organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium O-3β-cholest-5-en-3-yl (4-meth­­oxy­phen­yl)di­thio­phospho­nate

aDepartment of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: vanzylw@ukzn.ac.za

(Received 20 July 2010; accepted 26 July 2010; online 31 July 2010)

In the crystal structure of the title compound, C6H16N+·C34H52O2PS2 or [(CH3CH2)3NH]+·[C34H52O2PS2], the cation and anion are paired via weak, inter­molecular, bifurcated N—H⋯(S,S) hydrogen bonds. The cholesteryl units form an alternating (herringbone) motif as well as an infinitely stacked layered structure along the b axis. The P—S bond lengths [1.975 (2) and 1.981 (2) Å compared with ca 1.92 Å for a formal P=S double bond and with ca 2.01 Å for a P—S single bond] suggest delocalization of the negative charge between the P—S bonds. A distorted tetra­hedral geometry around the P atom is revealed by non-ideal O—P—C and S—P—S bond angles of 96.7 (2) and 115.52 (11)°, respectively.

Related literature

For applications of dithio­phospho­nate derivatives, see: Beaton et al. (1991[Beaton, G., Dellinger, D., Marshall, W. S. & Caruthers, M. H. (1991). Oligonucleotides analogues, edited by F. Eckstein, pp. 109-135.]); Patnaik (1992[Patnaik, P. (1992). A Comprehensive Guide to Hazardous Properties of Chemical Substances. New York: Von Nostrand Reinhold.]); Roy (1990[Roy, N. K. (1990). Pesticides (Annu. Rev. 1989-1990), pp. 13-20.]); Bromberg et al. (1993[Bromberg, L., Lewin, I. & Warshawsky, A. (1993). Hydrometallurgy, 33, 59-71.]); Klaman (1984[Klaman, D. (1984). Lubricants and Related Products. Weinheim: Verlag Chemie.]). For information on dithio­phospho­nate compounds, see: van Zyl et al. (1998[van Zyl, W. E., Staples, R. J. & Fackler, J. P. (1998). Inorg. Chem. Commun. 1, 51-54.], 2000[van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117-132.], 2002[van Zyl, W. E., López-de-Luzuriaga, J. M., Mohamed, A. A., Staples, R. J. & Fackler, J. P. (2002). Inorg. Chem. 41, 4579-4589.]); van Zyl et al. (2010[van Zyl, W. E. (2010). Comment. Inorg. Chem. 31, 13-45.]). For P/S activation of steroids, see: Kvasnica et al. (2008[Kvasnica, M., Rudovska, I., Cisarova, I. & Sarek, J. (2008). Tetrahedron, 64, 3736-3743.]). For related structures, see: Malenkovskaya et al. (2003[Malenkovskaya, M. A., Predvoditelev, D. A., Belsky, V. K. & Nifant'ev, E. E. (2003). Zh. Obshch. Khim. 73, 1976-1983.]); Cea-Olivares et al. (1999[Cea-Olivares, R., Lopez-Cardoso, M. & Toscano, R. A. (1999). Monatsh. Chem. 130, 1129-1136.]); Blaszczyk et al. (1996[Blaszczyk, J., Wieczorek, M. W., Okruszek, A., Sierzchala, A., Kobylanska, A. & Stec, W. J. (1996). J. Chem. Cryst. 26, 33-42.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C34H52O2PS2

  • Mr = 690.04

  • Monoclinic, P 21

  • a = 7.6066 (15) Å

  • b = 8.2407 (16) Å

  • c = 33.083 (7) Å

  • β = 93.17 (3)°

  • V = 2070.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.46 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.984

  • 14589 measured reflections

  • 8425 independent reflections

  • 2925 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.159

  • S = 0.93

  • 8425 reflections

  • 410 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2970 Friedel pairs

  • Flack parameter: 0.02 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯S1i 0.96 (7) 2.53 (7) 3.426 (7) 156 (5)
N—H1⋯S2i 0.96 (7) 2.78 (7) 3.437 (6) 126 (5)
Symmetry code: (i) x, y-1, z.

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 1999[Bruker (1999). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Brendt, 2001[Brandenburg, K. & Brendt, M. (2001). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The dithiophosphonato monoanion, [S2PR(OR')]- may be described as a hybrid between the related dithiophosphato [S2P(OR)2]- and dithiophosphinato [S2PR2]- species. Of these, the dithiophosphonato version is of most interest for the following reasons: i) it can be considered rare in the chemical literature, particularly as a species that P/S activate natural products such as steroids (described in this study), and indeed for the majority of main- and transition metals simply non-existent, ii) from the reaction between a common precursor (usually Lawesson's Reagent), and any compound that contains a 1° or 2° alcohol functionality, a tremendous number of new and varied derivatives can be obtained in a facile manner, iii) the synthetic methodology allows for control in the design of the compound to perform reactions and yield new products in both organic and aqueous phases, and iv) solution and solid state 31P{1H} NMR spectroscopy is a valuable tool to obtain mechanistic and structural information on these compounds (van Zyl et al., 2010). In terms of application, this class of compound has demonstrated use in a variety of technological areas such as oligonucleotide synthesis (Beaton et al., 1991), agricultural insecticides (Patnaik, 1992) and -pesticides (Roy, 1990), derivatives of metal ore extraction reagents (Bromberg et al., 1993) and antioxidant additives in the oil and petroleum industry (Klaman, 1984). In future, advances of these compounds as well as their metal complexes will be forthcoming in areas such as materials- and medicinal chemistry. General and convenient methods to dithiophosphonate salt derivatives have been reported (van Zyl et al., 2000).

In the title compound, (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related structures (Malenkovskaya et al., 2003; Cea-Olivares et al., 1999; Blaszczyk et al., 1996). Aminium cations link cholesteryl moieties to form infinitely stacked layers along the b axis, supported by N—H···S interactions (see Fig. 2 and Table 1).

Only a few examples of the cholesteryl phosphate moiety exists (CSD show six hits with four usable results). Superimposing these (see Fig. 3) show large variations on the periphery of the molecules due to various packing arrangements found in each. Most notable of these interactions is the two different conformations adopted by the pentane tail of the cholesteryl moiety. The two configurations are differentiated by one group showing interactions to phosphate moieties of the neighbouring molecules.

Related literature top

For applications of dithiophosphonate derivatives, see: Beaton et al. (1991); Patnaik (1992); Roy (1990); Bromberg et al. (1993); Klaman (1984). For information on dithiophosphonate compounds, see: van Zyl et al. (1998, 2000, 2002); van Zyl et al. (2010). For P/S activation of steroids, see: Kvasnica et al. (2008). For related structures, see: Malenkovskaya et al. (2003); Cea-Olivares et al. (1999); Blaszczyk et al. (1996).

Experimental top

A 25-ml Schlenk tube was charged with commercially available (Aldrich) Lawesson's Reagent [(4-C6H4OMe)(P(S)S)2] (6 mmol, 1 molar equivalent) and placed under vacuum for 30 minutes. The solid was then heated to approx. 70 °C and commercially available (Aldrich) cholesterol (12 mmol, 2 molar equivalents) was added in one portion together with 2 ml dry toluene. The temperature was maintained at 70–75 °C until dissolution of all solids were observed, and then stirred for a further 10–20 minutes. At this stage the dithiophosphonic acid had formed and no attempt was made to isolate it. The heat source was removed and the solution was cooled to room temperature. After 30 minutes it was cooled down further to 0 °C with the aid of an ice bath. The acid can be readily deprotonated by adding a few drops (12 mmol in theory, but a slight excess is not detrimental) of triethylamine with vigorous agitation of the solution which led to formation of a white colored precipitate. The material was dried and consolidated with small additions of cold diethyl ether, and filtered on a frit. The isolated air-dried salt can be stored under a nitrogen atmosphere. The salt was dissolved in dichloromethane and layered with hexanes in a stoppered test-tube, but crystal growth proved slow and the test-tube stopper was subsequently removed, allowing the solvents to slowly evaporate at room temperature which led to the growth of a sufficient number of single crystals suitable for X-ray diffraction analysis.

Refinement top

The aromatic, methine, methylene and methyl H atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the aromatic, methylene and methine H and Uiso(H) = 1.5Ueq(C) for the methyl H respectively. Torsion angles for the methyl H were refined from electron density. The aminium H was located in a Fourier difference map and refined isotropically.

Structure description top

The dithiophosphonato monoanion, [S2PR(OR')]- may be described as a hybrid between the related dithiophosphato [S2P(OR)2]- and dithiophosphinato [S2PR2]- species. Of these, the dithiophosphonato version is of most interest for the following reasons: i) it can be considered rare in the chemical literature, particularly as a species that P/S activate natural products such as steroids (described in this study), and indeed for the majority of main- and transition metals simply non-existent, ii) from the reaction between a common precursor (usually Lawesson's Reagent), and any compound that contains a 1° or 2° alcohol functionality, a tremendous number of new and varied derivatives can be obtained in a facile manner, iii) the synthetic methodology allows for control in the design of the compound to perform reactions and yield new products in both organic and aqueous phases, and iv) solution and solid state 31P{1H} NMR spectroscopy is a valuable tool to obtain mechanistic and structural information on these compounds (van Zyl et al., 2010). In terms of application, this class of compound has demonstrated use in a variety of technological areas such as oligonucleotide synthesis (Beaton et al., 1991), agricultural insecticides (Patnaik, 1992) and -pesticides (Roy, 1990), derivatives of metal ore extraction reagents (Bromberg et al., 1993) and antioxidant additives in the oil and petroleum industry (Klaman, 1984). In future, advances of these compounds as well as their metal complexes will be forthcoming in areas such as materials- and medicinal chemistry. General and convenient methods to dithiophosphonate salt derivatives have been reported (van Zyl et al., 2000).

In the title compound, (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related structures (Malenkovskaya et al., 2003; Cea-Olivares et al., 1999; Blaszczyk et al., 1996). Aminium cations link cholesteryl moieties to form infinitely stacked layers along the b axis, supported by N—H···S interactions (see Fig. 2 and Table 1).

Only a few examples of the cholesteryl phosphate moiety exists (CSD show six hits with four usable results). Superimposing these (see Fig. 3) show large variations on the periphery of the molecules due to various packing arrangements found in each. Most notable of these interactions is the two different conformations adopted by the pentane tail of the cholesteryl moiety. The two configurations are differentiated by one group showing interactions to phosphate moieties of the neighbouring molecules.

For applications of dithiophosphonate derivatives, see: Beaton et al. (1991); Patnaik (1992); Roy (1990); Bromberg et al. (1993); Klaman (1984). For information on dithiophosphonate compounds, see: van Zyl et al. (1998, 2000, 2002); van Zyl et al. (2010). For P/S activation of steroids, see: Kvasnica et al. (2008). For related structures, see: Malenkovskaya et al. (2003); Cea-Olivares et al. (1999); Blaszczyk et al. (1996).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Brendt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Hydrogen atoms omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the a axis illustrating the herring-bone motif.
[Figure 3] Fig. 3. Superimposed (I) with the cholesterylphosphate structures available from the literature.
Triethylammonium O-3β-cholest-5-en-3-yl (4-methoxyphenyl)dithiophosphonate top
Crystal data top
C6H16N+·C34H52O2PS2F(000) = 756
Mr = 690.04Dx = 1.107 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 714 reflections
a = 7.6066 (15) Åθ = 2.5–18°
b = 8.2407 (16) ŵ = 0.20 mm1
c = 33.083 (7) ÅT = 293 K
β = 93.17 (3)°Needle, colourless
V = 2070.6 (7) Å30.46 × 0.08 × 0.08 mm
Z = 2
Data collection top
Bruker SMART 1K CCD
diffractometer
8425 independent reflections
Radiation source: fine-focus sealed tube2925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
ω scansθmax = 28.3°, θmin = 0.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 109
Tmin = 0.914, Tmax = 0.984k = 810
14589 measured reflectionsl = 4441
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3561P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.066(Δ/σ)max = 0.001
wR(F2) = 0.159Δρmax = 0.29 e Å3
S = 0.93Δρmin = 0.28 e Å3
8425 reflectionsAbsolute structure: Flack (1983), 2970 Friedel pairs
410 parametersAbsolute structure parameter: 0.02 (12)
1 restraint
Crystal data top
C6H16N+·C34H52O2PS2V = 2070.6 (7) Å3
Mr = 690.04Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.6066 (15) ŵ = 0.20 mm1
b = 8.2407 (16) ÅT = 293 K
c = 33.083 (7) Å0.46 × 0.08 × 0.08 mm
β = 93.17 (3)°
Data collection top
Bruker SMART 1K CCD
diffractometer
8425 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2925 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.984Rint = 0.106
14589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159Δρmax = 0.29 e Å3
S = 0.93Δρmin = 0.28 e Å3
8425 reflectionsAbsolute structure: Flack (1983), 2970 Friedel pairs
410 parametersAbsolute structure parameter: 0.02 (12)
1 restraint
Special details top

Experimental. The intensity data was collected on a Bruker SMART 1 K CCD diffractometer using an exposure time of 10 s/frame. A total of 1315 frames were collected with a frame width of 0.3° covering up to θ = 28.3° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.4405 (2)0.9520 (2)0.64139 (5)0.0564 (5)
S10.6976 (2)0.9298 (2)0.63620 (6)0.0765 (6)
S20.3618 (2)1.1632 (2)0.66205 (5)0.0787 (6)
N0.7566 (8)0.3414 (8)0.64246 (16)0.0629 (16)
O10.3661 (5)0.8058 (4)0.66822 (10)0.0582 (12)
O20.0389 (9)0.7700 (7)0.48803 (16)0.117 (2)
C10.3206 (8)0.8992 (7)0.59454 (18)0.0553 (17)
C20.4030 (9)0.8534 (9)0.5604 (2)0.089 (3)
H20.52530.85190.56050.107*
C30.3002 (12)0.8082 (11)0.5251 (2)0.108 (3)
H30.35550.77420.50210.13*
C40.1217 (11)0.8144 (9)0.5245 (2)0.078 (2)
C50.0390 (9)0.8652 (7)0.5579 (2)0.0653 (19)
H50.08310.87330.55710.078*
C60.1382 (9)0.9046 (7)0.59280 (19)0.0632 (18)
H60.0810.93540.61570.076*
C70.1478 (13)0.7738 (12)0.4851 (2)0.130 (3)
H7A0.19280.69770.50390.195*
H7B0.18930.74530.45810.195*
H7C0.18780.8810.49130.195*
C80.3646 (8)0.8128 (7)0.71259 (16)0.0540 (16)
H80.41080.91810.7220.065*
C90.1781 (8)0.7960 (9)0.72416 (17)0.073 (2)
H9A0.12810.69590.71320.087*
H9B0.10820.88590.71320.087*
C100.1755 (8)0.7948 (8)0.77036 (17)0.0672 (19)
H10A0.05450.7850.77780.081*
H10B0.22020.89790.78060.081*
C110.2848 (7)0.6567 (8)0.79104 (15)0.0478 (15)
C120.4698 (8)0.6673 (7)0.77557 (16)0.0491 (15)
C130.4797 (7)0.6801 (8)0.73037 (16)0.0618 (17)
H13A0.60070.70060.7240.074*
H13B0.44420.57750.71810.074*
C140.2057 (9)0.4918 (8)0.78016 (18)0.085 (2)
H14A0.23340.46350.75310.127*
H14B0.08020.49620.78180.127*
H14C0.25370.41150.79870.127*
C150.2930 (6)0.6876 (7)0.83762 (16)0.0490 (16)
H150.31680.80360.84150.059*
C160.4436 (7)0.5964 (7)0.86033 (15)0.0474 (15)
H160.42540.47970.85620.057*
C170.6186 (6)0.6417 (8)0.84456 (16)0.0597 (17)
H17A0.65750.74330.85680.072*
H17B0.70430.55910.85260.072*
C180.6129 (8)0.6594 (8)0.79945 (17)0.0557 (16)
H180.72020.66530.78730.067*
C190.1159 (6)0.6524 (8)0.85715 (15)0.0594 (16)
H19A0.0260.72250.84470.071*
H19B0.08190.54120.85110.071*
C200.1201 (7)0.6770 (8)0.90307 (15)0.0554 (16)
H20A0.00830.6430.9130.067*
H20B0.1350.79150.90910.067*
C210.2691 (7)0.5811 (7)0.92521 (16)0.0449 (15)
C220.4385 (6)0.6324 (7)0.90520 (14)0.0423 (14)
H220.44340.75090.90750.051*
C230.2355 (8)0.3976 (7)0.92165 (15)0.0570 (17)
H23A0.23460.3660.89370.085*
H23B0.12390.37220.93230.085*
H23C0.32710.34010.93680.085*
C240.3149 (6)0.6274 (6)0.96991 (15)0.0433 (14)
H240.30760.74590.97160.052*
C250.5127 (7)0.5825 (7)0.97587 (16)0.0527 (16)
H25A0.57530.66550.99170.063*
H25B0.52590.480.99010.063*
C260.5878 (7)0.5689 (8)0.93369 (17)0.0583 (17)
H26A0.69280.63480.9320.07*
H26B0.61610.45720.92740.07*
C270.2062 (7)0.5588 (7)1.00409 (16)0.0478 (15)
H270.22390.44111.00470.057*
C280.0093 (8)0.5893 (7)0.99762 (17)0.0617 (18)
H28A0.0490.55521.02120.093*
H28B0.03590.52890.97450.093*
H28C0.01120.70290.99310.093*
C290.2764 (8)0.6252 (8)1.04439 (15)0.0656 (19)
H29A0.25840.74181.0440.079*
H29B0.40250.60691.04640.079*
C300.2014 (8)0.5599 (7)1.08297 (16)0.0611 (18)
H30A0.07770.58851.08320.073*
H30B0.20990.44251.08310.073*
C310.2976 (11)0.6267 (10)1.12087 (19)0.1104 (14)
H31A0.41890.59031.12110.132*
H31B0.29880.74411.11870.132*
C320.2273 (11)0.5835 (10)1.1606 (2)0.1104 (14)
H320.21510.46511.16120.132*
C330.0500 (10)0.6538 (10)1.16635 (19)0.1104 (14)
H33A0.05690.77011.16550.166*
H33B0.01040.62041.19210.166*
H33C0.03140.61631.14520.166*
C340.3558 (10)0.6306 (10)1.19511 (18)0.1104 (14)
H34A0.37340.74591.19490.166*
H34B0.46620.57681.1920.166*
H34C0.30930.5991.22030.166*
C350.9219 (8)0.3208 (8)0.62051 (19)0.0705 (19)
H35A0.89130.28580.5930.085*
H35B0.99260.2360.63370.085*
C361.0308 (9)0.4735 (10)0.6191 (2)0.115 (3)
H36A0.96340.55710.60520.172*
H36B1.13530.45220.6050.172*
H36C1.06310.50840.64620.172*
C370.7919 (10)0.3745 (9)0.6876 (2)0.091 (2)
H37A0.85070.47850.69070.109*
H37B0.67990.38280.70010.109*
C380.9001 (11)0.2499 (10)0.7094 (2)0.109 (3)
H38A0.84640.14540.70530.164*
H38B0.90830.27480.73780.164*
H38C1.01590.24880.69920.164*
C390.6301 (10)0.4630 (10)0.6243 (2)0.099 (2)
H39A0.68470.56930.62520.119*
H39B0.5270.46740.64020.119*
C400.5737 (11)0.4232 (12)0.5813 (2)0.130 (3)
H40A0.66950.44340.56420.195*
H40B0.4750.48980.57270.195*
H40C0.54060.31090.57940.195*
H10.705 (9)0.235 (8)0.6428 (19)0.11 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0556 (11)0.0558 (12)0.0586 (11)0.0041 (10)0.0114 (9)0.0045 (10)
S10.0517 (11)0.0771 (14)0.1017 (15)0.0014 (10)0.0143 (10)0.0089 (11)
S20.0778 (13)0.0637 (12)0.0961 (14)0.0056 (11)0.0175 (11)0.0043 (11)
N0.068 (4)0.053 (4)0.068 (4)0.000 (4)0.008 (3)0.003 (3)
O10.073 (3)0.060 (3)0.042 (3)0.016 (2)0.007 (2)0.007 (2)
O20.106 (5)0.182 (6)0.060 (4)0.025 (4)0.010 (3)0.019 (3)
C10.053 (4)0.063 (4)0.050 (4)0.002 (3)0.006 (3)0.017 (3)
C20.069 (5)0.153 (8)0.046 (5)0.021 (5)0.012 (4)0.010 (4)
C30.098 (7)0.177 (9)0.051 (6)0.027 (6)0.016 (5)0.028 (5)
C40.070 (6)0.107 (6)0.058 (6)0.012 (5)0.006 (5)0.002 (4)
C50.065 (5)0.078 (5)0.054 (4)0.009 (4)0.007 (4)0.003 (4)
C60.063 (5)0.072 (5)0.055 (5)0.007 (4)0.006 (4)0.001 (4)
C70.120 (9)0.177 (10)0.087 (6)0.010 (7)0.037 (6)0.024 (6)
C80.058 (4)0.064 (4)0.041 (4)0.001 (4)0.009 (3)0.001 (3)
C90.056 (5)0.111 (6)0.052 (5)0.012 (4)0.008 (4)0.013 (4)
C100.046 (4)0.106 (6)0.051 (4)0.011 (4)0.004 (3)0.009 (4)
C110.044 (4)0.066 (4)0.034 (3)0.014 (4)0.004 (3)0.008 (3)
C120.044 (4)0.060 (4)0.044 (4)0.005 (3)0.007 (3)0.002 (3)
C130.051 (4)0.077 (5)0.058 (4)0.002 (4)0.010 (3)0.005 (4)
C140.094 (5)0.105 (6)0.055 (4)0.042 (5)0.003 (4)0.000 (4)
C150.027 (3)0.067 (4)0.053 (4)0.001 (3)0.005 (3)0.006 (3)
C160.036 (4)0.059 (4)0.047 (4)0.001 (3)0.003 (3)0.001 (3)
C170.033 (4)0.087 (5)0.060 (4)0.002 (4)0.008 (3)0.014 (4)
C180.040 (4)0.072 (4)0.056 (4)0.004 (4)0.009 (3)0.006 (4)
C190.033 (4)0.089 (5)0.056 (4)0.007 (4)0.003 (3)0.010 (4)
C200.034 (4)0.087 (5)0.046 (4)0.003 (4)0.008 (3)0.012 (4)
C210.039 (4)0.051 (4)0.045 (4)0.001 (3)0.001 (3)0.000 (3)
C220.032 (3)0.053 (4)0.041 (4)0.000 (3)0.006 (3)0.001 (3)
C230.068 (4)0.059 (5)0.044 (4)0.012 (3)0.005 (3)0.003 (3)
C240.046 (4)0.037 (4)0.047 (4)0.002 (3)0.000 (3)0.000 (3)
C250.043 (4)0.064 (4)0.049 (4)0.005 (3)0.009 (3)0.000 (3)
C260.035 (4)0.082 (4)0.058 (4)0.008 (3)0.005 (3)0.010 (3)
C270.048 (4)0.044 (4)0.051 (4)0.005 (3)0.000 (3)0.001 (3)
C280.059 (5)0.065 (5)0.062 (4)0.003 (3)0.019 (3)0.004 (3)
C290.079 (5)0.074 (5)0.044 (4)0.019 (4)0.007 (3)0.003 (4)
C300.084 (5)0.063 (4)0.036 (4)0.006 (4)0.006 (3)0.000 (3)
C310.152 (4)0.123 (4)0.056 (2)0.010 (3)0.008 (3)0.006 (3)
C320.152 (4)0.123 (4)0.056 (2)0.010 (3)0.008 (3)0.006 (3)
C330.152 (4)0.123 (4)0.056 (2)0.010 (3)0.008 (3)0.006 (3)
C340.152 (4)0.123 (4)0.056 (2)0.010 (3)0.008 (3)0.006 (3)
C350.068 (5)0.073 (5)0.071 (5)0.002 (4)0.010 (4)0.005 (4)
C360.091 (6)0.086 (6)0.171 (8)0.005 (5)0.044 (5)0.026 (6)
C370.103 (6)0.091 (6)0.079 (6)0.020 (5)0.016 (5)0.034 (4)
C380.111 (7)0.132 (8)0.084 (6)0.014 (6)0.008 (5)0.007 (5)
C390.088 (6)0.074 (5)0.135 (7)0.007 (5)0.004 (5)0.017 (6)
C400.116 (7)0.167 (9)0.105 (7)0.010 (7)0.011 (6)0.054 (7)
Geometric parameters (Å, º) top
P—O11.617 (4)C21—C231.537 (7)
P—C11.807 (6)C21—C221.540 (7)
P—S21.975 (2)C21—C241.548 (7)
P—S11.981 (2)C22—C261.528 (7)
N—C391.493 (8)C22—H220.98
N—C351.496 (7)C23—H23A0.96
N—C371.526 (8)C23—H23B0.96
N—H10.96 (7)C23—H23C0.96
O1—C81.470 (6)C24—C271.545 (7)
O2—C41.379 (8)C24—C251.551 (7)
O2—C71.419 (9)C24—H240.98
C1—C21.374 (8)C25—C261.541 (7)
C1—C61.387 (7)C25—H25A0.97
C2—C31.421 (9)C25—H25B0.97
C2—H20.93C26—H26A0.97
C3—C41.357 (9)C26—H26B0.97
C3—H30.93C27—C291.511 (7)
C4—C51.367 (8)C27—C281.522 (7)
C5—C61.383 (8)C27—H270.98
C5—H50.93C28—H28A0.96
C6—H60.93C28—H28B0.96
C7—H7A0.96C28—H28C0.96
C7—H7B0.96C29—C301.525 (7)
C7—H7C0.96C29—H29A0.97
C8—C91.496 (7)C29—H29B0.97
C8—C131.501 (7)C30—C311.520 (8)
C8—H80.98C30—H30A0.97
C9—C101.530 (7)C30—H30B0.97
C9—H9A0.97C31—C321.488 (9)
C9—H9B0.97C31—H31A0.97
C10—C111.546 (8)C31—H31B0.97
C10—H10A0.97C32—C331.490 (9)
C10—H10B0.97C32—C341.512 (9)
C11—C141.521 (8)C32—H320.98
C11—C121.527 (7)C33—H33A0.96
C11—C151.559 (7)C33—H33B0.96
C12—C181.311 (7)C33—H33C0.96
C12—C131.505 (7)C34—H34A0.96
C13—H13A0.97C34—H34B0.96
C13—H13B0.97C34—H34C0.96
C14—H14A0.96C35—C361.508 (9)
C14—H14B0.96C35—H35A0.97
C14—H14C0.96C35—H35B0.97
C15—C161.532 (7)C36—H36A0.96
C15—C191.553 (6)C36—H36B0.96
C15—H150.98C36—H36C0.96
C16—C171.503 (6)C37—C381.479 (9)
C16—C221.516 (6)C37—H37A0.97
C16—H160.98C37—H37B0.97
C17—C181.498 (7)C38—H38A0.96
C17—H17A0.97C38—H38B0.96
C17—H17B0.97C38—H38C0.96
C18—H180.93C39—C401.498 (9)
C19—C201.531 (6)C39—H39A0.97
C19—H19A0.97C39—H39B0.97
C19—H19B0.97C40—H40A0.96
C20—C211.534 (7)C40—H40B0.96
C20—H20A0.97C40—H40C0.96
C20—H20B0.97
O1—P—C196.7 (2)C22—C21—C24101.2 (4)
O1—P—S2110.16 (16)C16—C22—C26118.6 (4)
C1—P—S2111.1 (2)C16—C22—C21115.8 (4)
O1—P—S1110.86 (17)C26—C22—C21104.6 (4)
C1—P—S1110.9 (2)C16—C22—H22105.6
S2—P—S1115.52 (11)C26—C22—H22105.6
C39—N—C35114.9 (5)C21—C22—H22105.6
C39—N—C37110.4 (6)C21—C23—H23A109.5
C35—N—C37112.8 (5)C21—C23—H23B109.5
C39—N—H1111 (4)H23A—C23—H23B109.5
C35—N—H1105 (4)C21—C23—H23C109.5
C37—N—H1102 (4)H23A—C23—H23C109.5
C8—O1—P122.8 (3)H23B—C23—H23C109.5
C4—O2—C7117.4 (6)C27—C24—C21120.5 (4)
C2—C1—C6118.4 (6)C27—C24—C25112.0 (4)
C2—C1—P122.6 (5)C21—C24—C25103.2 (4)
C6—C1—P119.0 (5)C27—C24—H24106.8
C1—C2—C3119.6 (7)C21—C24—H24106.8
C1—C2—H2120.2C25—C24—H24106.8
C3—C2—H2120.2C26—C25—C24107.9 (4)
C4—C3—C2120.4 (7)C26—C25—H25A110.1
C4—C3—H3119.8C24—C25—H25A110.1
C2—C3—H3119.8C26—C25—H25B110.1
C3—C4—C5120.3 (7)C24—C25—H25B110.1
C3—C4—O2114.3 (7)H25A—C25—H25B108.4
C5—C4—O2125.4 (7)C22—C26—C25103.5 (4)
C4—C5—C6119.5 (7)C22—C26—H26A111.1
C4—C5—H5120.2C25—C26—H26A111.1
C6—C5—H5120.2C22—C26—H26B111.1
C5—C6—C1121.7 (6)C25—C26—H26B111.1
C5—C6—H6119.2H26A—C26—H26B109
C1—C6—H6119.2C29—C27—C28111.2 (5)
O2—C7—H7A109.5C29—C27—C24109.7 (5)
O2—C7—H7B109.5C28—C27—C24113.5 (5)
H7A—C7—H7B109.5C29—C27—H27107.4
O2—C7—H7C109.5C28—C27—H27107.4
H7A—C7—H7C109.5C24—C27—H27107.4
H7B—C7—H7C109.5C27—C28—H28A109.5
O1—C8—C9108.2 (5)C27—C28—H28B109.5
O1—C8—C13109.0 (4)H28A—C28—H28B109.5
C9—C8—C13111.9 (5)C27—C28—H28C109.5
O1—C8—H8109.2H28A—C28—H28C109.5
C9—C8—H8109.2H28B—C28—H28C109.5
C13—C8—H8109.2C27—C29—C30118.7 (5)
C8—C9—C10108.7 (5)C27—C29—H29A107.6
C8—C9—H9A109.9C30—C29—H29A107.6
C10—C9—H9A109.9C27—C29—H29B107.6
C8—C9—H9B109.9C30—C29—H29B107.6
C10—C9—H9B109.9H29A—C29—H29B107.1
H9A—C9—H9B108.3C31—C30—C29112.2 (5)
C9—C10—C11114.2 (5)C31—C30—H30A109.2
C9—C10—H10A108.7C29—C30—H30A109.2
C11—C10—H10A108.7C31—C30—H30B109.2
C9—C10—H10B108.7C29—C30—H30B109.2
C11—C10—H10B108.7H30A—C30—H30B107.9
H10A—C10—H10B107.6C32—C31—C30117.5 (7)
C14—C11—C12109.3 (5)C32—C31—H31A107.9
C14—C11—C10110.9 (5)C30—C31—H31A107.9
C12—C11—C10107.0 (5)C32—C31—H31B107.9
C14—C11—C15111.9 (4)C30—C31—H31B107.9
C12—C11—C15109.6 (4)H31A—C31—H31B107.2
C10—C11—C15108.0 (5)C31—C32—C33113.1 (7)
C18—C12—C13121.1 (5)C31—C32—C34110.9 (7)
C18—C12—C11123.1 (5)C33—C32—C34110.8 (6)
C13—C12—C11115.8 (5)C31—C32—H32107.3
C8—C13—C12112.3 (5)C33—C32—H32107.3
C8—C13—H13A109.1C34—C32—H32107.3
C12—C13—H13A109.1C32—C33—H33A109.5
C8—C13—H13B109.1C32—C33—H33B109.5
C12—C13—H13B109.1H33A—C33—H33B109.5
H13A—C13—H13B107.9C32—C33—H33C109.5
C11—C14—H14A109.5H33A—C33—H33C109.5
C11—C14—H14B109.5H33B—C33—H33C109.5
H14A—C14—H14B109.5C32—C34—H34A109.5
C11—C14—H14C109.5C32—C34—H34B109.5
H14A—C14—H14C109.5H34A—C34—H34B109.5
H14B—C14—H14C109.5C32—C34—H34C109.5
C16—C15—C19110.3 (4)H34A—C34—H34C109.5
C16—C15—C11113.1 (4)H34B—C34—H34C109.5
C19—C15—C11113.1 (4)N—C35—C36113.5 (6)
C16—C15—H15106.6N—C35—H35A108.9
C19—C15—H15106.6C36—C35—H35A108.9
C11—C15—H15106.6N—C35—H35B108.9
C17—C16—C22111.3 (4)C36—C35—H35B108.9
C17—C16—C15111.1 (4)H35A—C35—H35B107.7
C22—C16—C15109.0 (4)C35—C36—H36A109.5
C17—C16—H16108.5C35—C36—H36B109.5
C22—C16—H16108.5H36A—C36—H36B109.5
C15—C16—H16108.5C35—C36—H36C109.5
C18—C17—C16113.1 (5)H36A—C36—H36C109.5
C18—C17—H17A108.9H36B—C36—H36C109.5
C16—C17—H17A108.9C38—C37—N114.6 (6)
C18—C17—H17B108.9C38—C37—H37A108.6
C16—C17—H17B108.9N—C37—H37A108.6
H17A—C17—H17B107.8C38—C37—H37B108.6
C12—C18—C17125.6 (5)N—C37—H37B108.6
C12—C18—H18117.2H37A—C37—H37B107.6
C17—C18—H18117.2C37—C38—H38A109.5
C20—C19—C15114.7 (4)C37—C38—H38B109.5
C20—C19—H19A108.6H38A—C38—H38B109.5
C15—C19—H19A108.6C37—C38—H38C109.5
C20—C19—H19B108.6H38A—C38—H38C109.5
C15—C19—H19B108.6H38B—C38—H38C109.5
H19A—C19—H19B107.6N—C39—C40112.3 (7)
C19—C20—C21112.3 (5)N—C39—H39A109.1
C19—C20—H20A109.1C40—C39—H39A109.1
C21—C20—H20A109.1N—C39—H39B109.1
C19—C20—H20B109.1C40—C39—H39B109.1
C21—C20—H20B109.1H39A—C39—H39B107.9
H20A—C20—H20B107.9C39—C40—H40A109.5
C20—C21—C23110.8 (5)C39—C40—H40B109.5
C20—C21—C22105.5 (4)H40A—C40—H40B109.5
C23—C21—C22112.1 (5)C39—C40—H40C109.5
C20—C21—C24116.8 (5)H40A—C40—H40C109.5
C23—C21—C24110.1 (4)H40B—C40—H40C109.5
C1—P—O1—C8157.5 (4)C22—C16—C17—C18161.6 (5)
S2—P—O1—C842.0 (4)C15—C16—C17—C1840.0 (7)
S1—P—O1—C887.1 (4)C13—C12—C18—C17178.1 (6)
O1—P—C1—C2116.5 (6)C11—C12—C18—C170.9 (11)
S2—P—C1—C2128.9 (5)C16—C17—C18—C1212.8 (9)
S1—P—C1—C21.1 (6)C16—C15—C19—C2050.7 (7)
O1—P—C1—C663.4 (5)C11—C15—C19—C20178.5 (5)
S2—P—C1—C651.3 (5)C15—C19—C20—C2153.6 (7)
S1—P—C1—C6178.7 (4)C19—C20—C21—C2367.2 (6)
C6—C1—C2—C32.0 (10)C19—C20—C21—C2254.3 (6)
P—C1—C2—C3177.9 (6)C19—C20—C21—C24165.7 (5)
C1—C2—C3—C41.8 (13)C17—C16—C22—C2650.9 (7)
C2—C3—C4—C50.4 (13)C15—C16—C22—C26173.7 (5)
C2—C3—C4—O2178.9 (7)C17—C16—C22—C21176.4 (5)
C7—O2—C4—C3179.9 (8)C15—C16—C22—C2160.7 (6)
C7—O2—C4—C51.5 (12)C20—C21—C22—C1660.7 (6)
C3—C4—C5—C62.4 (11)C23—C21—C22—C1659.9 (6)
O2—C4—C5—C6179.3 (6)C24—C21—C22—C16177.2 (5)
C4—C5—C6—C12.2 (9)C20—C21—C22—C26166.9 (5)
C2—C1—C6—C50.0 (9)C23—C21—C22—C2672.5 (5)
P—C1—C6—C5179.9 (5)C24—C21—C22—C2644.8 (5)
P—O1—C8—C9120.6 (5)C20—C21—C24—C2782.4 (6)
P—O1—C8—C13117.5 (5)C23—C21—C24—C2745.1 (7)
O1—C8—C9—C10177.3 (5)C22—C21—C24—C27163.8 (5)
C13—C8—C9—C1057.2 (7)C20—C21—C24—C25151.9 (5)
C8—C9—C10—C1159.0 (7)C23—C21—C24—C2580.7 (5)
C9—C10—C11—C1465.7 (6)C22—C21—C24—C2538.0 (5)
C9—C10—C11—C1253.5 (7)C27—C24—C25—C26149.7 (5)
C9—C10—C11—C15171.4 (5)C21—C24—C25—C2618.6 (6)
C14—C11—C12—C18106.3 (7)C16—C22—C26—C25163.8 (5)
C10—C11—C12—C18133.5 (6)C21—C22—C26—C2533.0 (6)
C15—C11—C12—C1816.7 (9)C24—C25—C26—C228.6 (6)
C14—C11—C12—C1371.1 (6)C21—C24—C27—C29179.0 (5)
C10—C11—C12—C1349.1 (7)C25—C24—C27—C2959.4 (6)
C15—C11—C12—C13166.0 (5)C21—C24—C27—C2854.0 (7)
O1—C8—C13—C12173.7 (5)C25—C24—C27—C28175.6 (5)
C9—C8—C13—C1254.1 (7)C28—C27—C29—C3060.0 (7)
C18—C12—C13—C8131.3 (6)C24—C27—C29—C30173.6 (5)
C11—C12—C13—C851.3 (7)C27—C29—C30—C31174.5 (6)
C14—C11—C15—C1676.9 (6)C29—C30—C31—C32174.9 (6)
C12—C11—C15—C1644.6 (7)C30—C31—C32—C3366.0 (9)
C10—C11—C15—C16160.8 (5)C30—C31—C32—C34168.9 (6)
C14—C11—C15—C1949.4 (7)C39—N—C35—C3661.5 (8)
C12—C11—C15—C19170.9 (5)C37—N—C35—C3666.2 (8)
C10—C11—C15—C1972.9 (6)C39—N—C37—C38173.5 (7)
C19—C15—C16—C17174.3 (5)C35—N—C37—C3856.5 (8)
C11—C15—C16—C1757.9 (6)C35—N—C39—C4058.3 (8)
C19—C15—C16—C2251.4 (6)C37—N—C39—C40172.8 (6)
C11—C15—C16—C22179.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···S1i0.96 (7)2.53 (7)3.426 (7)156 (5)
N—H1···S2i0.96 (7)2.78 (7)3.437 (6)126 (5)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·C34H52O2PS2
Mr690.04
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.6066 (15), 8.2407 (16), 33.083 (7)
β (°) 93.17 (3)
V3)2070.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.46 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.914, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14589, 8425, 2925
Rint0.106
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.159, 0.93
No. of reflections8425
No. of parameters410
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.28
Absolute structureFlack (1983), 2970 Friedel pairs
Absolute structure parameter0.02 (12)

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SAINT-Plus and XPREP (Bruker, 1999), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Brendt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···S1i0.96 (7)2.53 (7)3.426 (7)156 (5)
N—H1···S2i0.96 (7)2.78 (7)3.437 (6)126 (5)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Mintek (Project AuTEK), South Africa, for financial support of this project. The University of Witwatersrand is thanked for the use of their diffractometer.

References

First citationBeaton, G., Dellinger, D., Marshall, W. S. & Caruthers, M. H. (1991). Oligonucleotides analogues, edited by F. Eckstein, pp. 109–135.  Google Scholar
First citationBlaszczyk, J., Wieczorek, M. W., Okruszek, A., Sierzchala, A., Kobylanska, A. & Stec, W. J. (1996). J. Chem. Cryst. 26, 33–42.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Brendt, M. (2001). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationBromberg, L., Lewin, I. & Warshawsky, A. (1993). Hydrometallurgy, 33, 59–71.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCea-Olivares, R., Lopez-Cardoso, M. & Toscano, R. A. (1999). Monatsh. Chem. 130, 1129–1136.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKlaman, D. (1984). Lubricants and Related Products. Weinheim: Verlag Chemie.  Google Scholar
First citationKvasnica, M., Rudovska, I., Cisarova, I. & Sarek, J. (2008). Tetrahedron, 64, 3736–3743.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalenkovskaya, M. A., Predvoditelev, D. A., Belsky, V. K. & Nifant'ev, E. E. (2003). Zh. Obshch. Khim. 73, 1976–1983.  Google Scholar
First citationPatnaik, P. (1992). A Comprehensive Guide to Hazardous Properties of Chemical Substances. New York: Von Nostrand Reinhold.  Google Scholar
First citationRoy, N. K. (1990). Pesticides (Annu. Rev. 1989–1990), pp. 13–20.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationvan Zyl, W. E. (2010). Comment. Inorg. Chem. 31, 13–45.  Web of Science CrossRef CAS Google Scholar
First citationvan Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.  Web of Science CrossRef CAS Google Scholar
First citationvan Zyl, W. E., López-de-Luzuriaga, J. M., Mohamed, A. A., Staples, R. J. & Fackler, J. P. (2002). Inorg. Chem. 41, 4579–4589.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationvan Zyl, W. E., Staples, R. J. & Fackler, J. P. (1998). Inorg. Chem. Commun. 1, 51–54.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds