organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Amino­(5-{2-[amino­(iminio)meth­yl]hydrazin-1-yl}-3,5-di­methyl-4,5-di­hydro-1H-pyrazol-1-yl)methaniminium dinitrate

aVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia, and bDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
*Correspondence e-mail: snovak@vinca.rs

(Received 21 June 2010; accepted 25 June 2010; online 3 July 2010)

The reaction of aqueous solutions of amino­guanidine hydrogennitrate and acetyl­acetone produces the title pyrazole salt, C7H18N82+·2NO3. The crystal structure is stabilized by a complex N—H⋯O hydrogen-bonding network. The difference in the engagement of the two nitrate anions in hydrogen bonding is reflected in the variation of the corresponding N—O bond lengths.

Related literature

For the biological activity of pyrazole derivatives, see: Farag et al. (2008[Farag, A. M., Mayhoub, A. S., Barakat, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. 16, 881-889.]); Stauffer et al. (2000[Stauffer, S. R., Coletta, C. J., Tedesco, R., Nishiguchi, G., Carlson, K., Sun, J., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2000). J. Med. Chem. 43, 4934-4947.]). For the coordination chemistry of pyrazole derivatives, see: Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]); Mani (1992[Mani, F. (1992). Coord. Chem. Rev. 120, 325-359.]). For related structures, see: Cousson et al. (1991a[Cousson, A., Bachet, B., Kokel, B. & Hubert-Habart, M. (1991a). Acta Cryst. C47, 1885-1888.],b[Cousson, A., Robert, F. & Hubert-Habart, M. (1991b). Acta Cryst. C47, 395-397.]); Kettmann & Světlík (2002[Kettmann, V. & Světlík, J. (2002). Acta Cryst. C58, o423-o424.]); Khudoyarov et al. (1995[Khudoyarov, A. B., Mirdzhalalov, F. F., Sharipov, Kh. T. & Khudaiberdyeva, S. P. (1995). Uzb. Chem. J. pp. 5-6.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Thiele & Dralle (1898[Thiele, J. & Dralle, E. (1898). Annalen, 302, 275-334.]) reported that the reaction of aqueous amino­guanidine hydrogennitrate and acetyl­acetone solutions led to the formation of acetyl­acetonebis(amino­guanidine) dihydrogendinitrate (C7H16N8·2HNO3). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition.

[Scheme 1]

Experimental

Crystal data
  • C7H18N82+·2NO3

  • Mr = 338.31

  • Orthorhombic, P 21 21 21

  • a = 7.5025 (2) Å

  • b = 13.8946 (4) Å

  • c = 14.2477 (3) Å

  • V = 1485.24 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.42 × 0.35 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 (Gemini Mo) diffractometer

  • 4760 measured reflections

  • 1997 independent reflections

  • 1548 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.03

  • 1997 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O5i 0.86 2.52 3.048 (3) 120
N4—H4⋯O6ii 0.86 2.48 3.331 (5) 173
N5—H5A⋯O4 0.86 2.50 3.138 (4) 132
N5—H5A⋯O5 0.86 2.19 3.048 (4) 174
N5—H5B⋯O3iii 0.86 2.23 2.934 (3) 139
N6—H6A⋯O1iv 0.86 2.22 3.022 (3) 154
N6—H6B⋯O4ii 0.86 2.04 2.905 (4) 179
N7—H7A⋯O1 0.86 2.07 2.899 (3) 162
N8—H8A⋯O2 0.86 2.04 2.897 (3) 172
N8—H8B⋯O2iii 0.86 2.23 2.990 (3) 148
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-97.], 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

In the paper (Thiele & Dralle, 1898) the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions was described which, according to the authors, led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8.2HNO3). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition, i.e. amino(2-(1-(amino(iminio)methyl)-3,5-dimethyl-4,5-dihydro- 1H-pyrazol-5-yl)hydrazinyl)methaniminium-dinitrate (I).

Due to the presence of the nitrate anions next to the cation rich in N—H donor sites, the crystal structure of (I) (Figure 1) is stabilized by a very extensive hydrogen bonding network. The pair of the strongest hydrogen bonds (Table 1), N7—H7a···O1 and N8—H8a···O2, connects the protonated –C(NH2)2 substituent of the pyrazole ring to the single N9/O1/O2/O3 group generating an R22(8) motif (Etter et al., 1990; Bernstein et al., 1995). The same nitrate group forms two additional hydrogen bonds (N5—H5b···O3 and N8—H8b···O2) that interlink the two –C(NH2)2 fragments of the pyrazolyl and hydrazinyl parts of the single molecule, producing the larger R22(13) motif. These interactions, which are all shorter than 2.23 Å, generate a zigzag chain parallel to [100]. The hydrazinyl moiety of the cation also forms R22(8) hydrogen bonding motif by engaging N4—H4 and N6—-H6b as donors to O6 and O4, respectively. In addition, the same nitrate anion (N10/O4/O5/O6) is involved in the bifurcated N5—H5a···O4 and N5–H5a···O5 hydrogen bond. The combination of these interactions extends the hydrogen bonding network toward [001] direction resulting in two-dimensional molecular arrays (Figure 2). This arrangement is also supported by two the strongest C—H···O interactions, while remaining N—-H6a···O1 and the weaker N—H···O and C—H···O interactions complete the three-dimensional structure. It is noteworthy that the nitrate group N9/O1/O2/O3 has the higher engagement in the strong hydrogen bonds (five hydrogen bonds < 2.23 Å) than N10/O4/O5/O6 (two hydrogen bonds < 2.23 Å). This is reflected in the corresponding N—O distances which in the first anion range from 1.212 (3)–1.269 (3) while in the second from 1.195 (4)–1.248 (3) Å. The oxygen atom of the shortest N—O6 bond engages only in weak N—H···O and C—H···O interactions.

Related literature top

For the biological activity of pyrazole derivatives, see: Farag et al. (2008); Stauffer et al. (2000). For the coordination chemistry of pyrazole derivatives, see: Mukherjee (2000); Mani (1992). For related structures, see: Cousson et al. (1991a,b); Kettmann & Světlík (2002); Khudoyarov et al. (1995). For hydrogen-bonding motifs, see: Bernstein et al. (1995); Etter et al. (1990). Thiele & Dralle (1898) reported that the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8.2HNO3).

Experimental top

To a solution of aminoguanidine hydrogennitrate (1.4 g, 10 mmol) in H2O (20 ml) acetylacetone (0.5 ml, 5 mmol) was added. The reaction mixture was homogenized by stirring on magnetic stirrer (20 min) at room temperature. After three days the resulting white crystals have been filtered and washed with water (35% yield).

Refinement top

The H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.96 and 0.97 Å from methyl and methylene C atoms respectively. Their Uiso(H) values where equal to 1.5 times Ueq of the corresponding C (sp3) atom. N—H distances were fixed to 0.86 Å with Uiso(H) values equal to 1.2 Ueq of the parent N.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

In the paper (Thiele & Dralle, 1898) the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions was described which, according to the authors, led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8.2HNO3). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition, i.e. amino(2-(1-(amino(iminio)methyl)-3,5-dimethyl-4,5-dihydro- 1H-pyrazol-5-yl)hydrazinyl)methaniminium-dinitrate (I).

Due to the presence of the nitrate anions next to the cation rich in N—H donor sites, the crystal structure of (I) (Figure 1) is stabilized by a very extensive hydrogen bonding network. The pair of the strongest hydrogen bonds (Table 1), N7—H7a···O1 and N8—H8a···O2, connects the protonated –C(NH2)2 substituent of the pyrazole ring to the single N9/O1/O2/O3 group generating an R22(8) motif (Etter et al., 1990; Bernstein et al., 1995). The same nitrate group forms two additional hydrogen bonds (N5—H5b···O3 and N8—H8b···O2) that interlink the two –C(NH2)2 fragments of the pyrazolyl and hydrazinyl parts of the single molecule, producing the larger R22(13) motif. These interactions, which are all shorter than 2.23 Å, generate a zigzag chain parallel to [100]. The hydrazinyl moiety of the cation also forms R22(8) hydrogen bonding motif by engaging N4—H4 and N6—-H6b as donors to O6 and O4, respectively. In addition, the same nitrate anion (N10/O4/O5/O6) is involved in the bifurcated N5—H5a···O4 and N5–H5a···O5 hydrogen bond. The combination of these interactions extends the hydrogen bonding network toward [001] direction resulting in two-dimensional molecular arrays (Figure 2). This arrangement is also supported by two the strongest C—H···O interactions, while remaining N—-H6a···O1 and the weaker N—H···O and C—H···O interactions complete the three-dimensional structure. It is noteworthy that the nitrate group N9/O1/O2/O3 has the higher engagement in the strong hydrogen bonds (five hydrogen bonds < 2.23 Å) than N10/O4/O5/O6 (two hydrogen bonds < 2.23 Å). This is reflected in the corresponding N—O distances which in the first anion range from 1.212 (3)–1.269 (3) while in the second from 1.195 (4)–1.248 (3) Å. The oxygen atom of the shortest N—O6 bond engages only in weak N—H···O and C—H···O interactions.

For the biological activity of pyrazole derivatives, see: Farag et al. (2008); Stauffer et al. (2000). For the coordination chemistry of pyrazole derivatives, see: Mukherjee (2000); Mani (1992). For related structures, see: Cousson et al. (1991a,b); Kettmann & Světlík (2002); Khudoyarov et al. (1995). For hydrogen-bonding motifs, see: Bernstein et al. (1995); Etter et al. (1990). Thiele & Dralle (1898) reported that the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8.2HNO3).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1983, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing diagram of (I), view approxymately normal to (010). H atoms not involved in hydrogen bonding have been omitted for clarity.
Amino(5-{2-[amino(iminio)methyl]hydrazin-1-yl}-3,5-dimethyl-4,5-dihydro- 1H-pyrazol-1-yl)methaniminium dinitrate top
Crystal data top
C7H18N82+·2NO3F(000) = 712
Mr = 338.31Dx = 1.513 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2501 reflections
a = 7.5025 (2) Åθ = 3.1–29.1°
b = 13.8946 (4) ŵ = 0.13 mm1
c = 14.2477 (3) ÅT = 293 K
V = 1485.24 (7) Å3Prism, white
Z = 40.42 × 0.35 × 0.26 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 (Gemini Mo)
diffractometer
1548 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 29.2°, θmin = 3.1°
Detector resolution: 16.3280 pixels mm-1h = 107
ω scansk = 1617
4760 measured reflectionsl = 1919
1997 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
1997 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C7H18N82+·2NO3V = 1485.24 (7) Å3
Mr = 338.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5025 (2) ŵ = 0.13 mm1
b = 13.8946 (4) ÅT = 293 K
c = 14.2477 (3) Å0.42 × 0.35 × 0.26 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 (Gemini Mo)
diffractometer
1548 reflections with I > 2σ(I)
4760 measured reflectionsRint = 0.017
1997 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
1997 reflectionsΔρmin = 0.33 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6023 (3)0.23138 (16)0.72769 (15)0.0309 (5)
N20.5967 (3)0.19338 (16)0.63655 (16)0.0322 (5)
N30.6670 (3)0.39564 (15)0.76413 (15)0.0296 (5)
H30.68550.42550.81610.036*
N40.5571 (3)0.43172 (16)0.69281 (15)0.0312 (5)
H40.59440.43490.63590.037*
N50.3293 (3)0.44897 (18)0.79956 (16)0.0382 (6)
H5A0.22280.46760.81270.046*
H5B0.39380.42220.84210.046*
N60.2960 (3)0.50226 (18)0.64889 (17)0.0412 (6)
H6A0.18940.52120.66110.049*
H6B0.33940.51000.59350.049*
N70.3393 (3)0.15173 (18)0.75060 (18)0.0427 (6)
H7A0.25240.13390.78600.051*
H7B0.34230.13410.69280.051*
N80.4640 (3)0.23279 (18)0.87330 (18)0.0410 (6)
H8A0.37730.21510.90880.049*
H8B0.54810.26810.89560.049*
C10.7481 (3)0.30221 (18)0.74174 (19)0.0283 (5)
C20.8406 (4)0.2956 (2)0.6454 (2)0.0340 (6)
H2A0.84510.35810.61520.041*
H2B0.96100.27100.65170.041*
C30.7278 (4)0.22799 (19)0.59131 (19)0.0318 (6)
C40.7588 (5)0.2006 (2)0.4917 (2)0.0477 (8)
H4A0.67620.15110.47400.071*
H4B0.87840.17720.48460.071*
H4C0.74180.25590.45230.071*
C50.4681 (3)0.20601 (18)0.78507 (19)0.0306 (6)
C60.8751 (4)0.2760 (2)0.8205 (2)0.0426 (7)
H6C0.97660.31810.81880.064*
H6D0.91390.21060.81290.064*
H6E0.81530.28280.87970.064*
C70.3929 (3)0.46119 (18)0.71523 (17)0.0268 (5)
N90.0699 (3)0.09061 (19)0.95468 (15)0.0364 (6)
O10.0933 (3)0.05303 (16)0.87444 (13)0.0442 (5)
O20.1651 (3)0.15852 (17)0.97976 (16)0.0521 (6)
N100.0557 (4)0.52379 (19)0.92350 (18)0.0418 (6)
O30.0469 (3)0.0598 (3)1.00527 (15)0.0752 (9)
O40.0522 (4)0.4704 (3)0.9632 (2)0.0828 (9)
O50.0419 (3)0.52961 (19)0.83639 (16)0.0562 (6)
O60.1669 (5)0.5670 (2)0.9663 (3)0.1010 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0339 (11)0.0319 (11)0.0268 (10)0.0079 (10)0.0053 (10)0.0029 (10)
N20.0347 (11)0.0323 (11)0.0295 (10)0.0007 (10)0.0011 (11)0.0039 (10)
N30.0314 (11)0.0302 (11)0.0273 (10)0.0030 (10)0.0032 (10)0.0059 (10)
N40.0311 (12)0.0389 (12)0.0238 (9)0.0040 (11)0.0021 (10)0.0021 (10)
N50.0331 (11)0.0514 (15)0.0302 (10)0.0120 (12)0.0026 (11)0.0029 (12)
N60.0418 (14)0.0496 (14)0.0323 (12)0.0167 (13)0.0042 (10)0.0003 (12)
N70.0363 (12)0.0479 (13)0.0440 (14)0.0148 (12)0.0069 (12)0.0011 (13)
N80.0413 (13)0.0484 (14)0.0334 (12)0.0106 (12)0.0098 (12)0.0002 (12)
C10.0249 (12)0.0282 (11)0.0318 (13)0.0012 (11)0.0016 (11)0.0002 (12)
C20.0293 (13)0.0360 (14)0.0365 (14)0.0026 (12)0.0068 (12)0.0006 (13)
C30.0342 (14)0.0291 (12)0.0320 (13)0.0052 (12)0.0005 (12)0.0022 (12)
C40.0491 (17)0.0572 (19)0.0367 (15)0.0090 (17)0.0088 (15)0.0050 (16)
C50.0320 (13)0.0259 (12)0.0338 (13)0.0012 (11)0.0035 (12)0.0037 (11)
C60.0338 (15)0.0535 (18)0.0403 (16)0.0079 (15)0.0081 (13)0.0023 (15)
C70.0272 (12)0.0267 (12)0.0265 (11)0.0001 (11)0.0026 (11)0.0047 (10)
N90.0317 (12)0.0526 (15)0.0249 (10)0.0043 (12)0.0015 (11)0.0007 (11)
O10.0482 (11)0.0567 (13)0.0277 (9)0.0101 (11)0.0064 (10)0.0083 (10)
O20.0543 (13)0.0573 (13)0.0448 (12)0.0216 (12)0.0073 (11)0.0166 (12)
N100.0405 (14)0.0442 (15)0.0405 (13)0.0054 (13)0.0008 (12)0.0085 (12)
O30.0620 (15)0.130 (3)0.0335 (11)0.0500 (18)0.0185 (12)0.0166 (15)
O40.094 (2)0.097 (2)0.0578 (15)0.012 (2)0.0325 (17)0.0030 (16)
O50.0557 (14)0.0699 (15)0.0430 (11)0.0017 (14)0.0097 (11)0.0007 (12)
O60.092 (2)0.0797 (19)0.131 (3)0.007 (2)0.061 (2)0.035 (2)
Geometric parameters (Å, º) top
N1—C51.344 (3)N8—H8B0.8605
N1—N21.403 (3)C1—C61.517 (4)
N1—C11.485 (3)C1—C21.541 (4)
N2—C31.271 (4)C2—C31.480 (4)
N3—N41.402 (3)C2—H2A0.9700
N3—C11.469 (3)C2—H2B0.9700
N3—H30.8601C3—C41.488 (4)
N4—C71.336 (3)C4—H4A0.9600
N4—H40.8593C4—H4B0.9600
N5—C71.304 (3)C4—H4C0.9600
N5—H5A0.8606C6—H6C0.9600
N5—H5B0.8597C6—H6D0.9600
N6—C71.322 (3)C6—H6E0.9600
N6—H6A0.8597N9—O31.212 (3)
N6—H6B0.8606N9—O21.236 (3)
N7—C51.320 (4)N9—O11.269 (3)
N7—H7A0.8605N10—O61.195 (4)
N7—H7B0.8594N10—O41.235 (4)
N8—C51.311 (4)N10—O51.248 (3)
N8—H8A0.8597
C5—N1—N2116.2 (2)C3—C2—H2B110.9
C5—N1—C1130.1 (2)C1—C2—H2B110.9
N2—N1—C1113.4 (2)H2A—C2—H2B109.0
C3—N2—N1107.7 (2)N2—C3—C2114.8 (2)
N4—N3—C1113.7 (2)N2—C3—C4120.5 (3)
N4—N3—H3123.2C2—C3—C4124.7 (3)
C1—N3—H3123.1C3—C4—H4A109.5
C7—N4—N3118.6 (2)C3—C4—H4B109.5
C7—N4—H4120.7H4A—C4—H4B109.5
N3—N4—H4120.7C3—C4—H4C109.5
C7—N5—H5A120.0H4A—C4—H4C109.5
C7—N5—H5B120.0H4B—C4—H4C109.5
H5A—N5—H5B120.0N8—C5—N7120.1 (3)
C7—N6—H6A120.0N8—C5—N1121.7 (3)
C7—N6—H6B120.1N7—C5—N1118.2 (2)
H6A—N6—H6B120.0C1—C6—H6C109.5
C5—N7—H7A120.0C1—C6—H6D109.5
C5—N7—H7B120.0H6C—C6—H6D109.5
H7A—N7—H7B120.0C1—C6—H6E109.5
C5—N8—H8A120.0H6C—C6—H6E109.5
C5—N8—H8B119.9H6D—C6—H6E109.5
H8A—N8—H8B120.0N5—C7—N6120.9 (2)
N3—C1—N1108.1 (2)N5—C7—N4121.2 (2)
N3—C1—C6108.1 (2)N6—C7—N4117.9 (2)
N1—C1—C6113.8 (2)O3—N9—O2121.0 (3)
N3—C1—C2115.6 (2)O3—N9—O1119.3 (3)
N1—C1—C299.90 (19)O2—N9—O1119.6 (2)
C6—C1—C2111.2 (2)O6—N10—O4121.7 (3)
C3—C2—C1104.1 (2)O6—N10—O5122.2 (3)
C3—C2—H2A110.9O4—N10—O5116.1 (3)
C1—C2—H2A110.9
C5—N1—N2—C3177.1 (2)N1—C1—C2—C33.4 (2)
C1—N1—N2—C33.2 (3)C6—C1—C2—C3123.9 (2)
C1—N3—N4—C7129.5 (2)N1—N2—C3—C20.6 (3)
N4—N3—C1—N161.2 (3)N1—N2—C3—C4179.7 (2)
N4—N3—C1—C6175.2 (2)C1—C2—C3—N21.9 (3)
N4—N3—C1—C249.7 (3)C1—C2—C3—C4177.7 (3)
C5—N1—C1—N355.7 (3)N2—N1—C5—N8176.2 (2)
N2—N1—C1—N3117.2 (2)C1—N1—C5—N811.1 (4)
C5—N1—C1—C664.4 (4)N2—N1—C5—N72.9 (4)
N2—N1—C1—C6122.7 (3)C1—N1—C5—N7169.8 (2)
C5—N1—C1—C2176.9 (3)N3—N4—C7—N56.1 (4)
N2—N1—C1—C24.1 (3)N3—N4—C7—N6174.6 (2)
N3—C1—C2—C3112.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.862.523.048 (3)120
N4—H4···O6ii0.862.483.331 (5)173
N5—H5A···O40.862.503.138 (4)132
N5—H5A···O50.862.193.048 (4)174
N5—H5B···O3iii0.862.232.934 (3)139
N6—H6A···O1iv0.862.223.022 (3)154
N6—H6B···O4ii0.862.042.905 (4)179
N7—H7A···O10.862.072.899 (3)162
N8—H8A···O20.862.042.897 (3)172
N8—H8B···O2iii0.862.232.990 (3)148
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+1/2, z+2; (iv) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H18N82+·2NO3
Mr338.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.5025 (2), 13.8946 (4), 14.2477 (3)
V3)1485.24 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.42 × 0.35 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 (Gemini Mo)
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4760, 1997, 1548
Rint0.017
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.03
No. of reflections1997
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1983, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.862.523.048 (3)120.4
N4—H4···O6ii0.862.483.331 (5)172.7
N5—H5A···O40.862.503.138 (4)131.8
N5—H5A···O50.862.193.048 (4)173.5
N5—H5B···O3iii0.862.232.934 (3)138.6
N6—H6A···O1iv0.862.223.022 (3)154.4
N6—H6B···O4ii0.862.042.905 (4)178.7
N7—H7A···O10.862.072.899 (3)161.9
N8—H8A···O20.862.042.897 (3)172.0
N8—H8B···O2iii0.862.232.990 (3)147.6
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+1/2, z+2; (iv) x, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (grant No. 142028) and the Provincial Secretariat for Science and Technological Development of Vojvodina.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCousson, A., Bachet, B., Kokel, B. & Hubert-Habart, M. (1991a). Acta Cryst. C47, 1885–1888.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCousson, A., Robert, F. & Hubert-Habart, M. (1991b). Acta Cryst. C47, 395–397.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarag, A. M., Mayhoub, A. S., Barakat, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. 16, 881–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKettmann, V. & Světlík, J. (2002). Acta Cryst. C58, o423–o424.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhudoyarov, A. B., Mirdzhalalov, F. F., Sharipov, Kh. T. & Khudaiberdyeva, S. P. (1995). Uzb. Chem. J. pp. 5–6.  Google Scholar
First citationMani, F. (1992). Coord. Chem. Rev. 120, 325–359.  CrossRef CAS Web of Science Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–97.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStauffer, S. R., Coletta, C. J., Tedesco, R., Nishiguchi, G., Carlson, K., Sun, J., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2000). J. Med. Chem. 43, 4934–4947.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThiele, J. & Dralle, E. (1898). Annalen, 302, 275–334.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds