organic compounds
Vadimezan: 2-(5,6-dimethyl-9-oxo-9H-xanthen-4-yl)acetic acid
aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: huyang@mail.hz.zj.cn
In the title molecule, C17H14O4, the C atom of the carboxyl group deviates by 1.221 (3) Å from the plane [maximum deviation = 0.0122(2) Å] of the tricycic ring system. In the intermolecular O—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers, and π–π interactions [centroid–centroid distances = 3.491 (3), 3.591 (3), 3.639 (3) and 3.735 (3) Å] link these dimers into layers parallel to the ac plane. Weak intermolecular C—H⋯O interactions further consolidate the crystal packing.
Related literature
For general background to and recent reviews of vascular-disrupting agents and the development of Vadimezan (DMXAA, ASA404), a promising small-molecule tumor-vascular disrupting agent in phase III clinical trials, see: McKeage & Baguley (2010); Head & Jameson (2010); Ching (2008); Patterson & Rustin (2007); Hinnen & Eskens (2007); Lippert (2007). For a recent clinical study of Vadimezan, see: Pili et al. (2010); McKeage et al. (2008, 2009). For studies of the molecular mechanisms and signal pathways of Vadimezan, see: Zhan et al. (2010); Cheng et al. (2010); Roberts et al. (2008). For the biological and pharmacological activity of Vadimezan analogues with structure–activity relationships, see: Gobbi et al. (2006); Woon et al. (2005). For the synthesis and spectroscopic data for Vadimezan, see: Yang & Denny (2009); Atwell et al. (2002). For related xanthone structures, see: Yu et al. (2008); Zhang et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810028394/cv2747sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810028394/cv2747Isup2.hkl
Vadimezan was prepared from 3,4-dimethylanthranilic acid according to literature method (Atwell et al., 2002). Diazotization of 3,4-dimethylanthranilic acid with NaNO2 and then treatment with KI led to 3,4-dimethyl-2-iodobenzoic acid, which was coupled with 2-hydroxyphenylacetic acid catalyzed by TDA-1 and Cu(I) in dried DMSO to obtain 2-[2-(carboxylmethyl)phenoxy]-3,4-dimethylbenzoic acid. Finally, ring closure in sulfuric acid led to 5,6-dimethyl-9-oxoxanthene-4-acetic acid: white solid; mp: 529–532 K; PHPLC 98.2%; IR νmax (KBr)/cm-1: 2970, 1708, 1650, 1602, 1411, 1330, 1212, 768; 1H NMR (DMSO-d6, 500 MHz) δ: 12.60 (s, 1H, COOH), 8.07 (dd, J1 = 1.5 Hz, J2 = 8.0 Hz, 1H, Ar), 7.89 (d, J = 8.0 Hz, 1H, Ar), 7.78 (dd, J1 = 1.3 Hz, J2 = 7.3 Hz, 1H, Ar), 7.40 (t, J = 7.5 Hz, 1H, Ar), 7.24 (d, J = 8.5 Hz, 1H, Ar), 3.95 (s, 2H, Ar—CH2), 2.39 (s, 3H, Ar—CH3), 2.36 (s, 3H, Ar—CH3); EIMS m/z(%): 282(M+, 77), 238 (42), 237 (100), 236 (26), 223 (17), 209 (37), 195 (12), 165 (28).
H atom attached to carboxyl O atom was located in a difference map and refined with bond restraint O—H = 1.00 (2) Å. C-bound H atoms were positioned geometrically (C—H 0.95 - 0.99 Å). All H atoms were refined as riding, with Uiso(H) = 1.2 - 1.5 Ueq of the parent atoms. Hydrogen atoms attached to C14 are disordered with a refined site occupancy factor 0.50 for each H14A, H14B, H14C, H14D, H14E and H14F.
Tumor vascular disrupting agents (VDA) cause the established vascular structure inside a solid tumor to collapse, depriving the tumor of blood, oxygen and nutrients it needs to survive (McKeage et al., 2010; Head et al., 2010; Ching, 2008; Patterson et al., 2007; Hinnen et al., 2007; Lippert, 2007). A number of new drug-based VDAs have been developed that are believed to be highly efficient, low toxic, and several of them are currently undergoing clinical trials, among which Vadimezan is the most advanced in Phase III clinical development (Pili et al., 2010; McKeage et al., 2009; McKeage et al., 2008). The study of antitumor mechanisms and signal pathways of Vadimezan is carried out (Zhan et al., 2010; Cheng et al., 2010; Roberts et al., 2008), as well as the structure modification of xanthones (Gobbi et al., 2006; Woon et al., 2005).
The molecular structure of Vadimezan is very important and necessary in understanding of the compound and may help to further elucidate its antivascular effect for the treatment of human cancer. Its π-π interactions (Table 1) link these dimers into layers parallel to ac plane. Weak intermolecular C—H···O interactions (Table 2) consolidate further the crystal packing (Fig. 2).
is reported for the first time in this paper. The structure (Figure 1) is similar to other xanthones reported with an essential planar three-ring skeleton and the C atom of the carboxyl group deviates at 1.221 (3) Å from the tricycle plane. In the intermolecular O—H···O (Table 2) hydrogen bonds link the molecules into centrosymmetric dimers, andFor general background to and recent reviews of vascular-disrupting agents and the development of Vadimezan (DMXAA, ASA404), a promising small-molecule tumor-vascular disrupting agent in phase III clinical trials, see: McKeage et al. (2010); Head et al. (2010); Ching (2008); Patterson et al. (2007); Hinnen et al. (2007); Lippert (2007). For a recent clinical study of Vadimezan, see: Pili et al. (2010); McKeage et al. (2008, 2009). For studies of the molecular mechanisms and signal pathways of Vadimezan, see: Zhan et al. (2010); Cheng et al. (2010); Roberts et al. (2008). For the biological and pharmacological activity of Vadimezan analogues with structure–activity relationships, see: Gobbi et al. (2006); Woon et al. (2005). For the synthesis and spectroscopic data for Vadimezan, see: Yang et al. (2009); Atwell et al. (2002). For related xanthone structures, see: Yu et al. (2008); Zhang et al. (2007).
Data collection: CrystalClear (Rigaku/MSC, 2008); cell
CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).C17H14O4 | Z = 2 |
Mr = 282.28 | F(000) = 296 |
Triclinic, P1 | Dx = 1.425 Mg m−3 |
a = 6.7854 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.826 (3) Å | Cell parameters from 1944 reflections |
c = 10.532 (3) Å | θ = 3.0–27.5° |
α = 71.435 (7)° | µ = 0.10 mm−1 |
β = 82.741 (9)° | T = 163 K |
γ = 83.142 (9)° | Block, colorless |
V = 658.0 (3) Å3 | 0.50 × 0.50 × 0.37 mm |
Rigaku AFC10/Saturn724+ diffractometer | 2304 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.018 |
Graphite monochromator | θmax = 27.5°, θmin = 3.4° |
Detector resolution: 28.5714 pixels mm-1 | h = −8→8 |
phi and ω scans | k = −11→12 |
6284 measured reflections | l = −13→13 |
2955 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.226P] where P = (Fo2 + 2Fc2)/3 |
2955 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C17H14O4 | γ = 83.142 (9)° |
Mr = 282.28 | V = 658.0 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7854 (19) Å | Mo Kα radiation |
b = 9.826 (3) Å | µ = 0.10 mm−1 |
c = 10.532 (3) Å | T = 163 K |
α = 71.435 (7)° | 0.50 × 0.50 × 0.37 mm |
β = 82.741 (9)° |
Rigaku AFC10/Saturn724+ diffractometer | 2304 reflections with I > 2σ(I) |
6284 measured reflections | Rint = 0.018 |
2955 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.26 e Å−3 |
2955 reflections | Δρmin = −0.17 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.21097 (13) | 0.40487 (9) | 0.72385 (9) | 0.0215 (2) | |
O2 | 0.36821 (16) | 0.20951 (10) | 0.43040 (10) | 0.0335 (3) | |
O3 | 0.49314 (15) | 0.35197 (11) | 0.95899 (10) | 0.0312 (2) | |
O4 | 0.23835 (16) | 0.47712 (12) | 1.03729 (11) | 0.0361 (3) | |
C1 | 0.3402 (2) | 0.03641 (14) | 0.70661 (15) | 0.0278 (3) | |
H1 | 0.3796 | −0.0144 | 0.6431 | 0.033* | |
C2 | 0.3195 (2) | −0.03755 (15) | 0.84129 (16) | 0.0330 (3) | |
H2 | 0.3434 | −0.1395 | 0.8710 | 0.040* | |
C3 | 0.2632 (2) | 0.03676 (15) | 0.93484 (15) | 0.0306 (3) | |
H3 | 0.2494 | −0.0159 | 1.0279 | 0.037* | |
C4 | 0.2271 (2) | 0.18497 (14) | 0.89551 (14) | 0.0252 (3) | |
C5 | 0.18653 (18) | 0.63568 (13) | 0.56645 (13) | 0.0208 (3) | |
C6 | 0.20182 (18) | 0.72389 (13) | 0.43318 (13) | 0.0221 (3) | |
C7 | 0.25597 (19) | 0.66243 (14) | 0.32918 (13) | 0.0248 (3) | |
H7 | 0.2664 | 0.7233 | 0.2386 | 0.030* | |
C8 | 0.29413 (19) | 0.51639 (14) | 0.35551 (13) | 0.0238 (3) | |
H8 | 0.3301 | 0.4772 | 0.2833 | 0.029* | |
C9 | 0.32191 (19) | 0.26831 (14) | 0.51829 (13) | 0.0232 (3) | |
C10 | 0.30347 (19) | 0.18691 (14) | 0.66213 (13) | 0.0223 (3) | |
C11 | 0.24803 (18) | 0.25830 (13) | 0.75729 (13) | 0.0212 (3) | |
C12 | 0.22678 (17) | 0.48664 (13) | 0.59068 (12) | 0.0188 (3) | |
C13 | 0.28044 (18) | 0.42500 (13) | 0.48780 (13) | 0.0202 (3) | |
C14 | 0.1303 (2) | 0.69521 (15) | 0.68242 (14) | 0.0298 (3) | |
H14A | 0.1279 | 0.6159 | 0.7671 | 0.036* | 0.50 |
H14B | −0.0020 | 0.7477 | 0.6734 | 0.036* | 0.50 |
H14C | 0.2284 | 0.7608 | 0.6823 | 0.036* | 0.50 |
H14D | 0.1084 | 0.8004 | 0.6481 | 0.036* | 0.50 |
H14E | 0.2382 | 0.6686 | 0.7418 | 0.036* | 0.50 |
H14F | 0.0078 | 0.6554 | 0.7330 | 0.036* | 0.50 |
C15 | 0.1628 (2) | 0.88493 (14) | 0.39994 (15) | 0.0291 (3) | |
H15A | 0.0275 | 0.9087 | 0.4362 | 0.035* | |
H15B | 0.1761 | 0.9292 | 0.3021 | 0.035* | |
H15C | 0.2594 | 0.9217 | 0.4399 | 0.035* | |
C16 | 0.1661 (2) | 0.26804 (15) | 0.99384 (14) | 0.0293 (3) | |
H16A | 0.1462 | 0.1991 | 1.0854 | 0.035* | |
H16B | 0.0369 | 0.3240 | 0.9720 | 0.035* | |
C17 | 0.3156 (2) | 0.36947 (15) | 0.99384 (13) | 0.0260 (3) | |
H4O | 0.345 (3) | 0.541 (2) | 1.032 (2) | 0.076 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0261 (5) | 0.0176 (4) | 0.0205 (5) | −0.0008 (3) | −0.0016 (4) | −0.0061 (4) |
O2 | 0.0449 (6) | 0.0277 (5) | 0.0326 (6) | 0.0000 (4) | −0.0035 (5) | −0.0171 (4) |
O3 | 0.0298 (5) | 0.0314 (5) | 0.0339 (6) | 0.0002 (4) | −0.0023 (4) | −0.0133 (4) |
O4 | 0.0322 (6) | 0.0397 (6) | 0.0430 (6) | 0.0003 (5) | −0.0014 (5) | −0.0241 (5) |
C1 | 0.0279 (7) | 0.0212 (7) | 0.0377 (8) | −0.0008 (5) | −0.0081 (6) | −0.0125 (6) |
C2 | 0.0367 (8) | 0.0185 (7) | 0.0426 (9) | −0.0008 (6) | −0.0115 (7) | −0.0053 (6) |
C3 | 0.0334 (8) | 0.0252 (7) | 0.0295 (7) | −0.0046 (6) | −0.0071 (6) | −0.0010 (6) |
C4 | 0.0227 (7) | 0.0253 (7) | 0.0272 (7) | −0.0041 (5) | −0.0031 (5) | −0.0063 (6) |
C5 | 0.0184 (6) | 0.0207 (6) | 0.0249 (7) | −0.0018 (5) | −0.0017 (5) | −0.0094 (5) |
C6 | 0.0185 (6) | 0.0198 (6) | 0.0279 (7) | −0.0021 (5) | −0.0036 (5) | −0.0063 (5) |
C7 | 0.0239 (7) | 0.0266 (7) | 0.0215 (7) | −0.0030 (5) | −0.0030 (5) | −0.0034 (5) |
C8 | 0.0233 (7) | 0.0278 (7) | 0.0226 (7) | −0.0029 (5) | −0.0016 (5) | −0.0108 (5) |
C9 | 0.0211 (6) | 0.0232 (7) | 0.0290 (7) | −0.0019 (5) | −0.0038 (5) | −0.0127 (6) |
C10 | 0.0197 (6) | 0.0206 (6) | 0.0287 (7) | −0.0021 (5) | −0.0052 (5) | −0.0089 (5) |
C11 | 0.0185 (6) | 0.0179 (6) | 0.0273 (7) | −0.0024 (5) | −0.0042 (5) | −0.0060 (5) |
C12 | 0.0159 (6) | 0.0199 (6) | 0.0206 (6) | −0.0030 (5) | −0.0019 (5) | −0.0058 (5) |
C13 | 0.0175 (6) | 0.0209 (6) | 0.0241 (7) | −0.0025 (5) | −0.0030 (5) | −0.0089 (5) |
C14 | 0.0385 (8) | 0.0228 (7) | 0.0289 (7) | −0.0018 (6) | 0.0008 (6) | −0.0108 (6) |
C15 | 0.0318 (8) | 0.0218 (7) | 0.0317 (8) | −0.0016 (5) | −0.0032 (6) | −0.0053 (6) |
C16 | 0.0307 (7) | 0.0295 (7) | 0.0246 (7) | −0.0036 (6) | 0.0015 (6) | −0.0053 (6) |
C17 | 0.0320 (7) | 0.0270 (7) | 0.0165 (6) | 0.0022 (6) | −0.0036 (5) | −0.0045 (5) |
O1—C11 | 1.3690 (15) | C7—C8 | 1.3708 (19) |
O1—C12 | 1.3746 (15) | C7—H7 | 0.9500 |
O2—C9 | 1.2301 (15) | C8—C13 | 1.3953 (18) |
O3—C17 | 1.2225 (17) | C8—H8 | 0.9500 |
O4—C17 | 1.3108 (16) | C9—C10 | 1.4680 (19) |
O4—H4O | 1.00 (2) | C9—C13 | 1.4688 (18) |
C1—C2 | 1.370 (2) | C10—C11 | 1.3883 (18) |
C1—C10 | 1.4032 (18) | C12—C13 | 1.3925 (17) |
C1—H1 | 0.9500 | C14—H14A | 0.9800 |
C2—C3 | 1.395 (2) | C14—H14B | 0.9800 |
C2—H2 | 0.9500 | C14—H14C | 0.9800 |
C3—C4 | 1.3816 (19) | C14—H14D | 0.9800 |
C3—H3 | 0.9500 | C14—H14E | 0.9800 |
C4—C11 | 1.4011 (19) | C14—H14F | 0.9800 |
C4—C16 | 1.5030 (19) | C15—H15A | 0.9800 |
C5—C6 | 1.3937 (18) | C15—H15B | 0.9800 |
C5—C12 | 1.4031 (17) | C15—H15C | 0.9800 |
C5—C14 | 1.5045 (18) | C16—C17 | 1.505 (2) |
C6—C7 | 1.4021 (19) | C16—H16A | 0.9900 |
C6—C15 | 1.5057 (18) | C16—H16B | 0.9900 |
Cg1···Cg2i | 3.491 (3) | Cg2···Cg2i | 3.735 (3) |
Cg1···Cg2ii | 3.591 (3) | Cg2···Cg2ii | 3.639 (3) |
C11—O1—C12 | 119.45 (10) | C12—C13—C9 | 120.73 (12) |
C17—O4—H4O | 109.3 (12) | C8—C13—C9 | 121.21 (11) |
C2—C1—C10 | 120.21 (13) | C5—C14—H14A | 109.5 |
C2—C1—H1 | 119.9 | C5—C14—H14B | 109.5 |
C10—C1—H1 | 119.9 | H14A—C14—H14B | 109.5 |
C1—C2—C3 | 120.06 (13) | C5—C14—H14C | 109.5 |
C1—C2—H2 | 120.0 | H14A—C14—H14C | 109.5 |
C3—C2—H2 | 120.0 | H14B—C14—H14C | 109.5 |
C4—C3—C2 | 121.64 (13) | C5—C14—H14D | 109.5 |
C4—C3—H3 | 119.2 | H14A—C14—H14D | 141.1 |
C2—C3—H3 | 119.2 | H14B—C14—H14D | 56.3 |
C3—C4—C11 | 117.33 (12) | H14C—C14—H14D | 56.3 |
C3—C4—C16 | 122.88 (13) | C5—C14—H14E | 109.5 |
C11—C4—C16 | 119.79 (12) | H14A—C14—H14E | 56.3 |
C6—C5—C12 | 117.71 (11) | H14B—C14—H14E | 141.1 |
C6—C5—C14 | 122.29 (11) | H14C—C14—H14E | 56.3 |
C12—C5—C14 | 120.00 (12) | H14D—C14—H14E | 109.5 |
C5—C6—C7 | 119.79 (12) | C5—C14—H14F | 109.5 |
C5—C6—C15 | 120.53 (11) | H14A—C14—H14F | 56.3 |
C7—C6—C15 | 119.67 (12) | H14B—C14—H14F | 56.3 |
C8—C7—C6 | 121.37 (12) | H14C—C14—H14F | 141.1 |
C8—C7—H7 | 119.3 | H14D—C14—H14F | 109.5 |
C6—C7—H7 | 119.3 | H14E—C14—H14F | 109.5 |
C7—C8—C13 | 120.32 (12) | C6—C15—H15A | 109.5 |
C7—C8—H8 | 119.8 | C6—C15—H15B | 109.5 |
C13—C8—H8 | 119.8 | H15A—C15—H15B | 109.5 |
O2—C9—C10 | 122.46 (12) | C6—C15—H15C | 109.5 |
O2—C9—C13 | 122.77 (12) | H15A—C15—H15C | 109.5 |
C10—C9—C13 | 114.77 (11) | H15B—C15—H15C | 109.5 |
C11—C10—C1 | 118.59 (12) | C4—C16—C17 | 113.59 (11) |
C11—C10—C9 | 120.20 (11) | C4—C16—H16A | 108.8 |
C1—C10—C9 | 121.21 (12) | C17—C16—H16A | 108.8 |
O1—C11—C10 | 122.88 (12) | C4—C16—H16B | 108.8 |
O1—C11—C4 | 114.95 (11) | C17—C16—H16B | 108.8 |
C10—C11—C4 | 122.17 (12) | H16A—C16—H16B | 107.7 |
O1—C12—C13 | 121.97 (11) | O3—C17—O4 | 123.02 (14) |
O1—C12—C5 | 115.28 (11) | O3—C17—C16 | 123.28 (12) |
C13—C12—C5 | 122.75 (12) | O4—C17—C16 | 113.68 (12) |
C12—C13—C8 | 118.06 (11) | ||
C10—C1—C2—C3 | −0.5 (2) | C16—C4—C11—O1 | 0.55 (18) |
C1—C2—C3—C4 | 0.0 (2) | C3—C4—C11—C10 | −0.25 (19) |
C2—C3—C4—C11 | 0.4 (2) | C16—C4—C11—C10 | −179.84 (12) |
C2—C3—C4—C16 | 179.95 (13) | C11—O1—C12—C13 | −0.27 (17) |
C12—C5—C6—C7 | −0.03 (18) | C11—O1—C12—C5 | −179.83 (11) |
C14—C5—C6—C7 | 179.62 (12) | C6—C5—C12—O1 | 179.53 (11) |
C12—C5—C6—C15 | −179.37 (12) | C14—C5—C12—O1 | −0.13 (17) |
C14—C5—C6—C15 | 0.28 (19) | C6—C5—C12—C13 | −0.03 (19) |
C5—C6—C7—C8 | 0.2 (2) | C14—C5—C12—C13 | −179.69 (12) |
C15—C6—C7—C8 | 179.51 (12) | O1—C12—C13—C8 | −179.58 (11) |
C6—C7—C8—C13 | −0.2 (2) | C5—C12—C13—C8 | −0.05 (19) |
C2—C1—C10—C11 | 0.6 (2) | O1—C12—C13—C9 | 0.23 (18) |
C2—C1—C10—C9 | −179.11 (13) | C5—C12—C13—C9 | 179.75 (11) |
O2—C9—C10—C11 | −179.09 (12) | C7—C8—C13—C12 | 0.19 (19) |
C13—C9—C10—C11 | 0.80 (17) | C7—C8—C13—C9 | −179.61 (12) |
O2—C9—C10—C1 | 0.6 (2) | O2—C9—C13—C12 | 179.41 (12) |
C13—C9—C10—C1 | −179.46 (12) | C10—C9—C13—C12 | −0.47 (17) |
C12—O1—C11—C10 | 0.62 (17) | O2—C9—C13—C8 | −0.8 (2) |
C12—O1—C11—C4 | −179.77 (11) | C10—C9—C13—C8 | 179.32 (11) |
C1—C10—C11—O1 | 179.34 (12) | C3—C4—C16—C17 | 116.51 (15) |
C9—C10—C11—O1 | −0.91 (19) | C11—C4—C16—C17 | −63.93 (17) |
C1—C10—C11—C4 | −0.24 (19) | C4—C16—C17—O3 | −25.38 (19) |
C9—C10—C11—C4 | 179.51 (12) | C4—C16—C17—O4 | 155.89 (12) |
C3—C4—C11—O1 | −179.87 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O3iii | 1.00 (2) | 1.63 (2) | 2.633 (1) | 173.25 (2) |
C16—H16B···O4iv | 0.99 | 2.52 | 3.460 (1) | 158 (1) |
Symmetry codes: (iii) −x+1, −y+1, −z+2; (iv) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C17H14O4 |
Mr | 282.28 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 163 |
a, b, c (Å) | 6.7854 (19), 9.826 (3), 10.532 (3) |
α, β, γ (°) | 71.435 (7), 82.741 (9), 83.142 (9) |
V (Å3) | 658.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.50 × 0.50 × 0.37 |
Data collection | |
Diffractometer | Rigaku AFC10/Saturn724+ |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6284, 2955, 2304 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.094, 1.00 |
No. of reflections | 2955 |
No. of parameters | 195 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.17 |
Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Cg1···Cg2i | 3.491 (3) | Cg2···Cg2i | 3.735 (3) |
Cg1···Cg2ii | 3.591 (3) | Cg2···Cg2ii | 3.639 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O3iii | 1.00 (2) | 1.63 (2) | 2.633 (1) | 173.25 (2) |
C16—H16B···O4iv | 0.99 | 2.52 | 3.460 (1) | 157.84 (2) |
Symmetry codes: (iii) −x+1, −y+1, −z+2; (iv) −x, −y+1, −z+2. |
Acknowledgements
The authors acknowledge financial support from Hangzhou Minsheng Pharmaceutical Group Co Ltd, Hangzhou, People's Republic of China. The data collection was carried out by Professor Kai-Bei Yu at the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology.
References
Atwell, G. J., Yang, S. J. & Denny, W. A. (2002). Eur. J. Med. Chem. 37, 825–828. Web of Science CrossRef PubMed CAS Google Scholar
Cheng, G. J., Sun, J., Fridlender, Z. G., Wang, L. C. S., Ching, L. M. & Albelda, S. M. (2010). J. Biol. Chem. 285, 10553–10562. Web of Science CrossRef CAS PubMed Google Scholar
Ching, L. M. (2008). Drugs Future, 33, 561–569. Web of Science CrossRef CAS Google Scholar
Gobbi, S., Belluti, F., Bisi, A., Piazzi, L., Rampa, A., Zampiron, A., Barbera, M., Caputo, A. & Carrara, M. (2006). Bioorg. Med. Chem. 14, 4101–4109. Web of Science CrossRef PubMed CAS Google Scholar
Head, M. & Jameson, M. B. (2010). Expert Opin. Inv. Drug. 19, 295–304. Web of Science CrossRef CAS Google Scholar
Hinnen, P. & Eskens, F. A. L. M. (2007). Brit. J. Cancer, 96, 1159–1165. Web of Science CrossRef PubMed CAS Google Scholar
Lippert, J. W. (2007). Bioorg. Med. Chem. 15, 605–615. Web of Science CrossRef PubMed CAS Google Scholar
McKeage, M. J. & Baguley, B. C. (2010). Cancer, 116, 1859–1871. Web of Science CrossRef CAS PubMed Google Scholar
McKeage, M. J., Reck, M., Jameson, M. B., Rosenthal, M. A., Gibbs, D., Mainwaring, P. N., Freitag, L., Sullivan, R. & Von Pawel, J. (2009). Lung Cancer, 65, 192–197. Web of Science CrossRef PubMed Google Scholar
McKeage, M. J., Von Pawel, J., Reck, M., Jameson, M. B., Rosenthal, M. A., Sullivan, R., Gibbs, D., Mainwaring, P. N., Serke, M., Lafitte, J. J., Chouaid, C., Freitag, L. & Quoix, E. (2008). Br. J. Cancer, 99, 2006–2012. Web of Science CrossRef PubMed CAS Google Scholar
Patterson, D. A. & Rustin, G. J. S. (2007). Clin. Oncol. 19, 443–456. Web of Science CrossRef CAS Google Scholar
Pili, R., Rosenthal, M. A., Mainwaring, P. N., Van Hazel, G., Srinivas, S., Dreicer, R., Goel, S., Leach, J., Wong, S. & Clingan, P. (2010). Clin. Cancer Res. 16, 2906–2914. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku/MSC. (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Roberts, Z. J., Ching, L. M. & Vogel, S. N. (2008). J. Interf. Cytok. Res. 28, 133–139. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woon, S. T., Reddy, C. B., Drummond, C. J., Schooltink, M. A., Baguley, B. C., Kieda, C. & Ching, L. M. (2005). Oncol. Res. 15, 351–364. Web of Science PubMed CAS Google Scholar
Yang, S. J. & Denny, W. A. (2009). Tetrahedron Lett. 50, 3945–3947. Web of Science CrossRef CAS Google Scholar
Yu, P., Shen, X., Hu, C., Meehan, E. J. & Chen, L. (2008). Acta Cryst. E64, o651–o652. Web of Science CrossRef IUCr Journals Google Scholar
Zhan, X., Finlay, G., Ross, J. & Baguley, B. (2010). Cell. Oncol. 32, 187. Google Scholar
Zhang, H.-F., Sun, B.-S., Zhao, X.-H. & Yan, F.-Y. (2007). Acta Cryst. E63, o863–o864. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tumor vascular disrupting agents (VDA) cause the established vascular structure inside a solid tumor to collapse, depriving the tumor of blood, oxygen and nutrients it needs to survive (McKeage et al., 2010; Head et al., 2010; Ching, 2008; Patterson et al., 2007; Hinnen et al., 2007; Lippert, 2007). A number of new drug-based VDAs have been developed that are believed to be highly efficient, low toxic, and several of them are currently undergoing clinical trials, among which Vadimezan is the most advanced in Phase III clinical development (Pili et al., 2010; McKeage et al., 2009; McKeage et al., 2008). The study of antitumor mechanisms and signal pathways of Vadimezan is carried out (Zhan et al., 2010; Cheng et al., 2010; Roberts et al., 2008), as well as the structure modification of xanthones (Gobbi et al., 2006; Woon et al., 2005).
The molecular structure of Vadimezan is very important and necessary in understanding of the compound and may help to further elucidate its antivascular effect for the treatment of human cancer. Its crystal structure is reported for the first time in this paper. The structure (Figure 1) is similar to other xanthones reported with an essential planar three-ring skeleton and the C atom of the carboxyl group deviates at 1.221 (3) Å from the tricycle plane. In the crystal structure, intermolecular O—H···O (Table 2) hydrogen bonds link the molecules into centrosymmetric dimers, and π-π interactions (Table 1) link these dimers into layers parallel to ac plane. Weak intermolecular C—H···O interactions (Table 2) consolidate further the crystal packing (Fig. 2).