organic compounds
Amino(5-{2-[amino(iminio)methyl]hydrazin-1-yl}-3,5-dimethyl-4,5-dihydro-1H-pyrazol-1-yl)methaniminium dinitrate
aVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia, and bDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
*Correspondence e-mail: snovak@vinca.rs
The reaction of aqueous solutions of aminoguanidine hydrogennitrate and acetylacetone produces the title pyrazole salt, C7H18N82+·2NO3−. The is stabilized by a complex N—H⋯O hydrogen-bonding network. The difference in the engagement of the two nitrate anions in hydrogen bonding is reflected in the variation of the corresponding N—O bond lengths.
Related literature
For the biological activity of pyrazole derivatives, see: Farag et al. (2008); Stauffer et al. (2000). For the coordination chemistry of pyrazole derivatives, see: Mukherjee (2000); Mani (1992). For related structures, see: Cousson et al. (1991a,b); Kettmann & Světlík (2002); Khudoyarov et al. (1995). For hydrogen-bonding motifs, see: Bernstein et al. (1995); Etter et al. (1990). Thiele & Dralle (1898) reported that the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8·2HNO3). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition.
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1983, 1995).
Supporting information
https://doi.org/10.1107/S1600536810025006/dn2584sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810025006/dn2584Isup2.hkl
To a solution of aminoguanidine hydrogennitrate (1.4 g, 10 mmol) in H2O (20 ml) acetylacetone (0.5 ml, 5 mmol) was added. The reaction mixture was homogenized by stirring on magnetic stirrer (20 min) at room temperature. After three days the resulting white crystals have been filtered and washed with water (35% yield).
The H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.96 and 0.97 Å from methyl and methylene C atoms respectively. Their Uiso(H) values where equal to 1.5 times Ueq of the corresponding C (sp3) atom. N—H distances were fixed to 0.86 Å with Uiso(H) values equal to 1.2 Ueq of the parent N.
In the absence of significant
the could not be reliably determined and then the Friedel pairs were merged and any references to the were removed.In the paper (Thiele & Dralle, 1898) the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions was described which, according to the authors, led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8.2HNO3). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition, i.e. amino(2-(1-(amino(iminio)methyl)-3,5-dimethyl-4,5-dihydro- 1H-pyrazol-5-yl)hydrazinyl)methaniminium-dinitrate (I).
Due to the presence of the nitrate anions next to the cation rich in N—H donor sites, the
of (I) (Figure 1) is stabilized by a very extensive hydrogen bonding network. The pair of the strongest hydrogen bonds (Table 1), N7—H7a···O1 and N8—H8a···O2, connects the protonated –C(NH2)2 substituent of the pyrazole ring to the single N9/O1/O2/O3 group generating an R22(8) motif (Etter et al., 1990; Bernstein et al., 1995). The same nitrate group forms two additional hydrogen bonds (N5—H5b···O3 and N8—H8b···O2) that interlink the two –C(NH2)2 fragments of the pyrazolyl and hydrazinyl parts of the single molecule, producing the larger R22(13) motif. These interactions, which are all shorter than 2.23 Å, generate a zigzag chain parallel to [100]. The hydrazinyl moiety of the cation also forms R22(8) hydrogen bonding motif by engaging N4—H4 and N6—-H6b as donors to O6 and O4, respectively. In addition, the same nitrate anion (N10/O4/O5/O6) is involved in the bifurcated N5—H5a···O4 and N5–H5a···O5 hydrogen bond. The combination of these interactions extends the hydrogen bonding network toward [001] direction resulting in two-dimensional molecular arrays (Figure 2). This arrangement is also supported by two the strongest C—H···O interactions, while remaining N—-H6a···O1 and the weaker N—H···O and C—H···O interactions complete the three-dimensional structure. It is noteworthy that the nitrate group N9/O1/O2/O3 has the higher engagement in the strong hydrogen bonds (five hydrogen bonds < 2.23 Å) than N10/O4/O5/O6 (two hydrogen bonds < 2.23 Å). This is reflected in the corresponding N—O distances which in the first anion range from 1.212 (3)–1.269 (3) while in the second from 1.195 (4)–1.248 (3) Å. The oxygen atom of the shortest N—O6 bond engages only in weak N—H···O and C—H···O interactions.For the biological activity of pyrazole derivatives, see: Farag et al. (2008); Stauffer et al. (2000). For the coordination chemistry of pyrazole derivatives, see: Mukherjee (2000); Mani (1992). For related structures, see: Cousson et al. (1991a,b); Kettmann & Světlík (2002); Khudoyarov et al. (1995). For hydrogen-bonding motifs, see: Bernstein et al. (1995); Etter et al. (1990). Thiele & Dralle (1898) reported that the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8.2HNO3).
Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell
CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1983, 1995).Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. The packing diagram of (I), view approxymately normal to (010). H atoms not involved in hydrogen bonding have been omitted for clarity. |
C7H18N82+·2NO3− | F(000) = 712 |
Mr = 338.31 | Dx = 1.513 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2501 reflections |
a = 7.5025 (2) Å | θ = 3.1–29.1° |
b = 13.8946 (4) Å | µ = 0.13 mm−1 |
c = 14.2477 (3) Å | T = 293 K |
V = 1485.24 (7) Å3 | Prism, white |
Z = 4 | 0.42 × 0.35 × 0.26 mm |
Oxford Diffraction Xcalibur Sapphire3 (Gemini Mo) diffractometer | 1548 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
Graphite monochromator | θmax = 29.2°, θmin = 3.1° |
Detector resolution: 16.3280 pixels mm-1 | h = −10→7 |
ω scans | k = −16→17 |
4760 measured reflections | l = −19→19 |
1997 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0719P)2] where P = (Fo2 + 2Fc2)/3 |
1997 reflections | (Δ/σ)max < 0.001 |
210 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C7H18N82+·2NO3− | V = 1485.24 (7) Å3 |
Mr = 338.31 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.5025 (2) Å | µ = 0.13 mm−1 |
b = 13.8946 (4) Å | T = 293 K |
c = 14.2477 (3) Å | 0.42 × 0.35 × 0.26 mm |
Oxford Diffraction Xcalibur Sapphire3 (Gemini Mo) diffractometer | 1548 reflections with I > 2σ(I) |
4760 measured reflections | Rint = 0.017 |
1997 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.42 e Å−3 |
1997 reflections | Δρmin = −0.33 e Å−3 |
210 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6023 (3) | 0.23138 (16) | 0.72769 (15) | 0.0309 (5) | |
N2 | 0.5967 (3) | 0.19338 (16) | 0.63655 (16) | 0.0322 (5) | |
N3 | 0.6670 (3) | 0.39564 (15) | 0.76413 (15) | 0.0296 (5) | |
H3 | 0.6855 | 0.4255 | 0.8161 | 0.036* | |
N4 | 0.5571 (3) | 0.43172 (16) | 0.69281 (15) | 0.0312 (5) | |
H4 | 0.5944 | 0.4349 | 0.6359 | 0.037* | |
N5 | 0.3293 (3) | 0.44897 (18) | 0.79956 (16) | 0.0382 (6) | |
H5A | 0.2228 | 0.4676 | 0.8127 | 0.046* | |
H5B | 0.3938 | 0.4222 | 0.8421 | 0.046* | |
N6 | 0.2960 (3) | 0.50226 (18) | 0.64889 (17) | 0.0412 (6) | |
H6A | 0.1894 | 0.5212 | 0.6611 | 0.049* | |
H6B | 0.3394 | 0.5100 | 0.5935 | 0.049* | |
N7 | 0.3393 (3) | 0.15173 (18) | 0.75060 (18) | 0.0427 (6) | |
H7A | 0.2524 | 0.1339 | 0.7860 | 0.051* | |
H7B | 0.3423 | 0.1341 | 0.6928 | 0.051* | |
N8 | 0.4640 (3) | 0.23279 (18) | 0.87330 (18) | 0.0410 (6) | |
H8A | 0.3773 | 0.2151 | 0.9088 | 0.049* | |
H8B | 0.5481 | 0.2681 | 0.8956 | 0.049* | |
C1 | 0.7481 (3) | 0.30221 (18) | 0.74174 (19) | 0.0283 (5) | |
C2 | 0.8406 (4) | 0.2956 (2) | 0.6454 (2) | 0.0340 (6) | |
H2A | 0.8451 | 0.3581 | 0.6152 | 0.041* | |
H2B | 0.9610 | 0.2710 | 0.6517 | 0.041* | |
C3 | 0.7278 (4) | 0.22799 (19) | 0.59131 (19) | 0.0318 (6) | |
C4 | 0.7588 (5) | 0.2006 (2) | 0.4917 (2) | 0.0477 (8) | |
H4A | 0.6762 | 0.1511 | 0.4740 | 0.071* | |
H4B | 0.8784 | 0.1772 | 0.4846 | 0.071* | |
H4C | 0.7418 | 0.2559 | 0.4523 | 0.071* | |
C5 | 0.4681 (3) | 0.20601 (18) | 0.78507 (19) | 0.0306 (6) | |
C6 | 0.8751 (4) | 0.2760 (2) | 0.8205 (2) | 0.0426 (7) | |
H6C | 0.9766 | 0.3181 | 0.8188 | 0.064* | |
H6D | 0.9139 | 0.2106 | 0.8129 | 0.064* | |
H6E | 0.8153 | 0.2828 | 0.8797 | 0.064* | |
C7 | 0.3929 (3) | 0.46119 (18) | 0.71523 (17) | 0.0268 (5) | |
N9 | 0.0699 (3) | 0.09061 (19) | 0.95468 (15) | 0.0364 (6) | |
O1 | 0.0933 (3) | 0.05303 (16) | 0.87444 (13) | 0.0442 (5) | |
O2 | 0.1651 (3) | 0.15852 (17) | 0.97976 (16) | 0.0521 (6) | |
N10 | −0.0557 (4) | 0.52379 (19) | 0.92350 (18) | 0.0418 (6) | |
O3 | −0.0469 (3) | 0.0598 (3) | 1.00527 (15) | 0.0752 (9) | |
O4 | 0.0522 (4) | 0.4704 (3) | 0.9632 (2) | 0.0828 (9) | |
O5 | −0.0419 (3) | 0.52961 (19) | 0.83639 (16) | 0.0562 (6) | |
O6 | −0.1669 (5) | 0.5670 (2) | 0.9663 (3) | 0.1010 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0339 (11) | 0.0319 (11) | 0.0268 (10) | −0.0079 (10) | 0.0053 (10) | −0.0029 (10) |
N2 | 0.0347 (11) | 0.0323 (11) | 0.0295 (10) | −0.0007 (10) | −0.0011 (11) | −0.0039 (10) |
N3 | 0.0314 (11) | 0.0302 (11) | 0.0273 (10) | 0.0030 (10) | −0.0032 (10) | −0.0059 (10) |
N4 | 0.0311 (12) | 0.0389 (12) | 0.0238 (9) | 0.0040 (11) | 0.0021 (10) | 0.0021 (10) |
N5 | 0.0331 (11) | 0.0514 (15) | 0.0302 (10) | 0.0120 (12) | 0.0026 (11) | 0.0029 (12) |
N6 | 0.0418 (14) | 0.0496 (14) | 0.0323 (12) | 0.0167 (13) | −0.0042 (10) | 0.0003 (12) |
N7 | 0.0363 (12) | 0.0479 (13) | 0.0440 (14) | −0.0148 (12) | 0.0069 (12) | 0.0011 (13) |
N8 | 0.0413 (13) | 0.0484 (14) | 0.0334 (12) | −0.0106 (12) | 0.0098 (12) | 0.0002 (12) |
C1 | 0.0249 (12) | 0.0282 (11) | 0.0318 (13) | −0.0012 (11) | −0.0016 (11) | −0.0002 (12) |
C2 | 0.0293 (13) | 0.0360 (14) | 0.0365 (14) | 0.0026 (12) | 0.0068 (12) | −0.0006 (13) |
C3 | 0.0342 (14) | 0.0291 (12) | 0.0320 (13) | 0.0052 (12) | 0.0005 (12) | −0.0022 (12) |
C4 | 0.0491 (17) | 0.0572 (19) | 0.0367 (15) | 0.0090 (17) | 0.0088 (15) | −0.0050 (16) |
C5 | 0.0320 (13) | 0.0259 (12) | 0.0338 (13) | 0.0012 (11) | 0.0035 (12) | 0.0037 (11) |
C6 | 0.0338 (15) | 0.0535 (18) | 0.0403 (16) | 0.0079 (15) | −0.0081 (13) | 0.0023 (15) |
C7 | 0.0272 (12) | 0.0267 (12) | 0.0265 (11) | 0.0001 (11) | −0.0026 (11) | −0.0047 (10) |
N9 | 0.0317 (12) | 0.0526 (15) | 0.0249 (10) | −0.0043 (12) | 0.0015 (11) | −0.0007 (11) |
O1 | 0.0482 (11) | 0.0567 (13) | 0.0277 (9) | −0.0101 (11) | 0.0064 (10) | −0.0083 (10) |
O2 | 0.0543 (13) | 0.0573 (13) | 0.0448 (12) | −0.0216 (12) | 0.0073 (11) | −0.0166 (12) |
N10 | 0.0405 (14) | 0.0442 (15) | 0.0405 (13) | −0.0054 (13) | −0.0008 (12) | −0.0085 (12) |
O3 | 0.0620 (15) | 0.130 (3) | 0.0335 (11) | −0.0500 (18) | 0.0185 (12) | −0.0166 (15) |
O4 | 0.094 (2) | 0.097 (2) | 0.0578 (15) | 0.012 (2) | −0.0325 (17) | 0.0030 (16) |
O5 | 0.0557 (14) | 0.0699 (15) | 0.0430 (11) | −0.0017 (14) | −0.0097 (11) | 0.0007 (12) |
O6 | 0.092 (2) | 0.0797 (19) | 0.131 (3) | 0.007 (2) | 0.061 (2) | −0.035 (2) |
N1—C5 | 1.344 (3) | N8—H8B | 0.8605 |
N1—N2 | 1.403 (3) | C1—C6 | 1.517 (4) |
N1—C1 | 1.485 (3) | C1—C2 | 1.541 (4) |
N2—C3 | 1.271 (4) | C2—C3 | 1.480 (4) |
N3—N4 | 1.402 (3) | C2—H2A | 0.9700 |
N3—C1 | 1.469 (3) | C2—H2B | 0.9700 |
N3—H3 | 0.8601 | C3—C4 | 1.488 (4) |
N4—C7 | 1.336 (3) | C4—H4A | 0.9600 |
N4—H4 | 0.8593 | C4—H4B | 0.9600 |
N5—C7 | 1.304 (3) | C4—H4C | 0.9600 |
N5—H5A | 0.8606 | C6—H6C | 0.9600 |
N5—H5B | 0.8597 | C6—H6D | 0.9600 |
N6—C7 | 1.322 (3) | C6—H6E | 0.9600 |
N6—H6A | 0.8597 | N9—O3 | 1.212 (3) |
N6—H6B | 0.8606 | N9—O2 | 1.236 (3) |
N7—C5 | 1.320 (4) | N9—O1 | 1.269 (3) |
N7—H7A | 0.8605 | N10—O6 | 1.195 (4) |
N7—H7B | 0.8594 | N10—O4 | 1.235 (4) |
N8—C5 | 1.311 (4) | N10—O5 | 1.248 (3) |
N8—H8A | 0.8597 | ||
C5—N1—N2 | 116.2 (2) | C3—C2—H2B | 110.9 |
C5—N1—C1 | 130.1 (2) | C1—C2—H2B | 110.9 |
N2—N1—C1 | 113.4 (2) | H2A—C2—H2B | 109.0 |
C3—N2—N1 | 107.7 (2) | N2—C3—C2 | 114.8 (2) |
N4—N3—C1 | 113.7 (2) | N2—C3—C4 | 120.5 (3) |
N4—N3—H3 | 123.2 | C2—C3—C4 | 124.7 (3) |
C1—N3—H3 | 123.1 | C3—C4—H4A | 109.5 |
C7—N4—N3 | 118.6 (2) | C3—C4—H4B | 109.5 |
C7—N4—H4 | 120.7 | H4A—C4—H4B | 109.5 |
N3—N4—H4 | 120.7 | C3—C4—H4C | 109.5 |
C7—N5—H5A | 120.0 | H4A—C4—H4C | 109.5 |
C7—N5—H5B | 120.0 | H4B—C4—H4C | 109.5 |
H5A—N5—H5B | 120.0 | N8—C5—N7 | 120.1 (3) |
C7—N6—H6A | 120.0 | N8—C5—N1 | 121.7 (3) |
C7—N6—H6B | 120.1 | N7—C5—N1 | 118.2 (2) |
H6A—N6—H6B | 120.0 | C1—C6—H6C | 109.5 |
C5—N7—H7A | 120.0 | C1—C6—H6D | 109.5 |
C5—N7—H7B | 120.0 | H6C—C6—H6D | 109.5 |
H7A—N7—H7B | 120.0 | C1—C6—H6E | 109.5 |
C5—N8—H8A | 120.0 | H6C—C6—H6E | 109.5 |
C5—N8—H8B | 119.9 | H6D—C6—H6E | 109.5 |
H8A—N8—H8B | 120.0 | N5—C7—N6 | 120.9 (2) |
N3—C1—N1 | 108.1 (2) | N5—C7—N4 | 121.2 (2) |
N3—C1—C6 | 108.1 (2) | N6—C7—N4 | 117.9 (2) |
N1—C1—C6 | 113.8 (2) | O3—N9—O2 | 121.0 (3) |
N3—C1—C2 | 115.6 (2) | O3—N9—O1 | 119.3 (3) |
N1—C1—C2 | 99.90 (19) | O2—N9—O1 | 119.6 (2) |
C6—C1—C2 | 111.2 (2) | O6—N10—O4 | 121.7 (3) |
C3—C2—C1 | 104.1 (2) | O6—N10—O5 | 122.2 (3) |
C3—C2—H2A | 110.9 | O4—N10—O5 | 116.1 (3) |
C1—C2—H2A | 110.9 | ||
C5—N1—N2—C3 | 177.1 (2) | N1—C1—C2—C3 | 3.4 (2) |
C1—N1—N2—C3 | 3.2 (3) | C6—C1—C2—C3 | 123.9 (2) |
C1—N3—N4—C7 | 129.5 (2) | N1—N2—C3—C2 | −0.6 (3) |
N4—N3—C1—N1 | −61.2 (3) | N1—N2—C3—C4 | 179.7 (2) |
N4—N3—C1—C6 | 175.2 (2) | C1—C2—C3—N2 | −1.9 (3) |
N4—N3—C1—C2 | 49.7 (3) | C1—C2—C3—C4 | 177.7 (3) |
C5—N1—C1—N3 | −55.7 (3) | N2—N1—C5—N8 | 176.2 (2) |
N2—N1—C1—N3 | 117.2 (2) | C1—N1—C5—N8 | −11.1 (4) |
C5—N1—C1—C6 | 64.4 (4) | N2—N1—C5—N7 | −2.9 (4) |
N2—N1—C1—C6 | −122.7 (3) | C1—N1—C5—N7 | 169.8 (2) |
C5—N1—C1—C2 | −176.9 (3) | N3—N4—C7—N5 | −6.1 (4) |
N2—N1—C1—C2 | −4.1 (3) | N3—N4—C7—N6 | 174.6 (2) |
N3—C1—C2—C3 | −112.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O5i | 0.86 | 2.52 | 3.048 (3) | 120 |
N4—H4···O6ii | 0.86 | 2.48 | 3.331 (5) | 173 |
N5—H5A···O4 | 0.86 | 2.50 | 3.138 (4) | 132 |
N5—H5A···O5 | 0.86 | 2.19 | 3.048 (4) | 174 |
N5—H5B···O3iii | 0.86 | 2.23 | 2.934 (3) | 139 |
N6—H6A···O1iv | 0.86 | 2.22 | 3.022 (3) | 154 |
N6—H6B···O4ii | 0.86 | 2.04 | 2.905 (4) | 179 |
N7—H7A···O1 | 0.86 | 2.07 | 2.899 (3) | 162 |
N8—H8A···O2 | 0.86 | 2.04 | 2.897 (3) | 172 |
N8—H8B···O2iii | 0.86 | 2.23 | 2.990 (3) | 148 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1/2, −y+1, z−1/2; (iii) x+1/2, −y+1/2, −z+2; (iv) −x, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C7H18N82+·2NO3− |
Mr | 338.31 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 7.5025 (2), 13.8946 (4), 14.2477 (3) |
V (Å3) | 1485.24 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.42 × 0.35 × 0.26 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 (Gemini Mo) |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4760, 1997, 1548 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.114, 1.03 |
No. of reflections | 1997 |
No. of parameters | 210 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.33 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1983, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O5i | 0.86 | 2.52 | 3.048 (3) | 120.4 |
N4—H4···O6ii | 0.86 | 2.48 | 3.331 (5) | 172.7 |
N5—H5A···O4 | 0.86 | 2.50 | 3.138 (4) | 131.8 |
N5—H5A···O5 | 0.86 | 2.19 | 3.048 (4) | 173.5 |
N5—H5B···O3iii | 0.86 | 2.23 | 2.934 (3) | 138.6 |
N6—H6A···O1iv | 0.86 | 2.22 | 3.022 (3) | 154.4 |
N6—H6B···O4ii | 0.86 | 2.04 | 2.905 (4) | 178.7 |
N7—H7A···O1 | 0.86 | 2.07 | 2.899 (3) | 161.9 |
N8—H8A···O2 | 0.86 | 2.04 | 2.897 (3) | 172.0 |
N8—H8B···O2iii | 0.86 | 2.23 | 2.990 (3) | 147.6 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1/2, −y+1, z−1/2; (iii) x+1/2, −y+1/2, −z+2; (iv) −x, y+1/2, −z+3/2. |
Acknowledgements
This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (grant No. 142028) and the Provincial Secretariat for Science and Technological Development of Vojvodina.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cousson, A., Bachet, B., Kokel, B. & Hubert-Habart, M. (1991a). Acta Cryst. C47, 1885–1888. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cousson, A., Robert, F. & Hubert-Habart, M. (1991b). Acta Cryst. C47, 395–397. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farag, A. M., Mayhoub, A. S., Barakat, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. 16, 881–889. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kettmann, V. & Světlík, J. (2002). Acta Cryst. C58, o423–o424. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Khudoyarov, A. B., Mirdzhalalov, F. F., Sharipov, Kh. T. & Khudaiberdyeva, S. P. (1995). Uzb. Chem. J. pp. 5–6. Google Scholar
Mani, F. (1992). Coord. Chem. Rev. 120, 325–359. CrossRef CAS Web of Science Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1983). Comput. Chem. 7, 95–97. CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stauffer, S. R., Coletta, C. J., Tedesco, R., Nishiguchi, G., Carlson, K., Sun, J., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2000). J. Med. Chem. 43, 4934–4947. Web of Science CrossRef PubMed CAS Google Scholar
Thiele, J. & Dralle, E. (1898). Annalen, 302, 275–334. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the paper (Thiele & Dralle, 1898) the reaction of aqueous aminoguanidine hydrogennitrate and acetylacetone solutions was described which, according to the authors, led to the formation of acetylacetonebis(aminoguanidine) dihydrogendinitrate (C7H16N8.2HNO3). However, our investigations of the crystal and molecular structure of the obtained product have shown that this reaction did not form the cited Schiff base but a cyclic product of the same chemical composition, i.e. amino(2-(1-(amino(iminio)methyl)-3,5-dimethyl-4,5-dihydro- 1H-pyrazol-5-yl)hydrazinyl)methaniminium-dinitrate (I).
Due to the presence of the nitrate anions next to the cation rich in N—H donor sites, the crystal structure of (I) (Figure 1) is stabilized by a very extensive hydrogen bonding network. The pair of the strongest hydrogen bonds (Table 1), N7—H7a···O1 and N8—H8a···O2, connects the protonated –C(NH2)2 substituent of the pyrazole ring to the single N9/O1/O2/O3 group generating an R22(8) motif (Etter et al., 1990; Bernstein et al., 1995). The same nitrate group forms two additional hydrogen bonds (N5—H5b···O3 and N8—H8b···O2) that interlink the two –C(NH2)2 fragments of the pyrazolyl and hydrazinyl parts of the single molecule, producing the larger R22(13) motif. These interactions, which are all shorter than 2.23 Å, generate a zigzag chain parallel to [100]. The hydrazinyl moiety of the cation also forms R22(8) hydrogen bonding motif by engaging N4—H4 and N6—-H6b as donors to O6 and O4, respectively. In addition, the same nitrate anion (N10/O4/O5/O6) is involved in the bifurcated N5—H5a···O4 and N5–H5a···O5 hydrogen bond. The combination of these interactions extends the hydrogen bonding network toward [001] direction resulting in two-dimensional molecular arrays (Figure 2). This arrangement is also supported by two the strongest C—H···O interactions, while remaining N—-H6a···O1 and the weaker N—H···O and C—H···O interactions complete the three-dimensional structure. It is noteworthy that the nitrate group N9/O1/O2/O3 has the higher engagement in the strong hydrogen bonds (five hydrogen bonds < 2.23 Å) than N10/O4/O5/O6 (two hydrogen bonds < 2.23 Å). This is reflected in the corresponding N—O distances which in the first anion range from 1.212 (3)–1.269 (3) while in the second from 1.195 (4)–1.248 (3) Å. The oxygen atom of the shortest N—O6 bond engages only in weak N—H···O and C—H···O interactions.