organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(tert-But­­oxy­carbonyl)­pyrrolidin-2-yl]-4,4,5,5-tetra­methyl-4,5-di­hydro-1H-imidazole-1-oxyl 3-oxide

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032, Xi-An, People's Republic of China
*Correspondence e-mail: xiaoli_sun@yahoo.cn

(Received 13 May 2010; accepted 31 May 2010; online 7 July 2010)

In the title compound, C16H28N3O4, the plane of the pyrrolidine ring system is twisted with respect to the plane of the nitronyl nitroxide unit, making a dihedral angle of 79.80 (6)°. The crystal structure is stabilized by C—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Ullman et al. (1974[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049-7053.]). For the properties of nitronyl nitroxide radicals, see: Iqbal et al. (2009[Iqbal, A. L., Anirban, P. & Sambhu, N. D. (2009). J. Phys. Chem. A. 113, 1595-4673.]); Qin et al. (2009[Qin, X. Y., Ding, G. R. & Sun, X. L. (2009). J. Chem. Res. pp. 511-514.]); Tanaka et al. (2007[Tanaka, K., Furuichi, K., Kozaki, M., Suzuki, S., Shiomi, D., Sato, K., Takui, T. & Okada, K. (2007). Polyhedron, 26, 2021-2026.]); Soule et al. (2007[Soule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632-1650.]). For puckering parameters, see: Cremer & Pople (1975).

[Scheme 1]

Experimental

Crystal data
  • C16H28N3O4

  • Mr = 326.41

  • Monoclinic, P 21

  • a = 6.1016 (12) Å

  • b = 10.392 (2) Å

  • c = 14.488 (3) Å

  • β = 101.312 (3)°

  • V = 900.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.36 × 0.28 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 4494 measured reflections

  • 1686 independent reflections

  • 1347 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 0.97

  • 1686 reflections

  • 215 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1 0.96 2.47 3.043 (5) 118
C3—H3C⋯O1 0.96 2.43 3.025 (4) 120
C16—H17C⋯O3i 0.96 2.48 3.390 (4) 157
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek,2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitronyl nitroxide radical is a class of important functionalized molecule, which has characteristics of magnetism, anticancer, antiradiation and antioxidation, etc (Iqbal, et al., 2009; Qin, et al., 2009; Tanaka, et al., 2007; Soule, et al., 2007). The title compound has been be used for coordination with many metalcations, such as Mn2+, Cu2+ and Ni2+ leading to form some molecule based magentic materials. The molecular structure of the title compound is shown in Fig1. The pyrrolidine ring and the nitronyl nitroxide ring are twisted with respect to each other making a dihedral angle of 79.80 (6)°. The crystal structure is stabilized by C—H···O hydrogen bonds (Table 1).

Related literature top

For the preparation of the title compound, see: Ullman et al. (1974). For the properties of nitronyl nitroxide radicals, see: Iqbal et al. (2009); Qin et al. (2009); Tanaka et al. (2007); Soule et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

2,3-Dimethyl-2,3-bis(hydroxylamino) butane (1.48 g, 10.0 mmol) and tert-butyl-2-(hydroxymethyl) pyrrolidine-1-carboxylate (2.01 g, 10.0 mmol) were dissolved in methanol (Ullman, et al., 1974). The reaction was stirred for 15 h at reflux temperature, then cooled to room temperature and filtered. The white powder was washed by methanol and suspended in a mixed solution of dichloromethane (30.0 ml) and water (30.0 ml). Then the reaction mixture was added to an aqueous solution of NaIO4 and stirred for 15 min in ice bath to give a blue solution. The aqueous phase was extracted with CH2Cl2 and the organic layer was combined and dried over MgSO4. Then the solvent was removed to give a dark red residue which was purified by a flash column chromatography with the elution of n-hexane/ ethyl acetate (1:3) to yield the title compound (I) as a dark blue powder. Single crystals of compound (I) were obtained from the mixed solution of n-heptane and dichloromethane (the ratio of volume is 1 to 1).

Refinement top

In both structures all the H atoms were discernible in the difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl and Uiso Haryl are 1.5 Ueq (C) and 1.2 Ueq (C), respectively.

Structure description top

Nitronyl nitroxide radical is a class of important functionalized molecule, which has characteristics of magnetism, anticancer, antiradiation and antioxidation, etc (Iqbal, et al., 2009; Qin, et al., 2009; Tanaka, et al., 2007; Soule, et al., 2007). The title compound has been be used for coordination with many metalcations, such as Mn2+, Cu2+ and Ni2+ leading to form some molecule based magentic materials. The molecular structure of the title compound is shown in Fig1. The pyrrolidine ring and the nitronyl nitroxide ring are twisted with respect to each other making a dihedral angle of 79.80 (6)°. The crystal structure is stabilized by C—H···O hydrogen bonds (Table 1).

For the preparation of the title compound, see: Ullman et al. (1974). For the properties of nitronyl nitroxide radicals, see: Iqbal et al. (2009); Qin et al. (2009); Tanaka et al. (2007); Soule et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek,2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-[1-(tert-Butoxycarbonyl)pyrrolidin-2-yl]-4,4,5,5-tetramethyl-4,5- dihydro-1H-imidazole-1-oxyl 3-oxide top
Crystal data top
C16H28N3O4F(000) = 354
Mr = 326.41Dx = 1.203 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1546 reflections
a = 6.1016 (12) Åθ = 2.4–21.6°
b = 10.392 (2) ŵ = 0.09 mm1
c = 14.488 (3) ÅT = 296 K
β = 101.312 (3)°Block, red
V = 900.8 (3) Å30.36 × 0.28 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1347 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.1°, θmin = 2.4°
phi and ω scansh = 77
4494 measured reflectionsk = 612
1686 independent reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0673P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1686 reflectionsΔρmax = 0.18 e Å3
215 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (5)
Crystal data top
C16H28N3O4V = 900.8 (3) Å3
Mr = 326.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1016 (12) ŵ = 0.09 mm1
b = 10.392 (2) ÅT = 296 K
c = 14.488 (3) Å0.36 × 0.28 × 0.17 mm
β = 101.312 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1347 reflections with I > 2σ(I)
4494 measured reflectionsRint = 0.048
1686 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
1686 reflectionsΔρmin = 0.20 e Å3
215 parameters
Special details top

Experimental. The absolute structure cannot be determined beacuse there are no atoms heaver than silicon in the molecular.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0929 (4)0.3494 (3)0.78508 (14)0.0442 (6)
N20.3330 (4)0.4804 (2)0.86782 (15)0.0434 (6)
N30.1712 (4)0.6757 (2)0.71424 (15)0.0471 (6)
O10.3991 (4)0.7310 (3)0.61493 (15)0.0669 (7)
O20.0793 (3)0.3080 (2)0.72759 (14)0.0615 (6)
O30.4286 (4)0.5857 (2)0.90224 (15)0.0621 (6)
O40.2361 (4)0.5320 (2)0.61039 (13)0.0575 (6)
C10.2011 (6)0.3558 (4)0.5093 (2)0.0656 (9)
H1A0.25620.30440.56400.098*
H1B0.24080.31600.45500.098*
H1C0.04140.36250.50040.098*
C20.5524 (6)0.4831 (4)0.5354 (3)0.0718 (10)
H2A0.61150.56890.54340.108*
H2B0.59340.44480.48090.108*
H2C0.61230.43270.59000.108*
C30.1978 (7)0.5764 (4)0.4421 (2)0.0799 (12)
H3A0.03870.57820.43750.120*
H3B0.23160.54500.38420.120*
H3C0.25690.66170.45410.120*
C40.3028 (5)0.4878 (3)0.52248 (18)0.0488 (8)
C50.2803 (5)0.6526 (3)0.64280 (19)0.0482 (7)
C60.1631 (6)0.8032 (3)0.7549 (2)0.0556 (8)
H6A0.17050.86990.70880.067*
H6B0.28420.81530.80860.067*
C70.0620 (7)0.8035 (3)0.7848 (3)0.0690 (10)
H9A0.06230.86300.83640.083*
H9B0.18100.82690.73270.083*
C80.0877 (6)0.6663 (3)0.8153 (2)0.0576 (9)
H10A0.24430.64370.80840.069*
H10B0.01500.65420.88060.069*
C90.0256 (4)0.5839 (3)0.74985 (18)0.0417 (7)
H110.08780.55180.69740.050*
C100.1523 (4)0.4731 (3)0.79995 (17)0.0385 (6)
C110.2665 (5)0.2596 (3)0.8383 (2)0.0506 (8)
C120.4042 (6)0.2131 (4)0.7676 (2)0.0705 (11)
H15A0.30880.16830.71720.106*
H15B0.51940.15600.79830.106*
H15C0.47090.28560.74270.106*
C130.1549 (6)0.1467 (4)0.8763 (3)0.0692 (10)
H16A0.05990.17750.91700.104*
H16B0.26690.09090.91100.104*
H16C0.06700.09990.82490.104*
C140.3947 (4)0.3532 (3)0.91403 (18)0.0450 (7)
C150.6454 (5)0.3379 (4)0.9356 (2)0.0635 (9)
H18A0.70200.34640.87860.095*
H18B0.68330.25440.96250.095*
H18C0.71050.40310.97950.095*
C160.3053 (5)0.3565 (4)1.00551 (19)0.0596 (9)
H17A0.14570.36580.99110.089*
H17B0.37020.42791.04320.089*
H17C0.34390.27781.03960.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0490 (13)0.0398 (15)0.0440 (12)0.0025 (12)0.0091 (10)0.0019 (11)
N20.0451 (13)0.0403 (15)0.0455 (12)0.0073 (13)0.0104 (10)0.0000 (12)
N30.0717 (15)0.0350 (13)0.0405 (11)0.0039 (13)0.0252 (11)0.0009 (11)
O10.0936 (17)0.0510 (14)0.0679 (13)0.0193 (14)0.0449 (12)0.0023 (12)
O20.0602 (12)0.0519 (15)0.0653 (12)0.0125 (11)0.0050 (10)0.0020 (11)
O30.0670 (13)0.0529 (15)0.0627 (12)0.0176 (13)0.0034 (10)0.0058 (12)
O40.0907 (15)0.0449 (13)0.0470 (11)0.0064 (13)0.0380 (10)0.0074 (10)
C10.087 (2)0.058 (2)0.0559 (17)0.002 (2)0.0249 (15)0.0131 (17)
C20.072 (2)0.069 (3)0.078 (2)0.002 (2)0.0212 (16)0.020 (2)
C30.113 (3)0.077 (3)0.0487 (17)0.017 (2)0.0119 (17)0.0065 (19)
C40.0631 (17)0.052 (2)0.0350 (13)0.0042 (16)0.0191 (11)0.0044 (14)
C50.0683 (19)0.0390 (18)0.0405 (13)0.0040 (16)0.0183 (13)0.0013 (14)
C60.085 (2)0.0382 (17)0.0477 (15)0.0046 (18)0.0227 (15)0.0050 (14)
C70.102 (3)0.048 (2)0.0658 (19)0.009 (2)0.0381 (18)0.0000 (17)
C80.072 (2)0.051 (2)0.0579 (17)0.0066 (18)0.0331 (15)0.0045 (16)
C90.0506 (15)0.0379 (16)0.0382 (12)0.0024 (14)0.0123 (11)0.0002 (13)
C100.0457 (14)0.0363 (16)0.0358 (12)0.0047 (14)0.0141 (11)0.0014 (13)
C110.0507 (17)0.043 (2)0.0583 (17)0.0013 (15)0.0113 (13)0.0030 (14)
C120.073 (2)0.069 (3)0.072 (2)0.013 (2)0.0214 (17)0.014 (2)
C130.077 (2)0.045 (2)0.084 (2)0.0033 (19)0.0152 (18)0.0179 (19)
C140.0482 (15)0.0446 (18)0.0428 (14)0.0008 (15)0.0104 (11)0.0058 (14)
C150.0514 (16)0.071 (3)0.0672 (18)0.0057 (18)0.0081 (14)0.0002 (19)
C160.0642 (17)0.071 (2)0.0466 (15)0.0057 (19)0.0187 (13)0.0097 (17)
Geometric parameters (Å, º) top
N1—O21.281 (3)C6—H6B0.9700
N1—C101.341 (4)C7—C81.511 (5)
N1—C111.506 (4)C7—H9A0.9700
N2—O31.293 (3)C7—H9B0.9700
N2—C101.328 (3)C8—C91.538 (4)
N2—C141.495 (4)C8—H10A0.9700
N3—C51.357 (4)C8—H10B0.9700
N3—C61.455 (4)C9—C101.494 (4)
N3—C91.464 (4)C9—H110.9800
O1—C51.211 (4)C11—C131.513 (5)
O4—C51.347 (4)C11—C121.526 (4)
O4—C41.484 (3)C11—C141.557 (4)
C1—C41.502 (5)C12—H15A0.9600
C1—H1A0.9600C12—H15B0.9600
C1—H1B0.9600C12—H15C0.9600
C1—H1C0.9600C13—H16A0.9600
C2—C41.499 (5)C13—H16B0.9600
C2—H2A0.9600C13—H16C0.9600
C2—H2B0.9600C14—C151.509 (4)
C2—H2C0.9600C14—C161.529 (4)
C3—C41.523 (4)C15—H18A0.9600
C3—H3A0.9600C15—H18B0.9600
C3—H3B0.9600C15—H18C0.9600
C3—H3C0.9600C16—H17A0.9600
C6—C71.518 (5)C16—H17B0.9600
C6—H6A0.9700C16—H17C0.9600
O2—N1—C10126.0 (2)C7—C8—H10A110.7
O2—N1—C11122.0 (3)C9—C8—H10A110.7
C10—N1—C11111.8 (2)C7—C8—H10B110.7
O3—N2—C10125.4 (2)C9—C8—H10B110.7
O3—N2—C14121.35 (19)H10A—C8—H10B108.8
C10—N2—C14112.4 (2)N3—C9—C10112.4 (2)
C5—N3—C6122.0 (3)N3—C9—C8103.4 (2)
C5—N3—C9125.2 (2)C10—C9—C8112.4 (2)
C6—N3—C9112.3 (2)N3—C9—H11109.5
C5—O4—C4121.2 (2)C10—C9—H11109.5
C4—C1—H1A109.5C8—C9—H11109.5
C4—C1—H1B109.5N2—C10—N1109.4 (2)
H1A—C1—H1B109.5N2—C10—C9126.2 (3)
C4—C1—H1C109.5N1—C10—C9124.3 (2)
H1A—C1—H1C109.5N1—C11—C13110.2 (2)
H1B—C1—H1C109.5N1—C11—C12106.1 (2)
C4—C2—H2A109.5C13—C11—C12110.2 (3)
C4—C2—H2B109.5N1—C11—C14100.3 (2)
H2A—C2—H2B109.5C13—C11—C14115.4 (3)
C4—C2—H2C109.5C12—C11—C14113.9 (2)
H2A—C2—H2C109.5C11—C12—H15A109.5
H2B—C2—H2C109.5C11—C12—H15B109.5
C4—C3—H3A109.5H15A—C12—H15B109.5
C4—C3—H3B109.5C11—C12—H15C109.5
H3A—C3—H3B109.5H15A—C12—H15C109.5
C4—C3—H3C109.5H15B—C12—H15C109.5
H3A—C3—H3C109.5C11—C13—H16A109.5
H3B—C3—H3C109.5C11—C13—H16B109.5
O4—C4—C2110.3 (2)H16A—C13—H16B109.5
O4—C4—C1102.5 (2)C11—C13—H16C109.5
C2—C4—C1111.7 (3)H16A—C13—H16C109.5
O4—C4—C3108.9 (3)H16B—C13—H16C109.5
C2—C4—C3112.3 (3)N2—C14—C15110.0 (3)
C1—C4—C3110.7 (3)N2—C14—C16105.5 (3)
O1—C5—O4127.0 (3)C15—C14—C16110.0 (2)
O1—C5—N3123.4 (3)N2—C14—C11100.9 (2)
O4—C5—N3109.6 (3)C15—C14—C11115.4 (3)
N3—C6—C7102.8 (3)C16—C14—C11114.1 (2)
N3—C6—H6A111.2C14—C15—H18A109.5
C7—C6—H6A111.2C14—C15—H18B109.5
N3—C6—H6B111.2H18A—C15—H18B109.5
C7—C6—H6B111.2C14—C15—H18C109.5
H6A—C6—H6B109.1H18A—C15—H18C109.5
C8—C7—C6103.5 (3)H18B—C15—H18C109.5
C8—C7—H9A111.1C14—C16—H17A109.5
C6—C7—H9A111.1C14—C16—H17B109.5
C8—C7—H9B111.1H17A—C16—H17B109.5
C6—C7—H9B111.1C14—C16—H17C109.5
H9A—C7—H9B109.0H17A—C16—H17C109.5
C7—C8—C9105.0 (2)H17B—C16—H17C109.5
C5—O4—C4—C266.4 (4)C11—N1—C10—C9173.9 (2)
C5—O4—C4—C1174.5 (3)N3—C9—C10—N250.4 (3)
C5—O4—C4—C357.3 (4)C8—C9—C10—N265.8 (4)
C4—O4—C5—O110.5 (5)N3—C9—C10—N1132.5 (3)
C4—O4—C5—N3169.9 (2)C8—C9—C10—N1111.3 (3)
C6—N3—C5—O18.7 (5)O2—N1—C11—C1343.4 (4)
C9—N3—C5—O1179.8 (3)C10—N1—C11—C13141.6 (3)
C6—N3—C5—O4171.7 (3)O2—N1—C11—C1275.8 (3)
C9—N3—C5—O40.7 (4)C10—N1—C11—C1299.2 (3)
C5—N3—C6—C7148.7 (3)O2—N1—C11—C14165.5 (2)
C9—N3—C6—C723.4 (3)C10—N1—C11—C1419.5 (3)
N3—C6—C7—C834.8 (3)O3—N2—C14—C1548.6 (3)
C6—C7—C8—C934.1 (3)C10—N2—C14—C15141.3 (2)
C5—N3—C9—C1069.1 (3)O3—N2—C14—C1670.0 (3)
C6—N3—C9—C10119.1 (3)C10—N2—C14—C16100.1 (3)
C5—N3—C9—C8169.4 (3)O3—N2—C14—C11171.0 (2)
C6—N3—C9—C82.4 (3)C10—N2—C14—C1119.0 (3)
C7—C8—C9—N319.9 (3)N1—C11—C14—N221.2 (2)
C7—C8—C9—C10141.4 (3)C13—C11—C14—N2139.5 (3)
O3—N2—C10—N1177.0 (2)C12—C11—C14—N291.6 (3)
C14—N2—C10—N17.4 (3)N1—C11—C14—C15139.7 (3)
O3—N2—C10—C90.5 (4)C13—C11—C14—C15102.0 (3)
C14—N2—C10—C9170.0 (2)C12—C11—C14—C1526.8 (4)
O2—N1—C10—N2176.7 (2)N1—C11—C14—C1691.4 (3)
C11—N1—C10—N28.6 (3)C13—C11—C14—C1626.9 (4)
O2—N1—C10—C90.8 (4)C12—C11—C14—C16155.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.962.473.043 (5)118
C3—H3C···O10.962.433.025 (4)120
C9—H11···O20.982.572.942 (4)102
C16—H17C···O3i0.962.483.390 (4)157
Symmetry code: (i) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H28N3O4
Mr326.41
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.1016 (12), 10.392 (2), 14.488 (3)
β (°) 101.312 (3)
V3)900.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.28 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4494, 1686, 1347
Rint0.048
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 0.97
No. of reflections1686
No. of parameters215
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek,2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.962.473.043 (5)118
C3—H3C···O10.962.433.025 (4)120
C16—H17C···O3i0.962.483.390 (4)157
Symmetry code: (i) x+1, y1/2, z+2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant Nos. 20972189, 20802092, 20802091) for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIqbal, A. L., Anirban, P. & Sambhu, N. D. (2009). J. Phys. Chem. A. 113, 1595–4673.  Web of Science CrossRef PubMed Google Scholar
First citationQin, X. Y., Ding, G. R. & Sun, X. L. (2009). J. Chem. Res. pp. 511–514.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632–1650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Furuichi, K., Kozaki, M., Suzuki, S., Shiomi, D., Sato, K., Takui, T. & Okada, K. (2007). Polyhedron, 26, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049–7053.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds