metal-organic compounds
Dibenzoatobis[3-(pyrrol-1-ylmethyl)pyridine]zinc(II)
aDepartment of Fine Chemistry and Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDeaprtment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr
In the title compound, [Zn(C7H5O2)2(C10H10N2)2], the ZnII ion, located on a twofold axis, is coordinated by two N atoms from two 3-(pyrrol-1-ylmethyl)pyridine ligands and two O atoms from two benzoate ligands in a distorted tetrahedral geometry. The pyridine and the pyrrole rings are nearly perpendicular to each other, making a dihedral angle of 84.83 (7)°.
Related literature
For examples of interactions between transition metal ions and biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related structures, see: Lee et al. (2008); Park et al. (2008); Shin et al.(2009); Yu et al. (2008, 2009, 2010). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810028503/dn2587sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810028503/dn2587Isup2.hkl
30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml acetone solution of 3-(pyrrol-1-ylmethyl)pyridine (31.8 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.
H atoms were placed in calculated positions and treated as riding with C—H distances of 0.95 Å (pyridine and pyrrolidine) and 0.99 Å (methylene) and with Uiso(H)= 1.2Ueq(C).
The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars,
etc, is of great importance in the study of biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). As possible models for studying such interaction, the chemistry of transition metal ions with fulvic acids and humic acids has been intensively examined. Our group have reported a variety of structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008;Park, et al., 2008; Shin, et al.,2009;Yu, et al., 2009; Yu et al.,2010) in order to study the interaction of the transition metal ions with various acids. In this work, we have employed zinc(II) benzoate as a building block and 3-(pyrrol-1-ylmethyl)pyridine as a ligand.In the title compound, the ZnII ion is located on a two fold axis and is coordinated by two nitrogen atoms from two symmetry related 3-(pyrrol-1-ylmethyl)pyridine ligands and two oxygen atoms from two symmetry related benzoate ligands to form a distorted tetrahedral geometry (Fig. 1). Zn—N and Zn—O bond distances are in agreement with reported bond distances in the Cambridge Structural Database (Allen, 2002). The pyridine and the pyrrol rings are nearly perpendicular to each other making a dihedral angle of 84.83 (7)°.
For examples of interactions between transition metal ions and biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related structures, see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al.(2009); Yu et al. (2009, 2010). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C7H5O2)2(C10H10N2)2] | F(000) = 648 |
Mr = 623.99 | Dx = 1.394 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 2361 reflections |
a = 14.4347 (14) Å | θ = 2.6–24.6° |
b = 9.4399 (9) Å | µ = 0.87 mm−1 |
c = 11.1959 (11) Å | T = 170 K |
β = 102.896 (2)° | Plate, colorless |
V = 1487.1 (2) Å3 | 0.15 × 0.10 × 0.03 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 2204 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.065 |
Graphite monochromator | θmax = 26.0°, θmin = 2.2° |
φ and ω scans | h = −9→17 |
8090 measured reflections | k = −11→11 |
2904 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0248P)2] where P = (Fo2 + 2Fc2)/3 |
2904 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[Zn(C7H5O2)2(C10H10N2)2] | V = 1487.1 (2) Å3 |
Mr = 623.99 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 14.4347 (14) Å | µ = 0.87 mm−1 |
b = 9.4399 (9) Å | T = 170 K |
c = 11.1959 (11) Å | 0.15 × 0.10 × 0.03 mm |
β = 102.896 (2)° |
Bruker SMART CCD diffractometer | 2204 reflections with I > 2σ(I) |
8090 measured reflections | Rint = 0.065 |
2904 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.52 e Å−3 |
2904 reflections | Δρmin = −0.51 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.58373 (4) | 0.7500 | 0.02372 (12) | |
O11 | 0.39278 (9) | 0.51333 (15) | 0.63040 (12) | 0.0289 (4) | |
O12 | 0.36133 (10) | 0.38352 (16) | 0.78176 (13) | 0.0376 (4) | |
C11 | 0.33872 (14) | 0.4306 (2) | 0.67596 (19) | 0.0259 (5) | |
C12 | 0.24503 (14) | 0.3958 (2) | 0.59353 (18) | 0.0241 (5) | |
C13 | 0.22904 (14) | 0.4186 (2) | 0.46787 (18) | 0.0294 (5) | |
H13 | 0.2794 | 0.4511 | 0.4330 | 0.035* | |
C14 | 0.14056 (16) | 0.3944 (2) | 0.3935 (2) | 0.0364 (6) | |
H14 | 0.1303 | 0.4094 | 0.3076 | 0.044* | |
C15 | 0.06679 (16) | 0.3482 (2) | 0.4441 (2) | 0.0395 (6) | |
H15 | 0.0056 | 0.3330 | 0.3930 | 0.047* | |
C16 | 0.08190 (16) | 0.3240 (3) | 0.5688 (2) | 0.0387 (6) | |
H16 | 0.0311 | 0.2924 | 0.6034 | 0.046* | |
C17 | 0.17063 (15) | 0.3458 (2) | 0.6428 (2) | 0.0310 (5) | |
H17 | 0.1813 | 0.3266 | 0.7281 | 0.037* | |
N21 | 0.45103 (11) | 0.72476 (17) | 0.86239 (14) | 0.0238 (4) | |
N22 | 0.22689 (12) | 1.08801 (19) | 0.91482 (16) | 0.0316 (4) | |
C21 | 0.48598 (14) | 0.7216 (2) | 0.98335 (18) | 0.0258 (5) | |
H21 | 0.5324 | 0.6523 | 1.0162 | 0.031* | |
C22 | 0.45709 (15) | 0.8149 (2) | 1.06183 (19) | 0.0325 (5) | |
H22 | 0.4824 | 0.8088 | 1.1476 | 0.039* | |
C23 | 0.39112 (15) | 0.9174 (2) | 1.01497 (19) | 0.0328 (5) | |
H23 | 0.3708 | 0.9829 | 1.0682 | 0.039* | |
C24 | 0.35458 (14) | 0.9243 (2) | 0.88950 (19) | 0.0283 (5) | |
C25 | 0.38588 (14) | 0.8249 (2) | 0.81762 (18) | 0.0258 (5) | |
H25 | 0.3602 | 0.8270 | 0.7318 | 0.031* | |
C26 | 0.28375 (16) | 1.0365 (2) | 0.8315 (2) | 0.0380 (6) | |
H26A | 0.3184 | 1.1171 | 0.8053 | 0.046* | |
H26B | 0.2410 | 0.9966 | 0.7576 | 0.046* | |
C27 | 0.24005 (15) | 1.2131 (2) | 0.9763 (2) | 0.0337 (5) | |
H27 | 0.2843 | 1.2847 | 0.9675 | 0.040* | |
C28 | 0.17895 (16) | 1.2179 (3) | 1.0527 (2) | 0.0389 (6) | |
H28 | 0.1725 | 1.2932 | 1.1065 | 0.047* | |
C29 | 0.12722 (16) | 1.0912 (3) | 1.0374 (2) | 0.0443 (6) | |
H29 | 0.0790 | 1.0649 | 1.0786 | 0.053* | |
C30 | 0.15875 (16) | 1.0129 (3) | 0.9527 (2) | 0.0429 (6) | |
H30 | 0.1368 | 0.9212 | 0.9248 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0232 (2) | 0.0247 (2) | 0.0228 (2) | 0.000 | 0.00434 (14) | 0.000 |
O11 | 0.0247 (8) | 0.0311 (9) | 0.0300 (8) | −0.0069 (7) | 0.0045 (7) | −0.0004 (7) |
O12 | 0.0319 (9) | 0.0500 (11) | 0.0286 (9) | −0.0016 (7) | 0.0017 (7) | 0.0079 (7) |
C11 | 0.0262 (12) | 0.0236 (12) | 0.0279 (12) | 0.0047 (10) | 0.0060 (9) | −0.0044 (10) |
C12 | 0.0244 (11) | 0.0186 (11) | 0.0291 (12) | 0.0026 (9) | 0.0053 (9) | −0.0004 (9) |
C13 | 0.0300 (12) | 0.0264 (12) | 0.0319 (12) | −0.0026 (10) | 0.0073 (10) | −0.0006 (10) |
C14 | 0.0398 (14) | 0.0333 (14) | 0.0307 (13) | −0.0035 (11) | −0.0039 (11) | 0.0008 (10) |
C15 | 0.0244 (13) | 0.0347 (14) | 0.0524 (16) | −0.0013 (11) | −0.0066 (11) | −0.0031 (12) |
C16 | 0.0274 (13) | 0.0373 (14) | 0.0528 (16) | −0.0030 (11) | 0.0121 (12) | −0.0014 (12) |
C17 | 0.0303 (13) | 0.0293 (12) | 0.0337 (13) | 0.0007 (10) | 0.0078 (10) | 0.0015 (10) |
N21 | 0.0230 (10) | 0.0257 (10) | 0.0228 (9) | −0.0016 (7) | 0.0054 (7) | 0.0014 (8) |
N22 | 0.0309 (10) | 0.0248 (10) | 0.0403 (11) | 0.0040 (9) | 0.0104 (8) | 0.0000 (9) |
C21 | 0.0243 (12) | 0.0289 (12) | 0.0240 (12) | 0.0007 (9) | 0.0051 (9) | 0.0047 (10) |
C22 | 0.0374 (14) | 0.0400 (14) | 0.0196 (11) | −0.0015 (11) | 0.0052 (10) | 0.0004 (10) |
C23 | 0.0416 (14) | 0.0297 (12) | 0.0290 (12) | 0.0012 (11) | 0.0121 (10) | −0.0053 (11) |
C24 | 0.0312 (12) | 0.0252 (12) | 0.0296 (12) | 0.0010 (10) | 0.0094 (10) | 0.0008 (10) |
C25 | 0.0266 (12) | 0.0290 (12) | 0.0209 (11) | 0.0006 (10) | 0.0038 (9) | 0.0017 (10) |
C26 | 0.0456 (15) | 0.0331 (14) | 0.0367 (14) | 0.0114 (11) | 0.0122 (12) | 0.0002 (11) |
C27 | 0.0319 (13) | 0.0268 (13) | 0.0417 (14) | 0.0008 (10) | 0.0070 (11) | −0.0017 (11) |
C28 | 0.0350 (15) | 0.0418 (15) | 0.0410 (14) | 0.0066 (11) | 0.0107 (12) | −0.0063 (12) |
C29 | 0.0298 (13) | 0.0471 (16) | 0.0604 (17) | 0.0038 (12) | 0.0197 (12) | 0.0083 (14) |
C30 | 0.0353 (15) | 0.0275 (14) | 0.0649 (18) | −0.0029 (11) | 0.0093 (13) | −0.0004 (12) |
Zn1—O11i | 1.9248 (13) | N22—C27 | 1.359 (3) |
Zn1—O11 | 1.9248 (13) | N22—C26 | 1.457 (3) |
Zn1—N21i | 2.0621 (16) | C21—C22 | 1.373 (3) |
Zn1—N21 | 2.0621 (16) | C21—H21 | 0.9500 |
O11—C11 | 1.287 (2) | C22—C23 | 1.377 (3) |
O12—C11 | 1.239 (2) | C22—H22 | 0.9500 |
C11—C12 | 1.494 (3) | C23—C24 | 1.387 (3) |
C12—C13 | 1.391 (3) | C23—H23 | 0.9500 |
C12—C17 | 1.395 (3) | C24—C25 | 1.376 (3) |
C13—C14 | 1.379 (3) | C24—C26 | 1.514 (3) |
C13—H13 | 0.9500 | C25—H25 | 0.9500 |
C14—C15 | 1.383 (3) | C26—H26A | 0.9900 |
C14—H14 | 0.9500 | C26—H26B | 0.9900 |
C15—C16 | 1.384 (3) | C27—C28 | 1.359 (3) |
C15—H15 | 0.9500 | C27—H27 | 0.9500 |
C16—C17 | 1.377 (3) | C28—C29 | 1.400 (3) |
C16—H16 | 0.9500 | C28—H28 | 0.9500 |
C17—H17 | 0.9500 | C29—C30 | 1.359 (3) |
N21—C21 | 1.336 (2) | C29—H29 | 0.9500 |
N21—C25 | 1.349 (2) | C30—H30 | 0.9500 |
N22—C30 | 1.355 (3) | ||
O11i—Zn1—O11 | 139.60 (9) | N21—C21—C22 | 122.29 (19) |
O11i—Zn1—N21i | 108.40 (6) | N21—C21—H21 | 118.9 |
O11—Zn1—N21i | 97.49 (6) | C22—C21—H21 | 118.9 |
O11i—Zn1—N21 | 97.48 (6) | C21—C22—C23 | 119.3 (2) |
O11—Zn1—N21 | 108.39 (6) | C21—C22—H22 | 120.3 |
N21i—Zn1—N21 | 99.58 (9) | C23—C22—H22 | 120.3 |
C11—O11—Zn1 | 113.47 (13) | C22—C23—C24 | 119.6 (2) |
O12—C11—O11 | 122.87 (19) | C22—C23—H23 | 120.2 |
O12—C11—C12 | 121.42 (19) | C24—C23—H23 | 120.2 |
O11—C11—C12 | 115.70 (18) | C25—C24—C23 | 117.37 (19) |
C13—C12—C17 | 118.95 (19) | C25—C24—C26 | 120.30 (18) |
C13—C12—C11 | 120.95 (18) | C23—C24—C26 | 122.32 (19) |
C17—C12—C11 | 120.04 (18) | N21—C25—C24 | 123.58 (18) |
C14—C13—C12 | 120.5 (2) | N21—C25—H25 | 118.2 |
C14—C13—H13 | 119.8 | C24—C25—H25 | 118.2 |
C12—C13—H13 | 119.8 | N22—C26—C24 | 112.46 (17) |
C13—C14—C15 | 119.9 (2) | N22—C26—H26A | 109.1 |
C13—C14—H14 | 120.0 | C24—C26—H26A | 109.1 |
C15—C14—H14 | 120.0 | N22—C26—H26B | 109.1 |
C14—C15—C16 | 120.2 (2) | C24—C26—H26B | 109.1 |
C14—C15—H15 | 119.9 | H26A—C26—H26B | 107.8 |
C16—C15—H15 | 119.9 | N22—C27—C28 | 108.1 (2) |
C17—C16—C15 | 119.9 (2) | N22—C27—H27 | 125.9 |
C17—C16—H16 | 120.0 | C28—C27—H27 | 125.9 |
C15—C16—H16 | 120.0 | C27—C28—C29 | 107.3 (2) |
C16—C17—C12 | 120.5 (2) | C27—C28—H28 | 126.3 |
C16—C17—H17 | 119.8 | C29—C28—H28 | 126.3 |
C12—C17—H17 | 119.8 | C30—C29—C28 | 107.3 (2) |
C21—N21—C25 | 117.83 (17) | C30—C29—H29 | 126.3 |
C21—N21—Zn1 | 120.05 (14) | C28—C29—H29 | 126.3 |
C25—N21—Zn1 | 122.09 (13) | N22—C30—C29 | 108.3 (2) |
C30—N22—C27 | 108.97 (18) | N22—C30—H30 | 125.9 |
C30—N22—C26 | 125.30 (19) | C29—C30—H30 | 125.9 |
C27—N22—C26 | 125.43 (19) | ||
O11i—Zn1—O11—C11 | 56.95 (13) | N21i—Zn1—N21—C25 | 56.41 (14) |
N21i—Zn1—O11—C11 | −172.84 (13) | C25—N21—C21—C22 | 0.7 (3) |
N21—Zn1—O11—C11 | −70.10 (14) | Zn1—N21—C21—C22 | 178.71 (15) |
Zn1—O11—C11—O12 | −10.7 (3) | N21—C21—C22—C23 | −1.2 (3) |
Zn1—O11—C11—C12 | 168.33 (12) | C21—C22—C23—C24 | 0.3 (3) |
O12—C11—C12—C13 | −164.0 (2) | C22—C23—C24—C25 | 1.0 (3) |
O11—C11—C12—C13 | 17.0 (3) | C22—C23—C24—C26 | −178.4 (2) |
O12—C11—C12—C17 | 18.9 (3) | C21—N21—C25—C24 | 0.8 (3) |
O11—C11—C12—C17 | −160.13 (18) | Zn1—N21—C25—C24 | −177.24 (15) |
C17—C12—C13—C14 | 1.1 (3) | C23—C24—C25—N21 | −1.6 (3) |
C11—C12—C13—C14 | −176.02 (19) | C26—C24—C25—N21 | 177.83 (19) |
C12—C13—C14—C15 | 0.5 (3) | C30—N22—C26—C24 | −70.4 (3) |
C13—C14—C15—C16 | −1.1 (3) | C27—N22—C26—C24 | 102.6 (2) |
C14—C15—C16—C17 | −0.1 (4) | C25—C24—C26—N22 | 153.59 (19) |
C15—C16—C17—C12 | 1.8 (3) | C23—C24—C26—N22 | −27.0 (3) |
C13—C12—C17—C16 | −2.3 (3) | C30—N22—C27—C28 | −0.7 (3) |
C11—C12—C17—C16 | 174.9 (2) | C26—N22—C27—C28 | −174.69 (19) |
O11i—Zn1—N21—C21 | −11.37 (15) | N22—C27—C28—C29 | 0.2 (3) |
O11—Zn1—N21—C21 | 137.18 (14) | C27—C28—C29—C30 | 0.3 (3) |
N21i—Zn1—N21—C21 | −121.55 (16) | C27—N22—C30—C29 | 0.9 (3) |
O11i—Zn1—N21—C25 | 166.58 (15) | C26—N22—C30—C29 | 174.90 (19) |
O11—Zn1—N21—C25 | −44.86 (16) | C28—C29—C30—N22 | −0.8 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H5O2)2(C10H10N2)2] |
Mr | 623.99 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 170 |
a, b, c (Å) | 14.4347 (14), 9.4399 (9), 11.1959 (11) |
β (°) | 102.896 (2) |
V (Å3) | 1487.1 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.15 × 0.10 × 0.03 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8090, 2904, 2204 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.071, 0.91 |
No. of reflections | 2904 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.51 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
Acknowledgements
Financial support from Korea Ministry Environment "ET-Human resource development Project" and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parkin, G. (2004). Chem. Rev. 104, 699–767. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. Web of Science CrossRef PubMed CAS Google Scholar
Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, nucleotides etc, is of great importance in the study of biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). As possible models for studying such interaction, the chemistry of transition metal ions with fulvic acids and humic acids has been intensively examined. Our group have reported a variety of structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008;Park, et al., 2008; Shin, et al.,2009;Yu, et al., 2009; Yu et al.,2010) in order to study the interaction of the transition metal ions with various acids. In this work, we have employed zinc(II) benzoate as a building block and 3-(pyrrol-1-ylmethyl)pyridine as a ligand.
In the title compound, the ZnII ion is located on a two fold axis and is coordinated by two nitrogen atoms from two symmetry related 3-(pyrrol-1-ylmethyl)pyridine ligands and two oxygen atoms from two symmetry related benzoate ligands to form a distorted tetrahedral geometry (Fig. 1). Zn—N and Zn—O bond distances are in agreement with reported bond distances in the Cambridge Structural Database (Allen, 2002). The pyridine and the pyrrol rings are nearly perpendicular to each other making a dihedral angle of 84.83 (7)°.