organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[1-(2,4-Di­fluoro­phen­yl)eth­yl]-5-methyl-N-nitro-1,3,5-oxadiazinan-4-imine

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 24 June 2010; accepted 5 July 2010; online 10 July 2010)

The 1,3,5-oxadiazinane ring in the title compound, C12H14F2N4O3, has a conformation inter­mediate between half-chair and screw-boat. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds. Weak ππ inter­actions are indicated by the relatively long centroid–centroid distance of 3.9199 (12) Å and inter­planar distance of 3.803 Å between symmetry-related benzene rings from neighbouring mol­ecules.

Related literature

An important type of insecticide, oxadiazine compounds are highly efficient and of low toxicity, see: Gsell et al.(1998[Gsell, L. & Maientisch, P. (1998). WO Patent 9806710.]). The title compound has been used to synthesize many similar insecticides, see: Maienfisch et al. (1994[Maienfisch, P. & Huerlimann, H. (1994). CN Patent 1084171.]). For the preparation of the title compound, see: Gottfied et al.(2001[Gottfied, S., Thomas, R. & Verena, G. (2001). WO Patent 0100623.]). For the related structures, see: Chopra et al., (2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413-o2414.]); Kang et al. (2008[Kang, T.-N., Zhang, L., Ling, Y. & Yang, X.-L. (2008). Acta Cryst. E64, o1154.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14F2N4O3

  • Mr = 300.27

  • Monoclinic, P 21 /c

  • a = 13.385 (3) Å

  • b = 6.7470 (13) Å

  • c = 15.073 (3) Å

  • β = 101.25 (3)°

  • V = 1335.0 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.11 mm−1

  • T = 113 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.762, Tmax = 0.793

  • 13266 measured reflections

  • 2567 independent reflections

  • 2168 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.09

  • 2567 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.99 2.50 3.1908 (16) 127
C3—H3A⋯O2ii 0.99 2.51 3.4439 (18) 156
C4—H4C⋯O2iii 0.98 2.49 3.1665 (17) 126
C6—H6A⋯O3iv 0.98 2.39 3.2046 (18) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As an important type of insecticides, oxadiazine compounds are highly efficient and of low toxicity (Gsell, et al., 1998). Lots of similar insecticides compounds were synthesized with the title compounds (I) (Maienfisch, et al., 1994). We report the synthesis and crystal structure of the title compound, (I).

The conformation of the 1,3,5-oxadiazinane ring in(I)is intermediate between half-chair and screw-boat with puckering parameters (Cremer & Pople, 1975): Q= 0.5303 (12)Å; θ= 59.14 (13)°; φ= 329,54 (15)°. The benzene ring forms dihedral angles of 74.84 (3)° and 87.30 (2)° with the mean plane of the oxadiazine ring. The bond lengths and angles of the oxadiazine rings are in a good agreement with those reported previously (Chopra, et al., 2004). The N=C bond length [N3=C2 = 1.3804 (2) Å] are close to the value reported in the literature (Kang, et al.,2008).

The structure is stabilized by hydrogen bonds of C-H···O type. And with a π-π stacking between symmetry related phenyl rings with a centroid-to-centroid distance of 3.9199 (12)Å and interplanar distance of 3.803Å resulting in a 0.951Å slippage.

Related literature top

An important type of insecticide, oxadiazine compounds are highly efficient and of low toxicity, see: Gsell et al.(1998). The title compound has been used to synthesize many similar insecticides, see: Maienfisch et al. (1994). For the preparation of the title compound, see: Gottfied et al.(2001). For the related structures, see: Chopra et al., (2004); Kang et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

1-(1-bromoethyl)-2,4-difluorobenzene 4.5 g (20.0 mmol),(Z)-3-methyl-N– nitro-1,3,5-oxadiazinan-4-imine 3.2 g (20.0 mmol), potassium carbonate 2.8 g (20.0 mmol) and acetonitril 20 g were charged in a flask equipped with stirrer, water separator and reflux condenser. The mixture was heated to reflux for 4 h. Upon cooling at room temperature. The reaction mixture was filtered, and the solution was concentrated under reduced pressure to give the title compound (I) 4.5 g (76% yield). (Gottfied, et al., 2001). Single crystals suitable for X-ray measurement were grown by slow evaporation of an ethanol solution of (I).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.95Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) and 1.0 Å (methine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl).

Structure description top

As an important type of insecticides, oxadiazine compounds are highly efficient and of low toxicity (Gsell, et al., 1998). Lots of similar insecticides compounds were synthesized with the title compounds (I) (Maienfisch, et al., 1994). We report the synthesis and crystal structure of the title compound, (I).

The conformation of the 1,3,5-oxadiazinane ring in(I)is intermediate between half-chair and screw-boat with puckering parameters (Cremer & Pople, 1975): Q= 0.5303 (12)Å; θ= 59.14 (13)°; φ= 329,54 (15)°. The benzene ring forms dihedral angles of 74.84 (3)° and 87.30 (2)° with the mean plane of the oxadiazine ring. The bond lengths and angles of the oxadiazine rings are in a good agreement with those reported previously (Chopra, et al., 2004). The N=C bond length [N3=C2 = 1.3804 (2) Å] are close to the value reported in the literature (Kang, et al.,2008).

The structure is stabilized by hydrogen bonds of C-H···O type. And with a π-π stacking between symmetry related phenyl rings with a centroid-to-centroid distance of 3.9199 (12)Å and interplanar distance of 3.803Å resulting in a 0.951Å slippage.

An important type of insecticide, oxadiazine compounds are highly efficient and of low toxicity, see: Gsell et al.(1998). The title compound has been used to synthesize many similar insecticides, see: Maienfisch et al. (1994). For the preparation of the title compound, see: Gottfied et al.(2001). For the related structures, see: Chopra et al., (2004); Kang et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.H atoms are represented as small spheres of arbitrary radii.
(E)-3-[1-(2,4-Difluorophenyl)ethyl]-5-methyl-N-nitro-1,3,5- oxadiazinan-4-imine top
Crystal data top
C12H14F2N4O3F(000) = 624
Mr = 300.27Dx = 1.494 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 1502 reflections
a = 13.385 (3) Åθ = 27.7–72.0°
b = 6.7470 (13) ŵ = 1.11 mm1
c = 15.073 (3) ÅT = 113 K
β = 101.25 (3)°Prism, colorless
V = 1335.0 (5) Å30.26 × 0.24 × 0.22 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2567 independent reflections
Radiation source: fine-focus sealed tube2168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 14.63 pixels mm-1θmax = 72.3°, θmin = 3.4°
ω scansh = 1615
Absorption correction: numerical
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.762, Tmax = 0.793l = 1718
13266 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.0616P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2567 reflectionsΔρmax = 0.31 e Å3
193 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0131 (11)
Crystal data top
C12H14F2N4O3V = 1335.0 (5) Å3
Mr = 300.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.385 (3) ŵ = 1.11 mm1
b = 6.7470 (13) ÅT = 113 K
c = 15.073 (3) Å0.26 × 0.24 × 0.22 mm
β = 101.25 (3)°
Data collection top
Rigaku Saturn
diffractometer
2567 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku, 2005)
2168 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.793Rint = 0.061
13266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2567 reflectionsΔρmin = 0.30 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.40932 (6)0.24125 (13)0.33990 (6)0.0436 (3)
F20.67967 (7)0.68795 (18)0.36250 (8)0.0676 (4)
O10.23598 (6)0.67016 (13)0.16461 (6)0.0279 (2)
O20.04094 (7)0.32758 (14)0.35714 (7)0.0374 (3)
O30.09896 (7)0.03447 (15)0.39933 (6)0.0365 (3)
N10.13558 (7)0.38098 (16)0.16500 (6)0.0230 (2)
N20.21022 (7)0.52761 (15)0.29879 (6)0.0235 (2)
N30.16278 (8)0.18616 (15)0.29436 (7)0.0272 (3)
N40.09994 (7)0.18567 (15)0.35200 (7)0.0246 (3)
C10.16316 (9)0.5470 (2)0.11134 (8)0.0274 (3)
H1A0.19100.49460.05980.033*
H1B0.10150.62540.08660.033*
C20.16748 (8)0.36822 (18)0.25358 (8)0.0220 (3)
C30.20435 (10)0.71093 (19)0.24732 (8)0.0261 (3)
H3A0.13360.76180.23520.031*
H3B0.24920.81260.28200.031*
C40.07765 (10)0.2205 (2)0.11312 (9)0.0302 (3)
H4A0.12370.11100.10650.045*
H4B0.04550.26970.05320.045*
H4C0.02500.17360.14500.045*
C50.27466 (9)0.51446 (19)0.39058 (7)0.0240 (3)
H50.27410.37340.41080.029*
C60.22926 (10)0.6404 (2)0.45658 (8)0.0330 (3)
H6A0.22350.77810.43550.050*
H6B0.27350.63440.51650.050*
H6C0.16150.58970.46020.050*
C70.38383 (9)0.5676 (2)0.38557 (8)0.0265 (3)
C80.44655 (10)0.4260 (2)0.35833 (8)0.0299 (3)
C90.54602 (10)0.4619 (3)0.34965 (9)0.0401 (4)
H90.58700.36150.33070.048*
C100.58224 (10)0.6488 (3)0.36972 (11)0.0442 (4)
C110.52547 (12)0.7976 (3)0.39754 (12)0.0480 (4)
H110.55330.92610.41120.058*
C120.42598 (11)0.7545 (2)0.40513 (10)0.0380 (3)
H120.38560.85570.42420.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0385 (5)0.0347 (5)0.0584 (6)0.0058 (4)0.0117 (4)0.0135 (4)
F20.0272 (5)0.0938 (9)0.0812 (8)0.0096 (5)0.0090 (4)0.0320 (6)
O10.0302 (5)0.0302 (5)0.0240 (4)0.0087 (4)0.0076 (3)0.0012 (3)
O20.0327 (5)0.0287 (6)0.0561 (6)0.0059 (4)0.0219 (4)0.0054 (4)
O30.0432 (6)0.0312 (6)0.0361 (5)0.0011 (4)0.0104 (4)0.0155 (4)
N10.0241 (5)0.0235 (6)0.0218 (5)0.0033 (4)0.0051 (4)0.0011 (4)
N20.0298 (5)0.0210 (6)0.0193 (5)0.0006 (4)0.0041 (4)0.0004 (4)
N30.0332 (6)0.0203 (6)0.0312 (6)0.0007 (4)0.0139 (4)0.0022 (4)
N40.0255 (5)0.0232 (6)0.0249 (5)0.0001 (4)0.0043 (4)0.0041 (4)
C10.0324 (6)0.0294 (7)0.0201 (6)0.0057 (5)0.0048 (4)0.0016 (5)
C20.0220 (5)0.0225 (6)0.0229 (6)0.0016 (4)0.0082 (4)0.0000 (4)
C30.0327 (6)0.0222 (7)0.0228 (6)0.0016 (5)0.0038 (5)0.0012 (4)
C40.0280 (6)0.0294 (7)0.0317 (6)0.0035 (5)0.0022 (5)0.0082 (5)
C50.0274 (6)0.0251 (7)0.0193 (6)0.0029 (5)0.0038 (4)0.0007 (4)
C60.0339 (7)0.0420 (8)0.0227 (6)0.0089 (6)0.0043 (5)0.0043 (5)
C70.0283 (6)0.0286 (7)0.0218 (6)0.0020 (5)0.0030 (4)0.0023 (5)
C80.0297 (6)0.0325 (8)0.0271 (6)0.0030 (5)0.0041 (5)0.0006 (5)
C90.0291 (7)0.0560 (10)0.0356 (7)0.0096 (7)0.0074 (5)0.0064 (7)
C100.0239 (7)0.0612 (11)0.0458 (8)0.0045 (7)0.0026 (6)0.0193 (7)
C110.0405 (8)0.0409 (10)0.0587 (10)0.0124 (7)0.0004 (7)0.0099 (7)
C120.0372 (7)0.0305 (8)0.0447 (8)0.0009 (6)0.0039 (6)0.0008 (6)
Geometric parameters (Å, º) top
F1—C81.3508 (17)C4—H4A0.9800
F2—C101.3555 (16)C4—H4B0.9800
O1—C11.4071 (15)C4—H4C0.9800
O1—C31.4195 (15)C5—C71.5207 (16)
O2—N41.2531 (14)C5—C61.5220 (16)
O3—N41.2463 (13)C5—H51.0000
N1—C21.3229 (15)C6—H6A0.9800
N1—C41.4656 (16)C6—H6B0.9800
N1—C11.4703 (15)C6—H6C0.9800
N2—C21.3402 (16)C7—C81.3859 (18)
N2—C31.4540 (16)C7—C121.389 (2)
N2—C51.4834 (15)C8—C91.3843 (18)
N3—N41.3219 (14)C9—C101.364 (2)
N3—C21.3804 (16)C9—H90.9500
C1—H1A0.9900C10—C111.373 (3)
C1—H1B0.9900C11—C121.389 (2)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—H120.9500
C1—O1—C3108.88 (9)H4B—C4—H4C109.5
C2—N1—C4121.56 (10)N2—C5—C7109.21 (9)
C2—N1—C1122.59 (10)N2—C5—C6110.04 (10)
C4—N1—C1115.64 (10)C7—C5—C6114.27 (11)
C2—N2—C3115.97 (10)N2—C5—H5107.7
C2—N2—C5122.63 (10)C7—C5—H5107.7
C3—N2—C5120.64 (10)C6—C5—H5107.7
N4—N3—C2112.64 (10)C5—C6—H6A109.5
O3—N4—O2120.86 (10)C5—C6—H6B109.5
O3—N4—N3117.21 (10)H6A—C6—H6B109.5
O2—N4—N3121.88 (10)C5—C6—H6C109.5
O1—C1—N1110.87 (9)H6A—C6—H6C109.5
O1—C1—H1A109.5H6B—C6—H6C109.5
N1—C1—H1A109.5C8—C7—C12116.37 (12)
O1—C1—H1B109.5C8—C7—C5119.71 (12)
N1—C1—H1B109.5C12—C7—C5123.90 (12)
H1A—C1—H1B108.1F1—C8—C9117.73 (12)
N1—C2—N2118.86 (11)F1—C8—C7118.46 (11)
N1—C2—N3118.27 (11)C9—C8—C7123.80 (14)
N2—C2—N3122.66 (11)C10—C9—C8116.62 (14)
O1—C3—N2108.03 (10)C10—C9—H9121.7
O1—C3—H3A110.1C8—C9—H9121.7
N2—C3—H3A110.1F2—C10—C9117.92 (15)
O1—C3—H3B110.1F2—C10—C11118.73 (15)
N2—C3—H3B110.1C9—C10—C11123.35 (13)
H3A—C3—H3B108.4C10—C11—C12117.93 (15)
N1—C4—H4A109.5C10—C11—H11121.0
N1—C4—H4B109.5C12—C11—H11121.0
H4A—C4—H4B109.5C7—C12—C11121.92 (15)
N1—C4—H4C109.5C7—C12—H12119.0
H4A—C4—H4C109.5C11—C12—H12119.0
C2—N3—N4—O3172.41 (10)C2—N2—C5—C6121.23 (12)
C2—N3—N4—O210.03 (16)C3—N2—C5—C669.16 (14)
C3—O1—C1—N147.20 (13)N2—C5—C7—C881.41 (14)
C2—N1—C1—O17.42 (16)C6—C5—C7—C8154.88 (11)
C4—N1—C1—O1167.37 (10)N2—C5—C7—C1297.20 (13)
C4—N1—C2—N2172.76 (10)C6—C5—C7—C1226.51 (17)
C1—N1—C2—N212.76 (16)C12—C7—C8—F1179.02 (11)
C4—N1—C2—N312.45 (16)C5—C7—C8—F12.26 (17)
C1—N1—C2—N3162.04 (10)C12—C7—C8—C90.32 (19)
C3—N2—C2—N18.56 (15)C5—C7—C8—C9178.39 (11)
C5—N2—C2—N1161.50 (10)F1—C8—C9—C10179.21 (12)
C3—N2—C2—N3176.88 (10)C7—C8—C9—C100.1 (2)
C5—N2—C2—N313.05 (16)C8—C9—C10—F2179.50 (12)
N4—N3—C2—N1116.27 (12)C8—C9—C10—C110.2 (2)
N4—N3—C2—N269.15 (14)F2—C10—C11—C12179.59 (13)
C1—O1—C3—N267.89 (12)C9—C10—C11—C120.2 (2)
C2—N2—C3—O148.47 (13)C8—C7—C12—C110.2 (2)
C5—N2—C3—O1121.80 (11)C5—C7—C12—C11178.43 (13)
C2—N2—C5—C7112.59 (12)C10—C11—C12—C70.0 (2)
C3—N2—C5—C757.02 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.992.503.1908 (16)127
C3—H3A···O2ii0.992.513.4439 (18)156
C4—H4C···O2iii0.982.493.1665 (17)126
C6—H6A···O3iv0.982.393.2046 (18)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H14F2N4O3
Mr300.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)13.385 (3), 6.7470 (13), 15.073 (3)
β (°) 101.25 (3)
V3)1335.0 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.11
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerRigaku Saturn
Absorption correctionNumerical
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.762, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
13266, 2567, 2168
Rint0.061
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.09
No. of reflections2567
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.992.503.1908 (16)126.7
C3—H3A···O2ii0.992.513.4439 (18)156.2
C4—H4C···O2iii0.982.493.1665 (17)125.6
C6—H6A···O3iv0.982.393.2046 (18)140.1
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413–o2414.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGottfied, S., Thomas, R. & Verena, G. (2001). WO Patent 0100623.  Google Scholar
First citationGsell, L. & Maientisch, P. (1998). WO Patent 9806710.  Google Scholar
First citationKang, T.-N., Zhang, L., Ling, Y. & Yang, X.-L. (2008). Acta Cryst. E64, o1154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaienfisch, P. & Huerlimann, H. (1994). CN Patent 1084171.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds