metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-1,2,3-benzo­thia­diazole-7-carboxyl­ato)silver(I)]

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 11 June 2010; accepted 8 July 2010; online 21 July 2010)

In the crystal structure of the title compound, [Ag(C7H3N2O2S)]n, the AgI atom is coordinated by two N atoms and three O atoms of four organic ligands forming a distorted square pyramid. The carboxyl­ate group acts as a bidentate ligand on one AgI atom and as a bridging group for a symmetry-related AgI atom, forming a dimer. Futhermore, the two N atoms of two thia­diazole rings bridge a third symmetry-related AgI atom, forming a six-membered ring. These two frameworks, AgO2Ag and AgN4Ag, extend in three directions, forming a three-dimensionnal polymer. The whole polymer is organized around inversion centers.

Related literature

For a metal-organic complex with inter­esting properties, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]). For related structures, see: Chen & Mak (2005[Chen, X.-D. & Mak, T. C. W. (2005). Chem. Commun. pp. 3529-3531.]); Ng & Othman (1997[Ng, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396-1400.]); Brammer et al. (2002[Brammer, L., Burgard, M. D., Eddleston, M. D., Rodger, C. S., Rath, N. P. & Adams, H. (2002). CrystEngComm, 4, 239-248.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H3N2O2S)]

  • Mr = 287.04

  • Monoclinic, P 21 /c

  • a = 5.8332 (12) Å

  • b = 14.786 (3) Å

  • c = 8.6377 (17) Å

  • β = 93.63 (3)°

  • V = 743.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.95 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.630, Tmax = 1.000

  • 6233 measured reflections

  • 1291 independent reflections

  • 1144 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.075

  • S = 1.16

  • 1291 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal organic complexes have drawn much attentions owing to their various structures and their interesting properties (Yaghi et al., 2003). As a bridging ligand benzo[d][1,2,3]thiadiazole-7-carboxylate (L) with three types of heteroatoms has been less investigated. Here we reported the structure of the title complex.

In the title compound, AgI is coordinated by two N atoms and three oxygen atoms of four organic ligands forming a distorted square pyramid. The carboxylate group acts as a bidentate ligand on one silver atom and as a bridging group for a symmetry related silver forming a dimer. Futhermore the two nitrogen atoms of two thiadiazole rings bridge a third symmetry related Ag atom forming a six membered ring (Fig. 1). The Ag-O and Ag-N distances are in good agreement with the values observed in related AgI complexes (Chen et al., 2005; Ng & Othman, 1997; Brammer et al., 2002) . The thiadiazole groups bridge two AgI anions using two nitrogen atoms living the sulfur atoms uncoordinated. In the dimer formed by the carboxylate group, Ag···Ag distance is 3.1168 (12)Å.

The two frameworks AgO2Ag and AgN4Ag extend in the three direction to form a three dimensionnal polymer (Fig. 2) .The whole polymer is organised around inversion centers.

Related literature top

For a metal-organic complex with interesting properties, see: Yaghi et al. (2003). For related structures, see: Chen et al. (2005); Ng & Othman (1997); Brammer et al. (2002).

Experimental top

A mixture of Ag(I)nitrate (1.5mmol), benzo[d][1,2,3]thiadiazole-7-carboxylate acid (0.75 mmol), in 10 ml water solvent was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on metal salte.

Refinement top

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Metal organic complexes have drawn much attentions owing to their various structures and their interesting properties (Yaghi et al., 2003). As a bridging ligand benzo[d][1,2,3]thiadiazole-7-carboxylate (L) with three types of heteroatoms has been less investigated. Here we reported the structure of the title complex.

In the title compound, AgI is coordinated by two N atoms and three oxygen atoms of four organic ligands forming a distorted square pyramid. The carboxylate group acts as a bidentate ligand on one silver atom and as a bridging group for a symmetry related silver forming a dimer. Futhermore the two nitrogen atoms of two thiadiazole rings bridge a third symmetry related Ag atom forming a six membered ring (Fig. 1). The Ag-O and Ag-N distances are in good agreement with the values observed in related AgI complexes (Chen et al., 2005; Ng & Othman, 1997; Brammer et al., 2002) . The thiadiazole groups bridge two AgI anions using two nitrogen atoms living the sulfur atoms uncoordinated. In the dimer formed by the carboxylate group, Ag···Ag distance is 3.1168 (12)Å.

The two frameworks AgO2Ag and AgN4Ag extend in the three direction to form a three dimensionnal polymer (Fig. 2) .The whole polymer is organised around inversion centers.

For a metal-organic complex with interesting properties, see: Yaghi et al. (2003). For related structures, see: Chen et al. (2005); Ng & Othman (1997); Brammer et al. (2002).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordinated mode of the metal ions. Ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. [ Symmetry codes: i -x+1, y-1/2,-z+1/2; ii -x, -y+1,-z+1; iii -x+1,-y+1,-z+1; iv x-1,-y+3/2,z+1/2].
[Figure 2] Fig. 2. Packing view of the 3D structure viewed along the a axis. H atoms have been omitted for clarity.
Poly[(µ4-1,2,3-benzothiadiazole-7-carboxylato)silver(I)] top
Crystal data top
[Ag(C7H3N2O2S)]F(000) = 552
Mr = 287.04Dx = 2.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6859 reflections
a = 5.8332 (12) Åθ = 3.5–27.7°
b = 14.786 (3) ŵ = 2.95 mm1
c = 8.6377 (17) ÅT = 293 K
β = 93.63 (3)°Block, yellow
V = 743.5 (3) Å30.2 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1291 independent reflections
Radiation source: fine-focus sealed tube1144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.630, Tmax = 1k = 1717
6233 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0199P)2 + 2.3752P]
where P = (Fo2 + 2Fc2)/3
1291 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ag(C7H3N2O2S)]V = 743.5 (3) Å3
Mr = 287.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8332 (12) ŵ = 2.95 mm1
b = 14.786 (3) ÅT = 293 K
c = 8.6377 (17) Å0.2 × 0.18 × 0.17 mm
β = 93.63 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1291 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1144 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 1Rint = 0.044
6233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.16Δρmax = 1.26 e Å3
1291 reflectionsΔρmin = 0.63 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.22834 (8)0.54824 (3)0.55500 (6)0.04253 (19)
S10.8176 (2)0.67965 (9)0.27803 (16)0.0309 (3)
O20.9762 (7)0.8433 (3)0.1625 (4)0.0393 (10)
N10.4925 (7)0.6364 (3)0.4372 (5)0.0285 (10)
O10.8634 (7)0.9824 (3)0.2134 (5)0.0437 (11)
N20.6579 (8)0.6012 (3)0.3649 (5)0.0305 (11)
C10.8499 (10)0.8983 (4)0.2247 (6)0.0341 (13)
C50.3213 (9)0.7828 (4)0.4920 (6)0.0303 (13)
H5A0.20980.75760.55110.036*
C20.6652 (9)0.8593 (4)0.3167 (6)0.0268 (12)
C70.6539 (8)0.7651 (3)0.3390 (6)0.0237 (11)
C60.4826 (9)0.7294 (3)0.4252 (6)0.0257 (12)
C30.5022 (9)0.9111 (4)0.3794 (6)0.0315 (13)
H3A0.50380.97320.36310.038*
C40.3315 (9)0.8741 (4)0.4679 (6)0.0328 (13)
H4A0.22460.91190.51040.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0450 (3)0.0259 (3)0.0598 (3)0.0019 (2)0.0278 (2)0.0036 (2)
S10.0320 (8)0.0274 (7)0.0347 (8)0.0004 (6)0.0123 (6)0.0004 (6)
O20.039 (2)0.041 (2)0.040 (2)0.0007 (19)0.0199 (19)0.0042 (19)
N10.028 (2)0.023 (2)0.034 (3)0.0008 (19)0.005 (2)0.001 (2)
O10.057 (3)0.033 (2)0.043 (3)0.014 (2)0.016 (2)0.0093 (19)
N20.032 (3)0.022 (2)0.038 (3)0.001 (2)0.006 (2)0.002 (2)
C10.037 (3)0.036 (3)0.030 (3)0.012 (3)0.004 (3)0.003 (3)
C50.025 (3)0.028 (3)0.039 (3)0.005 (2)0.011 (2)0.004 (2)
C20.029 (3)0.029 (3)0.022 (3)0.004 (2)0.000 (2)0.001 (2)
C70.022 (3)0.026 (3)0.023 (3)0.002 (2)0.001 (2)0.002 (2)
C60.027 (3)0.027 (3)0.023 (3)0.002 (2)0.001 (2)0.001 (2)
C30.041 (3)0.021 (3)0.033 (3)0.000 (2)0.006 (3)0.000 (2)
C40.031 (3)0.028 (3)0.041 (3)0.002 (2)0.010 (3)0.005 (3)
Geometric parameters (Å, º) top
Ag1—N12.304 (4)C1—C21.494 (7)
Ag1—N2i2.396 (4)C5—C41.367 (7)
Ag1—O2ii2.402 (4)C5—C61.383 (7)
Ag1—O1iii2.540 (4)C5—H5A0.9300
Ag1—Ag1iv3.1168 (12)C2—C31.360 (7)
S1—C71.688 (5)C2—C71.408 (7)
S1—N21.693 (4)C7—C61.388 (7)
O2—C11.242 (7)C3—C41.404 (7)
N1—N21.292 (6)C3—H3A0.9300
N1—C61.379 (6)C4—H4A0.9300
O1—C11.251 (7)
N1—Ag1—N2i117.94 (15)O2—C1—C2116.4 (5)
N1—Ag1—O2ii103.64 (15)O1—C1—C2118.4 (5)
N2i—Ag1—O2ii132.00 (14)C4—C5—C6117.6 (5)
N1—Ag1—O1iii85.52 (15)C4—C5—H5A121.2
N2i—Ag1—O1iii87.08 (14)C6—C5—H5A121.2
O2ii—Ag1—O1iii120.64 (14)C3—C2—C7117.5 (5)
N1—Ag1—Ag1iv135.00 (11)C3—C2—C1122.7 (5)
N2i—Ag1—Ag1iv83.21 (11)C7—C2—C1119.7 (5)
O2ii—Ag1—Ag1iv83.74 (10)C6—C7—C2119.4 (5)
O1iii—Ag1—Ag1iv54.53 (10)C6—C7—S1108.9 (4)
C7—S1—N292.1 (2)C2—C7—S1131.7 (4)
C1—O2—Ag1v97.2 (3)N1—C6—C5124.4 (5)
N2—N1—C6113.3 (4)N1—C6—C7113.1 (4)
N2—N1—Ag1121.7 (3)C5—C6—C7122.6 (5)
C6—N1—Ag1124.8 (3)C2—C3—C4122.4 (5)
C1—O1—Ag1vi116.2 (4)C2—C3—H3A118.8
N1—N2—S1112.7 (3)C4—C3—H3A118.8
N1—N2—Ag1i115.7 (3)C5—C4—C3120.4 (5)
S1—N2—Ag1i127.6 (2)C5—C4—H4A119.8
O2—C1—O1125.1 (5)C3—C4—H4A119.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+3/2, z1/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C7H3N2O2S)]
Mr287.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8332 (12), 14.786 (3), 8.6377 (17)
β (°) 93.63 (3)
V3)743.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.95
Crystal size (mm)0.2 × 0.18 × 0.17
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.630, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6233, 1291, 1144
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.075, 1.16
No. of reflections1291
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 0.63

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

References

First citationBrammer, L., Burgard, M. D., Eddleston, M. D., Rodger, C. S., Rath, N. P. & Adams, H. (2002). CrystEngComm, 4, 239–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, X.-D. & Mak, T. C. W. (2005). Chem. Commun. pp. 3529–3531.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNg, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396–1400.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds