organic compounds
Triethylammonium O-3β-cholest-5-en-3-yl (4-methoxyphenyl)dithiophosphonate
aDepartment of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: vanzylw@ukzn.ac.za
In the 6H16N+·C34H52O2PS2− or [(CH3CH2)3NH]+·[C34H52O2PS2]−, the cation and anion are paired via weak, intermolecular, bifurcated N—H⋯(S,S) hydrogen bonds. The cholesteryl units form an alternating (herringbone) motif as well as an infinitely stacked layered structure along the b axis. The P—S bond lengths [1.975 (2) and 1.981 (2) Å compared with ca 1.92 Å for a formal P=S double bond and with ca 2.01 Å for a P—S single bond] suggest delocalization of the negative charge between the P—S bonds. A distorted tetrahedral geometry around the P atom is revealed by non-ideal O—P—C and S—P—S bond angles of 96.7 (2) and 115.52 (11)°, respectively.
of the title compound, CRelated literature
For applications of dithiophosphonate derivatives, see: Beaton et al. (1991); Patnaik (1992); Roy (1990); Bromberg et al. (1993); Klaman (1984). For information on dithiophosphonate compounds, see: van Zyl et al. (1998, 2000, 2002); van Zyl et al. (2010). For P/S activation of see: Kvasnica et al. (2008). For related structures, see: Malenkovskaya et al. (2003); Cea-Olivares et al. (1999); Blaszczyk et al. (1996).
Experimental
Crystal data
|
Data collection: SMART-NT (Bruker, 1998); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Brendt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810029703/cv2748sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029703/cv2748Isup2.hkl
A 25-ml Schlenk tube was charged with commercially available (Aldrich) Lawesson's Reagent [(4-C6H4OMe)(P(S)S)2] (6 mmol, 1 molar equivalent) and placed under vacuum for 30 minutes. The solid was then heated to approx. 70 °C and commercially available (Aldrich) cholesterol (12 mmol, 2 molar equivalents) was added in one portion together with 2 ml dry toluene. The temperature was maintained at 70–75 °C until dissolution of all solids were observed, and then stirred for a further 10–20 minutes. At this stage the dithiophosphonic acid had formed and no attempt was made to isolate it. The heat source was removed and the solution was cooled to room temperature. After 30 minutes it was cooled down further to 0 °C with the aid of an ice bath. The acid can be readily deprotonated by adding a few drops (12 mmol in theory, but a slight excess is not detrimental) of triethylamine with vigorous agitation of the solution which led to formation of a white colored precipitate. The material was dried and consolidated with small additions of cold diethyl ether, and filtered on a frit. The isolated air-dried salt can be stored under a nitrogen atmosphere. The salt was dissolved in dichloromethane and layered with hexanes in a stoppered test-tube, but crystal growth proved slow and the test-tube stopper was subsequently removed, allowing the solvents to slowly evaporate at room temperature which led to the growth of a sufficient number of single crystals suitable for X-ray diffraction analysis.
The aromatic, methine, methylene and methyl H atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the aromatic, methylene and methine H and Uiso(H) = 1.5Ueq(C) for the methyl H respectively. Torsion angles for the methyl H were refined from electron density. The aminium H was located in a Fourier difference map and refined isotropically.
The dithiophosphonato monoanion, [S2PR(OR')]- may be described as a hybrid between the related dithiophosphato [S2P(OR)2]- and dithiophosphinato [S2PR2]- species. Of these, the dithiophosphonato version is of most interest for the following reasons: i) it can be considered rare in the chemical literature, particularly as a species that P/S activate natural products such as
(described in this study), and indeed for the majority of main- and transition metals simply non-existent, ii) from the reaction between a common precursor (usually Lawesson's Reagent), and any compound that contains a 1° or 2° alcohol functionality, a tremendous number of new and varied derivatives can be obtained in a facile manner, iii) the synthetic methodology allows for control in the design of the compound to perform reactions and yield new products in both organic and aqueous phases, and iv) solution and solid state 31P{1H} NMR spectroscopy is a valuable tool to obtain mechanistic and structural information on these compounds (van Zyl et al., 2010). In terms of application, this class of compound has demonstrated use in a variety of technological areas such as oligonucleotide synthesis (Beaton et al., 1991), agricultural insecticides (Patnaik, 1992) and -pesticides (Roy, 1990), derivatives of metal ore extraction reagents (Bromberg et al., 1993) and antioxidant additives in the oil and petroleum industry (Klaman, 1984). In future, advances of these compounds as well as their metal complexes will be forthcoming in areas such as materials- and medicinal chemistry. General and convenient methods to dithiophosphonate salt derivatives have been reported (van Zyl et al., 2000).In the title compound, (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related structures (Malenkovskaya et al., 2003; Cea-Olivares et al., 1999; Blaszczyk et al., 1996). Aminium cations link cholesteryl moieties to form infinitely stacked layers along the b axis, supported by N—H···S interactions (see Fig. 2 and Table 1).
Only a few examples of the cholesteryl phosphate moiety exists (CSD show six hits with four usable results). Superimposing these (see Fig. 3) show large variations on the periphery of the molecules due to various packing arrangements found in each. Most notable of these interactions is the two different conformations adopted by the pentane tail of the cholesteryl moiety. The two configurations are differentiated by one group showing interactions to phosphate moieties of the neighbouring molecules.
For applications of dithiophosphonate derivatives, see: Beaton et al. (1991); Patnaik (1992); Roy (1990); Bromberg et al. (1993); Klaman (1984). For information on dithiophosphonate compounds, see: van Zyl et al. (1998, 2000, 2002); van Zyl et al. (2010). For P/S activation of
see: Kvasnica et al. (2008). For related structures, see: Malenkovskaya et al. (2003); Cea-Olivares et al. (1999); Blaszczyk et al. (1996).Data collection: SMART-NT (Bruker, 1998); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Brendt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C6H16N+·C34H52O2PS2− | F(000) = 756 |
Mr = 690.04 | Dx = 1.107 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 714 reflections |
a = 7.6066 (15) Å | θ = 2.5–18° |
b = 8.2407 (16) Å | µ = 0.20 mm−1 |
c = 33.083 (7) Å | T = 293 K |
β = 93.17 (3)° | Needle, colourless |
V = 2070.6 (7) Å3 | 0.46 × 0.08 × 0.08 mm |
Z = 2 |
Bruker SMART 1K CCD diffractometer | 8425 independent reflections |
Radiation source: fine-focus sealed tube | 2925 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.106 |
ω scans | θmax = 28.3°, θmin = 0.6° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −10→9 |
Tmin = 0.914, Tmax = 0.984 | k = −8→10 |
14589 measured reflections | l = −44→41 |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3561P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.066 | (Δ/σ)max = 0.001 |
wR(F2) = 0.159 | Δρmax = 0.29 e Å−3 |
S = 0.93 | Δρmin = −0.28 e Å−3 |
8425 reflections | Absolute structure: Flack (1983), 2970 Friedel pairs |
410 parameters | Absolute structure parameter: 0.02 (12) |
1 restraint |
C6H16N+·C34H52O2PS2− | V = 2070.6 (7) Å3 |
Mr = 690.04 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.6066 (15) Å | µ = 0.20 mm−1 |
b = 8.2407 (16) Å | T = 293 K |
c = 33.083 (7) Å | 0.46 × 0.08 × 0.08 mm |
β = 93.17 (3)° |
Bruker SMART 1K CCD diffractometer | 8425 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2925 reflections with I > 2σ(I) |
Tmin = 0.914, Tmax = 0.984 | Rint = 0.106 |
14589 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.159 | Δρmax = 0.29 e Å−3 |
S = 0.93 | Δρmin = −0.28 e Å−3 |
8425 reflections | Absolute structure: Flack (1983), 2970 Friedel pairs |
410 parameters | Absolute structure parameter: 0.02 (12) |
1 restraint |
Experimental. The intensity data was collected on a Bruker SMART 1 K CCD diffractometer using an exposure time of 10 s/frame. A total of 1315 frames were collected with a frame width of 0.3° covering up to θ = 28.3° with 99.8% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P | 0.4405 (2) | 0.9520 (2) | 0.64139 (5) | 0.0564 (5) | |
S1 | 0.6976 (2) | 0.9298 (2) | 0.63620 (6) | 0.0765 (6) | |
S2 | 0.3618 (2) | 1.1632 (2) | 0.66205 (5) | 0.0787 (6) | |
N | 0.7566 (8) | 0.3414 (8) | 0.64246 (16) | 0.0629 (16) | |
O1 | 0.3661 (5) | 0.8058 (4) | 0.66822 (10) | 0.0582 (12) | |
O2 | 0.0389 (9) | 0.7700 (7) | 0.48803 (16) | 0.117 (2) | |
C1 | 0.3206 (8) | 0.8992 (7) | 0.59454 (18) | 0.0553 (17) | |
C2 | 0.4030 (9) | 0.8534 (9) | 0.5604 (2) | 0.089 (3) | |
H2 | 0.5253 | 0.8519 | 0.5605 | 0.107* | |
C3 | 0.3002 (12) | 0.8082 (11) | 0.5251 (2) | 0.108 (3) | |
H3 | 0.3555 | 0.7742 | 0.5021 | 0.13* | |
C4 | 0.1217 (11) | 0.8144 (9) | 0.5245 (2) | 0.078 (2) | |
C5 | 0.0390 (9) | 0.8652 (7) | 0.5579 (2) | 0.0653 (19) | |
H5 | −0.0831 | 0.8733 | 0.5571 | 0.078* | |
C6 | 0.1382 (9) | 0.9046 (7) | 0.59280 (19) | 0.0632 (18) | |
H6 | 0.081 | 0.9354 | 0.6157 | 0.076* | |
C7 | −0.1478 (13) | 0.7738 (12) | 0.4851 (2) | 0.130 (3) | |
H7A | −0.1928 | 0.6977 | 0.5039 | 0.195* | |
H7B | −0.1893 | 0.7453 | 0.4581 | 0.195* | |
H7C | −0.1878 | 0.881 | 0.4913 | 0.195* | |
C8 | 0.3646 (8) | 0.8128 (7) | 0.71259 (16) | 0.0540 (16) | |
H8 | 0.4108 | 0.9181 | 0.722 | 0.065* | |
C9 | 0.1781 (8) | 0.7960 (9) | 0.72416 (17) | 0.073 (2) | |
H9A | 0.1281 | 0.6959 | 0.7132 | 0.087* | |
H9B | 0.1082 | 0.8859 | 0.7132 | 0.087* | |
C10 | 0.1755 (8) | 0.7948 (8) | 0.77036 (17) | 0.0672 (19) | |
H10A | 0.0545 | 0.785 | 0.7778 | 0.081* | |
H10B | 0.2202 | 0.8979 | 0.7806 | 0.081* | |
C11 | 0.2848 (7) | 0.6567 (8) | 0.79104 (15) | 0.0478 (15) | |
C12 | 0.4698 (8) | 0.6673 (7) | 0.77557 (16) | 0.0491 (15) | |
C13 | 0.4797 (7) | 0.6801 (8) | 0.73037 (16) | 0.0618 (17) | |
H13A | 0.6007 | 0.7006 | 0.724 | 0.074* | |
H13B | 0.4442 | 0.5775 | 0.7181 | 0.074* | |
C14 | 0.2057 (9) | 0.4918 (8) | 0.78016 (18) | 0.085 (2) | |
H14A | 0.2334 | 0.4635 | 0.7531 | 0.127* | |
H14B | 0.0802 | 0.4962 | 0.7818 | 0.127* | |
H14C | 0.2537 | 0.4115 | 0.7987 | 0.127* | |
C15 | 0.2930 (6) | 0.6876 (7) | 0.83762 (16) | 0.0490 (16) | |
H15 | 0.3168 | 0.8036 | 0.8415 | 0.059* | |
C16 | 0.4436 (7) | 0.5964 (7) | 0.86033 (15) | 0.0474 (15) | |
H16 | 0.4254 | 0.4797 | 0.8562 | 0.057* | |
C17 | 0.6186 (6) | 0.6417 (8) | 0.84456 (16) | 0.0597 (17) | |
H17A | 0.6575 | 0.7433 | 0.8568 | 0.072* | |
H17B | 0.7043 | 0.5591 | 0.8526 | 0.072* | |
C18 | 0.6129 (8) | 0.6594 (8) | 0.79945 (17) | 0.0557 (16) | |
H18 | 0.7202 | 0.6653 | 0.7873 | 0.067* | |
C19 | 0.1159 (6) | 0.6524 (8) | 0.85715 (15) | 0.0594 (16) | |
H19A | 0.026 | 0.7225 | 0.8447 | 0.071* | |
H19B | 0.0819 | 0.5412 | 0.8511 | 0.071* | |
C20 | 0.1201 (7) | 0.6770 (8) | 0.90307 (15) | 0.0554 (16) | |
H20A | 0.0083 | 0.643 | 0.913 | 0.067* | |
H20B | 0.135 | 0.7915 | 0.9091 | 0.067* | |
C21 | 0.2691 (7) | 0.5811 (7) | 0.92521 (16) | 0.0449 (15) | |
C22 | 0.4385 (6) | 0.6324 (7) | 0.90520 (14) | 0.0423 (14) | |
H22 | 0.4434 | 0.7509 | 0.9075 | 0.051* | |
C23 | 0.2355 (8) | 0.3976 (7) | 0.92165 (15) | 0.0570 (17) | |
H23A | 0.2346 | 0.366 | 0.8937 | 0.085* | |
H23B | 0.1239 | 0.3722 | 0.9323 | 0.085* | |
H23C | 0.3271 | 0.3401 | 0.9368 | 0.085* | |
C24 | 0.3149 (6) | 0.6274 (6) | 0.96991 (15) | 0.0433 (14) | |
H24 | 0.3076 | 0.7459 | 0.9716 | 0.052* | |
C25 | 0.5127 (7) | 0.5825 (7) | 0.97587 (16) | 0.0527 (16) | |
H25A | 0.5753 | 0.6655 | 0.9917 | 0.063* | |
H25B | 0.5259 | 0.48 | 0.9901 | 0.063* | |
C26 | 0.5878 (7) | 0.5689 (8) | 0.93369 (17) | 0.0583 (17) | |
H26A | 0.6928 | 0.6348 | 0.932 | 0.07* | |
H26B | 0.6161 | 0.4572 | 0.9274 | 0.07* | |
C27 | 0.2062 (7) | 0.5588 (7) | 1.00409 (16) | 0.0478 (15) | |
H27 | 0.2239 | 0.4411 | 1.0047 | 0.057* | |
C28 | 0.0093 (8) | 0.5893 (7) | 0.99762 (17) | 0.0617 (18) | |
H28A | −0.049 | 0.5552 | 1.0212 | 0.093* | |
H28B | −0.0359 | 0.5289 | 0.9745 | 0.093* | |
H28C | −0.0112 | 0.7029 | 0.9931 | 0.093* | |
C29 | 0.2764 (8) | 0.6252 (8) | 1.04439 (15) | 0.0656 (19) | |
H29A | 0.2584 | 0.7418 | 1.044 | 0.079* | |
H29B | 0.4025 | 0.6069 | 1.0464 | 0.079* | |
C30 | 0.2014 (8) | 0.5599 (7) | 1.08297 (16) | 0.0611 (18) | |
H30A | 0.0777 | 0.5885 | 1.0832 | 0.073* | |
H30B | 0.2099 | 0.4425 | 1.0831 | 0.073* | |
C31 | 0.2976 (11) | 0.6267 (10) | 1.12087 (19) | 0.1104 (14) | |
H31A | 0.4189 | 0.5903 | 1.1211 | 0.132* | |
H31B | 0.2988 | 0.7441 | 1.1187 | 0.132* | |
C32 | 0.2273 (11) | 0.5835 (10) | 1.1606 (2) | 0.1104 (14) | |
H32 | 0.2151 | 0.4651 | 1.1612 | 0.132* | |
C33 | 0.0500 (10) | 0.6538 (10) | 1.16635 (19) | 0.1104 (14) | |
H33A | 0.0569 | 0.7701 | 1.1655 | 0.166* | |
H33B | 0.0104 | 0.6204 | 1.1921 | 0.166* | |
H33C | −0.0314 | 0.6163 | 1.1452 | 0.166* | |
C34 | 0.3558 (10) | 0.6306 (10) | 1.19511 (18) | 0.1104 (14) | |
H34A | 0.3734 | 0.7459 | 1.1949 | 0.166* | |
H34B | 0.4662 | 0.5768 | 1.192 | 0.166* | |
H34C | 0.3093 | 0.599 | 1.2203 | 0.166* | |
C35 | 0.9219 (8) | 0.3208 (8) | 0.62051 (19) | 0.0705 (19) | |
H35A | 0.8913 | 0.2858 | 0.593 | 0.085* | |
H35B | 0.9926 | 0.236 | 0.6337 | 0.085* | |
C36 | 1.0308 (9) | 0.4735 (10) | 0.6191 (2) | 0.115 (3) | |
H36A | 0.9634 | 0.5571 | 0.6052 | 0.172* | |
H36B | 1.1353 | 0.4522 | 0.605 | 0.172* | |
H36C | 1.0631 | 0.5084 | 0.6462 | 0.172* | |
C37 | 0.7919 (10) | 0.3745 (9) | 0.6876 (2) | 0.091 (2) | |
H37A | 0.8507 | 0.4785 | 0.6907 | 0.109* | |
H37B | 0.6799 | 0.3828 | 0.7001 | 0.109* | |
C38 | 0.9001 (11) | 0.2499 (10) | 0.7094 (2) | 0.109 (3) | |
H38A | 0.8464 | 0.1454 | 0.7053 | 0.164* | |
H38B | 0.9083 | 0.2748 | 0.7378 | 0.164* | |
H38C | 1.0159 | 0.2488 | 0.6992 | 0.164* | |
C39 | 0.6301 (10) | 0.4630 (10) | 0.6243 (2) | 0.099 (2) | |
H39A | 0.6847 | 0.5693 | 0.6252 | 0.119* | |
H39B | 0.527 | 0.4674 | 0.6402 | 0.119* | |
C40 | 0.5737 (11) | 0.4232 (12) | 0.5813 (2) | 0.130 (3) | |
H40A | 0.6695 | 0.4434 | 0.5642 | 0.195* | |
H40B | 0.475 | 0.4898 | 0.5727 | 0.195* | |
H40C | 0.5406 | 0.3109 | 0.5794 | 0.195* | |
H1 | 0.705 (9) | 0.235 (8) | 0.6428 (19) | 0.11 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P | 0.0556 (11) | 0.0558 (12) | 0.0586 (11) | −0.0041 (10) | 0.0114 (9) | 0.0045 (10) |
S1 | 0.0517 (11) | 0.0771 (14) | 0.1017 (15) | −0.0014 (10) | 0.0143 (10) | −0.0089 (11) |
S2 | 0.0778 (13) | 0.0637 (12) | 0.0961 (14) | 0.0056 (11) | 0.0175 (11) | −0.0043 (11) |
N | 0.068 (4) | 0.053 (4) | 0.068 (4) | 0.000 (4) | 0.008 (3) | −0.003 (3) |
O1 | 0.073 (3) | 0.060 (3) | 0.042 (3) | −0.016 (2) | 0.007 (2) | 0.007 (2) |
O2 | 0.106 (5) | 0.182 (6) | 0.060 (4) | 0.025 (4) | −0.010 (3) | −0.019 (3) |
C1 | 0.053 (4) | 0.063 (4) | 0.050 (4) | 0.002 (3) | 0.006 (3) | 0.017 (3) |
C2 | 0.069 (5) | 0.153 (8) | 0.046 (5) | 0.021 (5) | 0.012 (4) | 0.010 (4) |
C3 | 0.098 (7) | 0.177 (9) | 0.051 (6) | 0.027 (6) | 0.016 (5) | −0.028 (5) |
C4 | 0.070 (6) | 0.107 (6) | 0.058 (6) | 0.012 (5) | −0.006 (5) | 0.002 (4) |
C5 | 0.065 (5) | 0.078 (5) | 0.054 (4) | 0.009 (4) | 0.007 (4) | 0.003 (4) |
C6 | 0.063 (5) | 0.072 (5) | 0.055 (5) | −0.007 (4) | 0.006 (4) | −0.001 (4) |
C7 | 0.120 (9) | 0.177 (10) | 0.087 (6) | −0.010 (7) | −0.037 (6) | −0.024 (6) |
C8 | 0.058 (4) | 0.064 (4) | 0.041 (4) | 0.001 (4) | 0.009 (3) | −0.001 (3) |
C9 | 0.056 (5) | 0.111 (6) | 0.052 (5) | 0.012 (4) | 0.008 (4) | 0.013 (4) |
C10 | 0.046 (4) | 0.106 (6) | 0.051 (4) | 0.011 (4) | 0.004 (3) | 0.009 (4) |
C11 | 0.044 (4) | 0.066 (4) | 0.034 (3) | −0.014 (4) | 0.004 (3) | 0.008 (3) |
C12 | 0.044 (4) | 0.060 (4) | 0.044 (4) | 0.005 (3) | 0.007 (3) | 0.002 (3) |
C13 | 0.051 (4) | 0.077 (5) | 0.058 (4) | 0.002 (4) | 0.010 (3) | 0.005 (4) |
C14 | 0.094 (5) | 0.105 (6) | 0.055 (4) | −0.042 (5) | 0.003 (4) | 0.000 (4) |
C15 | 0.027 (3) | 0.067 (4) | 0.053 (4) | 0.001 (3) | 0.005 (3) | 0.006 (3) |
C16 | 0.036 (4) | 0.059 (4) | 0.047 (4) | −0.001 (3) | −0.003 (3) | −0.001 (3) |
C17 | 0.033 (4) | 0.087 (5) | 0.060 (4) | 0.002 (4) | 0.008 (3) | 0.014 (4) |
C18 | 0.040 (4) | 0.072 (4) | 0.056 (4) | 0.004 (4) | 0.009 (3) | 0.006 (4) |
C19 | 0.033 (4) | 0.089 (5) | 0.056 (4) | 0.007 (4) | −0.003 (3) | 0.010 (4) |
C20 | 0.034 (4) | 0.087 (5) | 0.046 (4) | 0.003 (4) | 0.008 (3) | 0.012 (4) |
C21 | 0.039 (4) | 0.051 (4) | 0.045 (4) | 0.001 (3) | −0.001 (3) | 0.000 (3) |
C22 | 0.032 (3) | 0.053 (4) | 0.041 (4) | 0.000 (3) | −0.006 (3) | 0.001 (3) |
C23 | 0.068 (4) | 0.059 (5) | 0.044 (4) | −0.012 (3) | 0.005 (3) | −0.003 (3) |
C24 | 0.046 (4) | 0.037 (4) | 0.047 (4) | 0.002 (3) | 0.000 (3) | 0.000 (3) |
C25 | 0.043 (4) | 0.064 (4) | 0.049 (4) | −0.005 (3) | −0.009 (3) | 0.000 (3) |
C26 | 0.035 (4) | 0.082 (4) | 0.058 (4) | 0.008 (3) | 0.005 (3) | 0.010 (3) |
C27 | 0.048 (4) | 0.044 (4) | 0.051 (4) | −0.005 (3) | 0.000 (3) | −0.001 (3) |
C28 | 0.059 (5) | 0.065 (5) | 0.062 (4) | 0.003 (3) | 0.019 (3) | 0.004 (3) |
C29 | 0.079 (5) | 0.074 (5) | 0.044 (4) | −0.019 (4) | 0.007 (3) | −0.003 (4) |
C30 | 0.084 (5) | 0.063 (4) | 0.036 (4) | −0.006 (4) | 0.006 (3) | 0.000 (3) |
C31 | 0.152 (4) | 0.123 (4) | 0.056 (2) | 0.010 (3) | 0.008 (3) | −0.006 (3) |
C32 | 0.152 (4) | 0.123 (4) | 0.056 (2) | 0.010 (3) | 0.008 (3) | −0.006 (3) |
C33 | 0.152 (4) | 0.123 (4) | 0.056 (2) | 0.010 (3) | 0.008 (3) | −0.006 (3) |
C34 | 0.152 (4) | 0.123 (4) | 0.056 (2) | 0.010 (3) | 0.008 (3) | −0.006 (3) |
C35 | 0.068 (5) | 0.073 (5) | 0.071 (5) | 0.002 (4) | 0.010 (4) | −0.005 (4) |
C36 | 0.091 (6) | 0.086 (6) | 0.171 (8) | −0.005 (5) | 0.044 (5) | 0.026 (6) |
C37 | 0.103 (6) | 0.091 (6) | 0.079 (6) | −0.020 (5) | 0.016 (5) | −0.034 (4) |
C38 | 0.111 (7) | 0.132 (8) | 0.084 (6) | −0.014 (6) | −0.008 (5) | 0.007 (5) |
C39 | 0.088 (6) | 0.074 (5) | 0.135 (7) | 0.007 (5) | 0.004 (5) | 0.017 (6) |
C40 | 0.116 (7) | 0.167 (9) | 0.105 (7) | 0.010 (7) | −0.011 (6) | 0.054 (7) |
P—O1 | 1.617 (4) | C21—C23 | 1.537 (7) |
P—C1 | 1.807 (6) | C21—C22 | 1.540 (7) |
P—S2 | 1.975 (2) | C21—C24 | 1.548 (7) |
P—S1 | 1.981 (2) | C22—C26 | 1.528 (7) |
N—C39 | 1.493 (8) | C22—H22 | 0.98 |
N—C35 | 1.496 (7) | C23—H23A | 0.96 |
N—C37 | 1.526 (8) | C23—H23B | 0.96 |
N—H1 | 0.96 (7) | C23—H23C | 0.96 |
O1—C8 | 1.470 (6) | C24—C27 | 1.545 (7) |
O2—C4 | 1.379 (8) | C24—C25 | 1.551 (7) |
O2—C7 | 1.419 (9) | C24—H24 | 0.98 |
C1—C2 | 1.374 (8) | C25—C26 | 1.541 (7) |
C1—C6 | 1.387 (7) | C25—H25A | 0.97 |
C2—C3 | 1.421 (9) | C25—H25B | 0.97 |
C2—H2 | 0.93 | C26—H26A | 0.97 |
C3—C4 | 1.357 (9) | C26—H26B | 0.97 |
C3—H3 | 0.93 | C27—C29 | 1.511 (7) |
C4—C5 | 1.367 (8) | C27—C28 | 1.522 (7) |
C5—C6 | 1.383 (8) | C27—H27 | 0.98 |
C5—H5 | 0.93 | C28—H28A | 0.96 |
C6—H6 | 0.93 | C28—H28B | 0.96 |
C7—H7A | 0.96 | C28—H28C | 0.96 |
C7—H7B | 0.96 | C29—C30 | 1.525 (7) |
C7—H7C | 0.96 | C29—H29A | 0.97 |
C8—C9 | 1.496 (7) | C29—H29B | 0.97 |
C8—C13 | 1.501 (7) | C30—C31 | 1.520 (8) |
C8—H8 | 0.98 | C30—H30A | 0.97 |
C9—C10 | 1.530 (7) | C30—H30B | 0.97 |
C9—H9A | 0.97 | C31—C32 | 1.488 (9) |
C9—H9B | 0.97 | C31—H31A | 0.97 |
C10—C11 | 1.546 (8) | C31—H31B | 0.97 |
C10—H10A | 0.97 | C32—C33 | 1.490 (9) |
C10—H10B | 0.97 | C32—C34 | 1.512 (9) |
C11—C14 | 1.521 (8) | C32—H32 | 0.98 |
C11—C12 | 1.527 (7) | C33—H33A | 0.96 |
C11—C15 | 1.559 (7) | C33—H33B | 0.96 |
C12—C18 | 1.311 (7) | C33—H33C | 0.96 |
C12—C13 | 1.505 (7) | C34—H34A | 0.96 |
C13—H13A | 0.97 | C34—H34B | 0.96 |
C13—H13B | 0.97 | C34—H34C | 0.96 |
C14—H14A | 0.96 | C35—C36 | 1.508 (9) |
C14—H14B | 0.96 | C35—H35A | 0.97 |
C14—H14C | 0.96 | C35—H35B | 0.97 |
C15—C16 | 1.532 (7) | C36—H36A | 0.96 |
C15—C19 | 1.553 (6) | C36—H36B | 0.96 |
C15—H15 | 0.98 | C36—H36C | 0.96 |
C16—C17 | 1.503 (6) | C37—C38 | 1.479 (9) |
C16—C22 | 1.516 (6) | C37—H37A | 0.97 |
C16—H16 | 0.98 | C37—H37B | 0.97 |
C17—C18 | 1.498 (7) | C38—H38A | 0.96 |
C17—H17A | 0.97 | C38—H38B | 0.96 |
C17—H17B | 0.97 | C38—H38C | 0.96 |
C18—H18 | 0.93 | C39—C40 | 1.498 (9) |
C19—C20 | 1.531 (6) | C39—H39A | 0.97 |
C19—H19A | 0.97 | C39—H39B | 0.97 |
C19—H19B | 0.97 | C40—H40A | 0.96 |
C20—C21 | 1.534 (7) | C40—H40B | 0.96 |
C20—H20A | 0.97 | C40—H40C | 0.96 |
C20—H20B | 0.97 | ||
O1—P—C1 | 96.7 (2) | C22—C21—C24 | 101.2 (4) |
O1—P—S2 | 110.16 (16) | C16—C22—C26 | 118.6 (4) |
C1—P—S2 | 111.1 (2) | C16—C22—C21 | 115.8 (4) |
O1—P—S1 | 110.86 (17) | C26—C22—C21 | 104.6 (4) |
C1—P—S1 | 110.9 (2) | C16—C22—H22 | 105.6 |
S2—P—S1 | 115.52 (11) | C26—C22—H22 | 105.6 |
C39—N—C35 | 114.9 (5) | C21—C22—H22 | 105.6 |
C39—N—C37 | 110.4 (6) | C21—C23—H23A | 109.5 |
C35—N—C37 | 112.8 (5) | C21—C23—H23B | 109.5 |
C39—N—H1 | 111 (4) | H23A—C23—H23B | 109.5 |
C35—N—H1 | 105 (4) | C21—C23—H23C | 109.5 |
C37—N—H1 | 102 (4) | H23A—C23—H23C | 109.5 |
C8—O1—P | 122.8 (3) | H23B—C23—H23C | 109.5 |
C4—O2—C7 | 117.4 (6) | C27—C24—C21 | 120.5 (4) |
C2—C1—C6 | 118.4 (6) | C27—C24—C25 | 112.0 (4) |
C2—C1—P | 122.6 (5) | C21—C24—C25 | 103.2 (4) |
C6—C1—P | 119.0 (5) | C27—C24—H24 | 106.8 |
C1—C2—C3 | 119.6 (7) | C21—C24—H24 | 106.8 |
C1—C2—H2 | 120.2 | C25—C24—H24 | 106.8 |
C3—C2—H2 | 120.2 | C26—C25—C24 | 107.9 (4) |
C4—C3—C2 | 120.4 (7) | C26—C25—H25A | 110.1 |
C4—C3—H3 | 119.8 | C24—C25—H25A | 110.1 |
C2—C3—H3 | 119.8 | C26—C25—H25B | 110.1 |
C3—C4—C5 | 120.3 (7) | C24—C25—H25B | 110.1 |
C3—C4—O2 | 114.3 (7) | H25A—C25—H25B | 108.4 |
C5—C4—O2 | 125.4 (7) | C22—C26—C25 | 103.5 (4) |
C4—C5—C6 | 119.5 (7) | C22—C26—H26A | 111.1 |
C4—C5—H5 | 120.2 | C25—C26—H26A | 111.1 |
C6—C5—H5 | 120.2 | C22—C26—H26B | 111.1 |
C5—C6—C1 | 121.7 (6) | C25—C26—H26B | 111.1 |
C5—C6—H6 | 119.2 | H26A—C26—H26B | 109 |
C1—C6—H6 | 119.2 | C29—C27—C28 | 111.2 (5) |
O2—C7—H7A | 109.5 | C29—C27—C24 | 109.7 (5) |
O2—C7—H7B | 109.5 | C28—C27—C24 | 113.5 (5) |
H7A—C7—H7B | 109.5 | C29—C27—H27 | 107.4 |
O2—C7—H7C | 109.5 | C28—C27—H27 | 107.4 |
H7A—C7—H7C | 109.5 | C24—C27—H27 | 107.4 |
H7B—C7—H7C | 109.5 | C27—C28—H28A | 109.5 |
O1—C8—C9 | 108.2 (5) | C27—C28—H28B | 109.5 |
O1—C8—C13 | 109.0 (4) | H28A—C28—H28B | 109.5 |
C9—C8—C13 | 111.9 (5) | C27—C28—H28C | 109.5 |
O1—C8—H8 | 109.2 | H28A—C28—H28C | 109.5 |
C9—C8—H8 | 109.2 | H28B—C28—H28C | 109.5 |
C13—C8—H8 | 109.2 | C27—C29—C30 | 118.7 (5) |
C8—C9—C10 | 108.7 (5) | C27—C29—H29A | 107.6 |
C8—C9—H9A | 109.9 | C30—C29—H29A | 107.6 |
C10—C9—H9A | 109.9 | C27—C29—H29B | 107.6 |
C8—C9—H9B | 109.9 | C30—C29—H29B | 107.6 |
C10—C9—H9B | 109.9 | H29A—C29—H29B | 107.1 |
H9A—C9—H9B | 108.3 | C31—C30—C29 | 112.2 (5) |
C9—C10—C11 | 114.2 (5) | C31—C30—H30A | 109.2 |
C9—C10—H10A | 108.7 | C29—C30—H30A | 109.2 |
C11—C10—H10A | 108.7 | C31—C30—H30B | 109.2 |
C9—C10—H10B | 108.7 | C29—C30—H30B | 109.2 |
C11—C10—H10B | 108.7 | H30A—C30—H30B | 107.9 |
H10A—C10—H10B | 107.6 | C32—C31—C30 | 117.5 (7) |
C14—C11—C12 | 109.3 (5) | C32—C31—H31A | 107.9 |
C14—C11—C10 | 110.9 (5) | C30—C31—H31A | 107.9 |
C12—C11—C10 | 107.0 (5) | C32—C31—H31B | 107.9 |
C14—C11—C15 | 111.9 (4) | C30—C31—H31B | 107.9 |
C12—C11—C15 | 109.6 (4) | H31A—C31—H31B | 107.2 |
C10—C11—C15 | 108.0 (5) | C31—C32—C33 | 113.1 (7) |
C18—C12—C13 | 121.1 (5) | C31—C32—C34 | 110.9 (7) |
C18—C12—C11 | 123.1 (5) | C33—C32—C34 | 110.8 (6) |
C13—C12—C11 | 115.8 (5) | C31—C32—H32 | 107.3 |
C8—C13—C12 | 112.3 (5) | C33—C32—H32 | 107.3 |
C8—C13—H13A | 109.1 | C34—C32—H32 | 107.3 |
C12—C13—H13A | 109.1 | C32—C33—H33A | 109.5 |
C8—C13—H13B | 109.1 | C32—C33—H33B | 109.5 |
C12—C13—H13B | 109.1 | H33A—C33—H33B | 109.5 |
H13A—C13—H13B | 107.9 | C32—C33—H33C | 109.5 |
C11—C14—H14A | 109.5 | H33A—C33—H33C | 109.5 |
C11—C14—H14B | 109.5 | H33B—C33—H33C | 109.5 |
H14A—C14—H14B | 109.5 | C32—C34—H34A | 109.5 |
C11—C14—H14C | 109.5 | C32—C34—H34B | 109.5 |
H14A—C14—H14C | 109.5 | H34A—C34—H34B | 109.5 |
H14B—C14—H14C | 109.5 | C32—C34—H34C | 109.5 |
C16—C15—C19 | 110.3 (4) | H34A—C34—H34C | 109.5 |
C16—C15—C11 | 113.1 (4) | H34B—C34—H34C | 109.5 |
C19—C15—C11 | 113.1 (4) | N—C35—C36 | 113.5 (6) |
C16—C15—H15 | 106.6 | N—C35—H35A | 108.9 |
C19—C15—H15 | 106.6 | C36—C35—H35A | 108.9 |
C11—C15—H15 | 106.6 | N—C35—H35B | 108.9 |
C17—C16—C22 | 111.3 (4) | C36—C35—H35B | 108.9 |
C17—C16—C15 | 111.1 (4) | H35A—C35—H35B | 107.7 |
C22—C16—C15 | 109.0 (4) | C35—C36—H36A | 109.5 |
C17—C16—H16 | 108.5 | C35—C36—H36B | 109.5 |
C22—C16—H16 | 108.5 | H36A—C36—H36B | 109.5 |
C15—C16—H16 | 108.5 | C35—C36—H36C | 109.5 |
C18—C17—C16 | 113.1 (5) | H36A—C36—H36C | 109.5 |
C18—C17—H17A | 108.9 | H36B—C36—H36C | 109.5 |
C16—C17—H17A | 108.9 | C38—C37—N | 114.6 (6) |
C18—C17—H17B | 108.9 | C38—C37—H37A | 108.6 |
C16—C17—H17B | 108.9 | N—C37—H37A | 108.6 |
H17A—C17—H17B | 107.8 | C38—C37—H37B | 108.6 |
C12—C18—C17 | 125.6 (5) | N—C37—H37B | 108.6 |
C12—C18—H18 | 117.2 | H37A—C37—H37B | 107.6 |
C17—C18—H18 | 117.2 | C37—C38—H38A | 109.5 |
C20—C19—C15 | 114.7 (4) | C37—C38—H38B | 109.5 |
C20—C19—H19A | 108.6 | H38A—C38—H38B | 109.5 |
C15—C19—H19A | 108.6 | C37—C38—H38C | 109.5 |
C20—C19—H19B | 108.6 | H38A—C38—H38C | 109.5 |
C15—C19—H19B | 108.6 | H38B—C38—H38C | 109.5 |
H19A—C19—H19B | 107.6 | N—C39—C40 | 112.3 (7) |
C19—C20—C21 | 112.3 (5) | N—C39—H39A | 109.1 |
C19—C20—H20A | 109.1 | C40—C39—H39A | 109.1 |
C21—C20—H20A | 109.1 | N—C39—H39B | 109.1 |
C19—C20—H20B | 109.1 | C40—C39—H39B | 109.1 |
C21—C20—H20B | 109.1 | H39A—C39—H39B | 107.9 |
H20A—C20—H20B | 107.9 | C39—C40—H40A | 109.5 |
C20—C21—C23 | 110.8 (5) | C39—C40—H40B | 109.5 |
C20—C21—C22 | 105.5 (4) | H40A—C40—H40B | 109.5 |
C23—C21—C22 | 112.1 (5) | C39—C40—H40C | 109.5 |
C20—C21—C24 | 116.8 (5) | H40A—C40—H40C | 109.5 |
C23—C21—C24 | 110.1 (4) | H40B—C40—H40C | 109.5 |
C1—P—O1—C8 | −157.5 (4) | C22—C16—C17—C18 | −161.6 (5) |
S2—P—O1—C8 | −42.0 (4) | C15—C16—C17—C18 | −40.0 (7) |
S1—P—O1—C8 | 87.1 (4) | C13—C12—C18—C17 | −178.1 (6) |
O1—P—C1—C2 | −116.5 (6) | C11—C12—C18—C17 | −0.9 (11) |
S2—P—C1—C2 | 128.9 (5) | C16—C17—C18—C12 | 12.8 (9) |
S1—P—C1—C2 | −1.1 (6) | C16—C15—C19—C20 | 50.7 (7) |
O1—P—C1—C6 | 63.4 (5) | C11—C15—C19—C20 | 178.5 (5) |
S2—P—C1—C6 | −51.3 (5) | C15—C19—C20—C21 | −53.6 (7) |
S1—P—C1—C6 | 178.7 (4) | C19—C20—C21—C23 | −67.2 (6) |
C6—C1—C2—C3 | −2.0 (10) | C19—C20—C21—C22 | 54.3 (6) |
P—C1—C2—C3 | 177.9 (6) | C19—C20—C21—C24 | 165.7 (5) |
C1—C2—C3—C4 | 1.8 (13) | C17—C16—C22—C26 | −50.9 (7) |
C2—C3—C4—C5 | 0.4 (13) | C15—C16—C22—C26 | −173.7 (5) |
C2—C3—C4—O2 | 178.9 (7) | C17—C16—C22—C21 | −176.4 (5) |
C7—O2—C4—C3 | −179.9 (8) | C15—C16—C22—C21 | 60.7 (6) |
C7—O2—C4—C5 | −1.5 (12) | C20—C21—C22—C16 | −60.7 (6) |
C3—C4—C5—C6 | −2.4 (11) | C23—C21—C22—C16 | 59.9 (6) |
O2—C4—C5—C6 | 179.3 (6) | C24—C21—C22—C16 | 177.2 (5) |
C4—C5—C6—C1 | 2.2 (9) | C20—C21—C22—C26 | 166.9 (5) |
C2—C1—C6—C5 | 0.0 (9) | C23—C21—C22—C26 | −72.5 (5) |
P—C1—C6—C5 | −179.9 (5) | C24—C21—C22—C26 | 44.8 (5) |
P—O1—C8—C9 | 120.6 (5) | C20—C21—C24—C27 | 82.4 (6) |
P—O1—C8—C13 | −117.5 (5) | C23—C21—C24—C27 | −45.1 (7) |
O1—C8—C9—C10 | 177.3 (5) | C22—C21—C24—C27 | −163.8 (5) |
C13—C8—C9—C10 | 57.2 (7) | C20—C21—C24—C25 | −151.9 (5) |
C8—C9—C10—C11 | −59.0 (7) | C23—C21—C24—C25 | 80.7 (5) |
C9—C10—C11—C14 | −65.7 (6) | C22—C21—C24—C25 | −38.0 (5) |
C9—C10—C11—C12 | 53.5 (7) | C27—C24—C25—C26 | 149.7 (5) |
C9—C10—C11—C15 | 171.4 (5) | C21—C24—C25—C26 | 18.6 (6) |
C14—C11—C12—C18 | −106.3 (7) | C16—C22—C26—C25 | −163.8 (5) |
C10—C11—C12—C18 | 133.5 (6) | C21—C22—C26—C25 | −33.0 (6) |
C15—C11—C12—C18 | 16.7 (9) | C24—C25—C26—C22 | 8.6 (6) |
C14—C11—C12—C13 | 71.1 (6) | C21—C24—C27—C29 | −179.0 (5) |
C10—C11—C12—C13 | −49.1 (7) | C25—C24—C27—C29 | 59.4 (6) |
C15—C11—C12—C13 | −166.0 (5) | C21—C24—C27—C28 | −54.0 (7) |
O1—C8—C13—C12 | −173.7 (5) | C25—C24—C27—C28 | −175.6 (5) |
C9—C8—C13—C12 | −54.1 (7) | C28—C27—C29—C30 | 60.0 (7) |
C18—C12—C13—C8 | −131.3 (6) | C24—C27—C29—C30 | −173.6 (5) |
C11—C12—C13—C8 | 51.3 (7) | C27—C29—C30—C31 | 174.5 (6) |
C14—C11—C15—C16 | 76.9 (6) | C29—C30—C31—C32 | 174.9 (6) |
C12—C11—C15—C16 | −44.6 (7) | C30—C31—C32—C33 | −66.0 (9) |
C10—C11—C15—C16 | −160.8 (5) | C30—C31—C32—C34 | 168.9 (6) |
C14—C11—C15—C19 | −49.4 (7) | C39—N—C35—C36 | 61.5 (8) |
C12—C11—C15—C19 | −170.9 (5) | C37—N—C35—C36 | −66.2 (8) |
C10—C11—C15—C19 | 72.9 (6) | C39—N—C37—C38 | 173.5 (7) |
C19—C15—C16—C17 | −174.3 (5) | C35—N—C37—C38 | −56.5 (8) |
C11—C15—C16—C17 | 57.9 (6) | C35—N—C39—C40 | 58.3 (8) |
C19—C15—C16—C22 | −51.4 (6) | C37—N—C39—C40 | −172.8 (6) |
C11—C15—C16—C22 | −179.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H1···S1i | 0.96 (7) | 2.53 (7) | 3.426 (7) | 156 (5) |
N—H1···S2i | 0.96 (7) | 2.78 (7) | 3.437 (6) | 126 (5) |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C6H16N+·C34H52O2PS2− |
Mr | 690.04 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 7.6066 (15), 8.2407 (16), 33.083 (7) |
β (°) | 93.17 (3) |
V (Å3) | 2070.6 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.46 × 0.08 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.914, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14589, 8425, 2925 |
Rint | 0.106 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.159, 0.93 |
No. of reflections | 8425 |
No. of parameters | 410 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.28 |
Absolute structure | Flack (1983), 2970 Friedel pairs |
Absolute structure parameter | 0.02 (12) |
Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SAINT-Plus and XPREP (Bruker, 1999), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Brendt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N—H1···S1i | 0.96 (7) | 2.53 (7) | 3.426 (7) | 156 (5) |
N—H1···S2i | 0.96 (7) | 2.78 (7) | 3.437 (6) | 126 (5) |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors thank Mintek (Project AuTEK), South Africa, for financial support of this project. The University of Witwatersrand is thanked for the use of their diffractometer.
References
Beaton, G., Dellinger, D., Marshall, W. S. & Caruthers, M. H. (1991). Oligonucleotides analogues, edited by F. Eckstein, pp. 109–135. Google Scholar
Blaszczyk, J., Wieczorek, M. W., Okruszek, A., Sierzchala, A., Kobylanska, A. & Stec, W. J. (1996). J. Chem. Cryst. 26, 33–42. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Brendt, M. (2001). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany. Google Scholar
Bromberg, L., Lewin, I. & Warshawsky, A. (1993). Hydrometallurgy, 33, 59–71. CrossRef CAS Web of Science Google Scholar
Bruker (1998). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Cea-Olivares, R., Lopez-Cardoso, M. & Toscano, R. A. (1999). Monatsh. Chem. 130, 1129–1136. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Klaman, D. (1984). Lubricants and Related Products. Weinheim: Verlag Chemie. Google Scholar
Kvasnica, M., Rudovska, I., Cisarova, I. & Sarek, J. (2008). Tetrahedron, 64, 3736–3743. Web of Science CSD CrossRef CAS Google Scholar
Malenkovskaya, M. A., Predvoditelev, D. A., Belsky, V. K. & Nifant'ev, E. E. (2003). Zh. Obshch. Khim. 73, 1976–1983. Google Scholar
Patnaik, P. (1992). A Comprehensive Guide to Hazardous Properties of Chemical Substances. New York: Von Nostrand Reinhold. Google Scholar
Roy, N. K. (1990). Pesticides (Annu. Rev. 1989–1990), pp. 13–20. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
van Zyl, W. E. (2010). Comment. Inorg. Chem. 31, 13–45. Web of Science CrossRef CAS Google Scholar
van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132. Web of Science CrossRef CAS Google Scholar
van Zyl, W. E., López-de-Luzuriaga, J. M., Mohamed, A. A., Staples, R. J. & Fackler, J. P. (2002). Inorg. Chem. 41, 4579–4589. Web of Science CSD CrossRef PubMed CAS Google Scholar
van Zyl, W. E., Staples, R. J. & Fackler, J. P. (1998). Inorg. Chem. Commun. 1, 51–54. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dithiophosphonato monoanion, [S2PR(OR')]- may be described as a hybrid between the related dithiophosphato [S2P(OR)2]- and dithiophosphinato [S2PR2]- species. Of these, the dithiophosphonato version is of most interest for the following reasons: i) it can be considered rare in the chemical literature, particularly as a species that P/S activate natural products such as steroids (described in this study), and indeed for the majority of main- and transition metals simply non-existent, ii) from the reaction between a common precursor (usually Lawesson's Reagent), and any compound that contains a 1° or 2° alcohol functionality, a tremendous number of new and varied derivatives can be obtained in a facile manner, iii) the synthetic methodology allows for control in the design of the compound to perform reactions and yield new products in both organic and aqueous phases, and iv) solution and solid state 31P{1H} NMR spectroscopy is a valuable tool to obtain mechanistic and structural information on these compounds (van Zyl et al., 2010). In terms of application, this class of compound has demonstrated use in a variety of technological areas such as oligonucleotide synthesis (Beaton et al., 1991), agricultural insecticides (Patnaik, 1992) and -pesticides (Roy, 1990), derivatives of metal ore extraction reagents (Bromberg et al., 1993) and antioxidant additives in the oil and petroleum industry (Klaman, 1984). In future, advances of these compounds as well as their metal complexes will be forthcoming in areas such as materials- and medicinal chemistry. General and convenient methods to dithiophosphonate salt derivatives have been reported (van Zyl et al., 2000).
In the title compound, (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related structures (Malenkovskaya et al., 2003; Cea-Olivares et al., 1999; Blaszczyk et al., 1996). Aminium cations link cholesteryl moieties to form infinitely stacked layers along the b axis, supported by N—H···S interactions (see Fig. 2 and Table 1).
Only a few examples of the cholesteryl phosphate moiety exists (CSD show six hits with four usable results). Superimposing these (see Fig. 3) show large variations on the periphery of the molecules due to various packing arrangements found in each. Most notable of these interactions is the two different conformations adopted by the pentane tail of the cholesteryl moiety. The two configurations are differentiated by one group showing interactions to phosphate moieties of the neighbouring molecules.