = 282.28F(000) = 296
Triclinic, P1Dx = 1.425 Mg m3
a = 6.7854 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.826 (3) ÅCell parameters from 1944 reflections
c = 10.532 (3) Åθ = 3.0–27.5°
α = 71.435 (7)°µ = 0.10 mm1
β = 82.741 (9)°T = 163 K
γ = 83.142 (9)°Block, colorless
V = 658.0 (3) Å30.50 × 0.50 × 0.37 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2304 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
Detector resolution: 28.5714 pixels mm-1h = 88
phi and ω scansk = 1112
6284 measured reflectionsl = 1313
2955 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.226P]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H14O4γ = 83.142 (9)°
Mr = 282.28V = 658.0 (3) Å3
Triclinic, P1Z = 2
a = 6.7854 (19) ÅMo Kα radiation
b = 9.826 (3) ŵ = 0.10 mm1
c = 10.532 (3) ÅT = 163 K
α = 71.435 (7)°0.50 × 0.50 × 0.37 mm
β = 82.741 (9)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2304 reflections with I > 2σ(I)
6284 measured reflectionsRint = 0.018
2955 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.26 e Å3
2955 reflectionsΔρmin = 0.17 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.21097 (13)0.40487 (9)0.72385 (9)0.0215 (2)
O20.36821 (16)0.20951 (10)0.43040 (10)0.0335 (3)
O30.49314 (15)0.35197 (11)0.95899 (10)0.0312 (2)
O40.23835 (16)0.47712 (12)1.03729 (11)0.0361 (3)
C10.3402 (2)0.03641 (14)0.70661 (15)0.0278 (3)
H10.37960.01440.64310.033*
C20.3195 (2)0.03755 (15)0.84129 (16)0.0330 (3)
H20.34340.13950.87100.040*
C30.2632 (2)0.03676 (15)0.93484 (15)0.0306 (3)
H30.24940.01591.02790.037*
C40.2271 (2)0.18497 (14)0.89551 (14)0.0252 (3)
C50.18653 (18)0.63568 (13)0.56645 (13)0.0208 (3)
C60.20182 (18)0.72389 (13)0.43318 (13)0.0221 (3)
C70.25597 (19)0.66243 (14)0.32918 (13)0.0248 (3)
H70.26640.72330.23860.030*
C80.29413 (19)0.51639 (14)0.35551 (13)0.0238 (3)
H80.33010.47720.28330.029*
C90.32191 (19)0.26831 (14)0.51829 (13)0.0232 (3)
C100.30347 (19)0.18691 (14)0.66213 (13)0.0223 (3)
C110.24803 (18)0.25830 (13)0.75729 (13)0.0212 (3)
C120.22678 (17)0.48664 (13)0.59068 (12)0.0188 (3)
C130.28044 (18)0.42500 (13)0.48780 (13)0.0202 (3)
C140.1303 (2)0.69521 (15)0.68242 (14)0.0298 (3)
H14A0.12790.61590.76710.036*0.50
H14B0.00200.74770.67340.036*0.50
H14C0.22840.76080.68230.036*0.50
H14D0.10840.80040.64810.036*0.50
H14E0.23820.66860.74180.036*0.50
H14F0.00780.65540.73300.036*0.50
C150.1628 (2)0.88493 (14)0.39994 (15)0.0291 (3)
H15A0.02750.90870.43620.035*
H15B0.17610.92920.30210.035*
H15C0.25940.92170.43990.035*
C160.1661 (2)0.26804 (15)0.99384 (14)0.0293 (3)
H16A0.14620.19911.08540.035*
H16B0.03690.32400.97200.035*
C170.3156 (2)0.36947 (15)0.99384 (13)0.0260 (3)
H4O0.345 (3)0.541 (2)1.032 (2)0.076 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (5)0.0176 (4)0.0205 (5)0.0008 (3)0.0016 (4)0.0061 (4)
O20.0449 (6)0.0277 (5)0.0326 (6)0.0000 (4)0.0035 (5)0.0171 (4)
O30.0298 (5)0.0314 (5)0.0339 (6)0.0002 (4)0.0023 (4)0.0133 (4)
O40.0322 (6)0.0397 (6)0.0430 (6)0.0003 (5)0.0014 (5)0.0241 (5)
C10.0279 (7)0.0212 (7)0.0377 (8)0.0008 (5)0.0081 (6)0.0125 (6)
C20.0367 (8)0.0185 (7)0.0426 (9)0.0008 (6)0.0115 (7)0.0053 (6)
C30.0334 (8)0.0252 (7)0.0295 (7)0.0046 (6)0.0071 (6)0.0010 (6)
C40.0227 (7)0.0253 (7)0.0272 (7)0.0041 (5)0.0031 (5)0.0063 (6)
C50.0184 (6)0.0207 (6)0.0249 (7)0.0018 (5)0.0017 (5)0.0094 (5)
C60.0185 (6)0.0198 (6)0.0279 (7)0.0021 (5)0.0036 (5)0.0063 (5)
C70.0239 (7)0.0266 (7)0.0215 (7)0.0030 (5)0.0030 (5)0.0034 (5)
C80.0233 (7)0.0278 (7)0.0226 (7)0.0029 (5)0.0016 (5)0.0108 (5)
C90.0211 (6)0.0232 (7)0.0290 (7)0.0019 (5)0.0038 (5)0.0127 (6)
C100.0197 (6)0.0206 (6)0.0287 (7)0.0021 (5)0.0052 (5)0.0089 (5)
C110.0185 (6)0.0179 (6)0.0273 (7)0.0024 (5)0.0042 (5)0.0060 (5)
C120.0159 (6)0.0199 (6)0.0206 (6)0.0030 (5)0.0019 (5)0.0058 (5)
C130.0175 (6)0.0209 (6)0.0241 (7)0.0025 (5)0.0030 (5)0.0089 (5)
C140.0385 (8)0.0228 (7)0.0289 (7)0.0018 (6)0.0008 (6)0.0108 (6)
C150.0318 (8)0.0218 (7)0.0317 (8)0.0016 (5)0.0032 (6)0.0053 (6)
C160.0307 (7)0.0295 (7)0.0246 (7)0.0036 (6)0.0015 (6)0.0053 (6)
C170.0320 (7)0.0270 (7)0.0165 (6)0.0022 (6)0.0036 (5)0.0045 (5)
Geometric parameters (Å, º) top
O1—C111.3690 (15)C7—C81.3708 (19)
O1—C121.3746 (15)C7—H70.9500
O2—C91.2301 (15)C8—C131.3953 (18)
O3—C171.2225 (17)C8—H80.9500
O4—C171.3108 (16)C9—C101.4680 (19)
O4—H4O1.00 (2)C9—C131.4688 (18)
C1—C21.370 (2)C10—C111.3883 (18)
C1—C101.4032 (18)C12—C131.3925 (17)
C1—H10.9500C14—H14A0.9800
C2—C31.395 (2)C14—H14B0.9800
C2—H20.9500C14—H14C0.9800
C3—C41.3816 (19)C14—H14D0.9800
C3—H30.9500C14—H14E0.9800
C4—C111.4011 (19)C14—H14F0.9800
C4—C161.5030 (19)C15—H15A0.9800
C5—C61.3937 (18)C15—H15B0.9800
C5—C121.4031 (17)C15—H15C0.9800
C5—C141.5045 (18)C16—C171.505 (2)
C6—C71.4021 (19)C16—H16A0.9900
C6—C151.5057 (18)C16—H16B0.9900
Cg1···Cg2i3.491 (3)Cg2···Cg2i3.735 (3)
Cg1···Cg2ii3.591 (3)Cg2···Cg2ii3.639 (3)
C11—O1—C12119.45 (10)C12—C13—C9120.73 (12)
C17—O4—H4O109.3 (12)C8—C13—C9121.21 (11)
C2—C1—C10120.21 (13)C5—C14—H14A109.5
C2—C1—H1119.9C5—C14—H14B109.5
C10—C1—H1119.9H14A—C14—H14B109.5
C1—C2—C3120.06 (13)C5—C14—H14C109.5
C1—C2—H2120.0H14A—C14—H14C109.5
C3—C2—H2120.0H14B—C14—H14C109.5
C4—C3—C2121.64 (13)C5—C14—H14D109.5
C4—C3—H3119.2H14A—C14—H14D141.1
C2—C3—H3119.2H14B—C14—H14D56.3
C3—C4—C11117.33 (12)H14C—C14—H14D56.3
C3—C4—C16122.88 (13)C5—C14—H14E109.5
C11—C4—C16119.79 (12)H14A—C14—H14E56.3
C6—C5—C12117.71 (11)H14B—C14—H14E141.1
C6—C5—C14122.29 (11)H14C—C14—H14E56.3
C12—C5—C14120.00 (12)H14D—C14—H14E109.5
C5—C6—C7119.79 (12)C5—C14—H14F109.5
C5—C6—C15120.53 (11)H14A—C14—H14F56.3
C7—C6—C15119.67 (12)H14B—C14—H14F56.3
C8—C7—C6121.37 (12)H14C—C14—H14F141.1
C8—C7—H7119.3H14D—C14—H14F109.5
C6—C7—H7119.3H14E—C14—H14F109.5
C7—C8—C13120.32 (12)C6—C15—H15A109.5
C7—C8—H8119.8C6—C15—H15B109.5
C13—C8—H8119.8H15A—C15—H15B109.5
O2—C9—C10122.46 (12)C6—C15—H15C109.5
O2—C9—C13122.77 (12)H15A—C15—H15C109.5
C10—C9—C13114.77 (11)H15B—C15—H15C109.5
C11—C10—C1118.59 (12)C4—C16—C17113.59 (11)
C11—C10—C9120.20 (11)C4—C16—H16A108.8
C1—C10—C9121.21 (12)C17—C16—H16A108.8
O1—C11—C10122.88 (12)C4—C16—H16B108.8
O1—C11—C4114.95 (11)C17—C16—H16B108.8
C10—C11—C4122.17 (12)H16A—C16—H16B107.7
O1—C12—C13121.97 (11)O3—C17—O4123.02 (14)
O1—C12—C5115.28 (11)O3—C17—C16123.28 (12)
C13—C12—C5122.75 (12)O4—C17—C16113.68 (12)
C12—C13—C8118.06 (11)
C10—C1—C2—C30.5 (2)C16—C4—C11—O10.55 (18)
C1—C2—C3—C40.0 (2)C3—C4—C11—C100.25 (19)
C2—C3—C4—C110.4 (2)C16—C4—C11—C10179.84 (12)
C2—C3—C4—C16179.95 (13)C11—O1—C12—C130.27 (17)
C12—C5—C6—C70.03 (18)C11—O1—C12—C5179.83 (11)
C14—C5—C6—C7179.62 (12)C6—C5—C12—O1179.53 (11)
C12—C5—C6—C15179.37 (12)C14—C5—C12—O10.13 (17)
C14—C5—C6—C150.28 (19)C6—C5—C12—C130.03 (19)
C5—C6—C7—C80.2 (2)C14—C5—C12—C13179.69 (12)
C15—C6—C7—C8179.51 (12)O1—C12—C13—C8179.58 (11)
C6—C7—C8—C130.2 (2)C5—C12—C13—C80.05 (19)
C2—C1—C10—C110.6 (2)O1—C12—C13—C90.23 (18)
C2—C1—C10—C9179.11 (13)C5—C12—C13—C9179.75 (11)
O2—C9—C10—C11179.09 (12)C7—C8—C13—C120.19 (19)
C13—C9—C10—C110.80 (17)C7—C8—C13—C9179.61 (12)
O2—C9—C10—C10.6 (2)O2—C9—C13—C12179.41 (12)
C13—C9—C10—C1179.46 (12)C10—C9—C13—C120.47 (17)
C12—O1—C11—C100.62 (17)O2—C9—C13—C80.8 (2)
C12—O1—C11—C4179.77 (11)C10—C9—C13—C8179.32 (11)
C1—C10—C11—O1179.34 (12)C3—C4—C16—C17116.51 (15)
C9—C10—C11—O10.91 (19)C11—C4—C16—C1763.93 (17)
C1—C10—C11—C40.24 (19)C4—C16—C17—O325.38 (19)
C9—C10—C11—C4179.51 (12)C4—C16—C17—O4155.89 (12)
C3—C4—C11—O1179.87 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O3iii1.00 (2)1.63 (2)2.633 (1)173.25 (2)
C16—H16B···O4iv0.992.523.460 (1)158 (1)
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H14O4
Mr282.28
Crystal system, space groupTriclinic, P1
Temperature (K)163
a, b, c (Å)6.7854 (19), 9.826 (3), 10.532 (3)
α, β, γ (°)71.435 (7), 82.741 (9), 83.142 (9)
V3)658.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.50 × 0.37
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6284, 2955, 2304
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.00
No. of reflections2955
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected interatomic distances (Å) top
Cg1···Cg2i3.491 (3)Cg2···Cg2i3.735 (3)
Cg1···Cg2ii3.591 (3)Cg2···Cg2ii3.639 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O3iii1.00 (2)1.63 (2)2.633 (1)173.25 (2)
C16—H16B···O4iv0.992.523.460 (1)157.84 (2)
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x, y+1, z+2.
 

Acknowledgements

The authors acknowledge financial support from Hangzhou Minsheng Pharmaceutical Group Co Ltd, Hangzhou, People's Republic of China. The data collection was carried out by Professor Kai-Bei Yu at the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology.

References

First citationAtwell, G. J., Yang, S. J. & Denny, W. A. (2002). Eur. J. Med. Chem. 37, 825–828.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheng, G. J., Sun, J., Fridlender, Z. G., Wang, L. C. S., Ching, L. M. & Albelda, S. M. (2010). J. Biol. Chem. 285, 10553–10562.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChing, L. M. (2008). Drugs Future, 33, 561–569.  Web of Science CrossRef CAS Google Scholar
First citationGobbi, S., Belluti, F., Bisi, A., Piazzi, L., Rampa, A., Zampiron, A., Barbera, M., Caputo, A. & Carrara, M. (2006). Bioorg. Med. Chem. 14, 4101–4109.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHead, M. & Jameson, M. B. (2010). Expert Opin. Inv. Drug. 19, 295–304.  Web of Science CrossRef CAS Google Scholar
First citationHinnen, P. & Eskens, F. A. L. M. (2007). Brit. J. Cancer, 96, 1159–1165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLippert, J. W. (2007). Bioorg. Med. Chem. 15, 605–615.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKeage, M. J. & Baguley, B. C. (2010). Cancer, 116, 1859–1871.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKeage, M. J., Reck, M., Jameson, M. B., Rosenthal, M. A., Gibbs, D., Mainwaring, P. N., Freitag, L., Sullivan, R. & Von Pawel, J. (2009). Lung Cancer, 65, 192–197.  Web of Science CrossRef PubMed Google Scholar
First citationMcKeage, M. J., Von Pawel, J., Reck, M., Jameson, M. B., Rosenthal, M. A., Sullivan, R., Gibbs, D., Mainwaring, P. N., Serke, M., Lafitte, J. J., Chouaid, C., Freitag, L. & Quoix, E. (2008). Br. J. Cancer, 99, 2006–2012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatterson, D. A. & Rustin, G. J. S. (2007). Clin. Oncol. 19, 443–456.  Web of Science CrossRef CAS Google Scholar
First citationPili, R., Rosenthal, M. A., Mainwaring, P. N., Van Hazel, G., Srinivas, S., Dreicer, R., Goel, S., Leach, J., Wong, S. & Clingan, P. (2010). Clin. Cancer Res. 16, 2906–2914.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC. (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRoberts, Z. J., Ching, L. M. & Vogel, S. N. (2008). J. Interf. Cytok. Res. 28, 133–139.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoon, S. T., Reddy, C. B., Drummond, C. J., Schooltink, M. A., Baguley, B. C., Kieda, C. & Ching, L. M. (2005). Oncol. Res. 15, 351–364.  Web of Science PubMed CAS Google Scholar
First citationYang, S. J. & Denny, W. A. (2009). Tetrahedron Lett. 50, 3945–3947.  Web of Science CrossRef CAS Google Scholar
First citationYu, P., Shen, X., Hu, C., Meehan, E. J. & Chen, L. (2008). Acta Cryst. E64, o651–o652.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhan, X., Finlay, G., Ross, J. & Baguley, B. (2010). Cell. Oncol. 32, 187.  Google Scholar
First citationZhang, H.-F., Sun, B.-S., Zhao, X.-H. & Yan, F.-Y. (2007). Acta Cryst. E63, o863–o864.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds