metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dibenzoatobis[3-(pyrrol-1-ylmeth­yl)pyridine]­zinc(II)

aDepartment of Fine Chemistry and Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDeaprtment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 1 July 2010; accepted 16 July 2010; online 21 July 2010)

In the title compound, [Zn(C7H5O2)2(C10H10N2)2], the ZnII ion, located on a twofold axis, is coordinated by two N atoms from two 3-(pyrrol-1-ylmeth­yl)pyridine ligands and two O atoms from two benzoate ligands in a distorted tetra­hedral geometry. The pyridine and the pyrrole rings are nearly perpendicular to each other, making a dihedral angle of 84.83 (7)°.

Related literature

For examples of inter­actions between transition metal ions and biologically active mol­ecules, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]). For related structures, see: Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Park et al. (2008[Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.]); Shin et al.(2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Yu et al. (2008[Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881-m882.], 2009[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045-m1046.], 2010[Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61-m62.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H5O2)2(C10H10N2)2]

  • Mr = 623.99

  • Monoclinic, P 2/c

  • a = 14.4347 (14) Å

  • b = 9.4399 (9) Å

  • c = 11.1959 (11) Å

  • β = 102.896 (2)°

  • V = 1487.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 170 K

  • 0.15 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 8090 measured reflections

  • 2904 independent reflections

  • 2204 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.071

  • S = 0.91

  • 2904 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, nucleotides etc, is of great importance in the study of biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). As possible models for studying such interaction, the chemistry of transition metal ions with fulvic acids and humic acids has been intensively examined. Our group have reported a variety of structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008;Park, et al., 2008; Shin, et al.,2009;Yu, et al., 2009; Yu et al.,2010) in order to study the interaction of the transition metal ions with various acids. In this work, we have employed zinc(II) benzoate as a building block and 3-(pyrrol-1-ylmethyl)pyridine as a ligand.

In the title compound, the ZnII ion is located on a two fold axis and is coordinated by two nitrogen atoms from two symmetry related 3-(pyrrol-1-ylmethyl)pyridine ligands and two oxygen atoms from two symmetry related benzoate ligands to form a distorted tetrahedral geometry (Fig. 1). Zn—N and Zn—O bond distances are in agreement with reported bond distances in the Cambridge Structural Database (Allen, 2002). The pyridine and the pyrrol rings are nearly perpendicular to each other making a dihedral angle of 84.83 (7)°.

Related literature top

For examples of interactions between transition metal ions and biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related structures, see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al.(2009); Yu et al. (2009, 2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml acetone solution of 3-(pyrrol-1-ylmethyl)pyridine (31.8 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement top

H atoms were placed in calculated positions and treated as riding with C—H distances of 0.95 Å (pyridine and pyrrolidine) and 0.99 Å (methylene) and with Uiso(H)= 1.2Ueq(C).

Structure description top

The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, nucleotides etc, is of great importance in the study of biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). As possible models for studying such interaction, the chemistry of transition metal ions with fulvic acids and humic acids has been intensively examined. Our group have reported a variety of structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008;Park, et al., 2008; Shin, et al.,2009;Yu, et al., 2009; Yu et al.,2010) in order to study the interaction of the transition metal ions with various acids. In this work, we have employed zinc(II) benzoate as a building block and 3-(pyrrol-1-ylmethyl)pyridine as a ligand.

In the title compound, the ZnII ion is located on a two fold axis and is coordinated by two nitrogen atoms from two symmetry related 3-(pyrrol-1-ylmethyl)pyridine ligands and two oxygen atoms from two symmetry related benzoate ligands to form a distorted tetrahedral geometry (Fig. 1). Zn—N and Zn—O bond distances are in agreement with reported bond distances in the Cambridge Structural Database (Allen, 2002). The pyridine and the pyrrol rings are nearly perpendicular to each other making a dihedral angle of 84.83 (7)°.

For examples of interactions between transition metal ions and biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related structures, see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al.(2009); Yu et al. (2009, 2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms are represented as samll spheres of arbitrary radii. [Symmetry code: (i) 1-x, y, 3/2-z].
Dibenzoatobis[3-(pyrrol-1-ylmethyl)pyridine]zinc(II) top
Crystal data top
[Zn(C7H5O2)2(C10H10N2)2]F(000) = 648
Mr = 623.99Dx = 1.394 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2361 reflections
a = 14.4347 (14) Åθ = 2.6–24.6°
b = 9.4399 (9) ŵ = 0.87 mm1
c = 11.1959 (11) ÅT = 170 K
β = 102.896 (2)°Plate, colorless
V = 1487.1 (2) Å30.15 × 0.10 × 0.03 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2204 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
φ and ω scansh = 917
8090 measured reflectionsk = 1111
2904 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0248P)2]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Zn(C7H5O2)2(C10H10N2)2]V = 1487.1 (2) Å3
Mr = 623.99Z = 2
Monoclinic, P2/cMo Kα radiation
a = 14.4347 (14) ŵ = 0.87 mm1
b = 9.4399 (9) ÅT = 170 K
c = 11.1959 (11) Å0.15 × 0.10 × 0.03 mm
β = 102.896 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2204 reflections with I > 2σ(I)
8090 measured reflectionsRint = 0.065
2904 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.91Δρmax = 0.52 e Å3
2904 reflectionsΔρmin = 0.51 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.58373 (4)0.75000.02372 (12)
O110.39278 (9)0.51333 (15)0.63040 (12)0.0289 (4)
O120.36133 (10)0.38352 (16)0.78176 (13)0.0376 (4)
C110.33872 (14)0.4306 (2)0.67596 (19)0.0259 (5)
C120.24503 (14)0.3958 (2)0.59353 (18)0.0241 (5)
C130.22904 (14)0.4186 (2)0.46787 (18)0.0294 (5)
H130.27940.45110.43300.035*
C140.14056 (16)0.3944 (2)0.3935 (2)0.0364 (6)
H140.13030.40940.30760.044*
C150.06679 (16)0.3482 (2)0.4441 (2)0.0395 (6)
H150.00560.33300.39300.047*
C160.08190 (16)0.3240 (3)0.5688 (2)0.0387 (6)
H160.03110.29240.60340.046*
C170.17063 (15)0.3458 (2)0.6428 (2)0.0310 (5)
H170.18130.32660.72810.037*
N210.45103 (11)0.72476 (17)0.86239 (14)0.0238 (4)
N220.22689 (12)1.08801 (19)0.91482 (16)0.0316 (4)
C210.48598 (14)0.7216 (2)0.98335 (18)0.0258 (5)
H210.53240.65231.01620.031*
C220.45709 (15)0.8149 (2)1.06183 (19)0.0325 (5)
H220.48240.80881.14760.039*
C230.39112 (15)0.9174 (2)1.01497 (19)0.0328 (5)
H230.37080.98291.06820.039*
C240.35458 (14)0.9243 (2)0.88950 (19)0.0283 (5)
C250.38588 (14)0.8249 (2)0.81762 (18)0.0258 (5)
H250.36020.82700.73180.031*
C260.28375 (16)1.0365 (2)0.8315 (2)0.0380 (6)
H26A0.31841.11710.80530.046*
H26B0.24100.99660.75760.046*
C270.24005 (15)1.2131 (2)0.9763 (2)0.0337 (5)
H270.28431.28470.96750.040*
C280.17895 (16)1.2179 (3)1.0527 (2)0.0389 (6)
H280.17251.29321.10650.047*
C290.12722 (16)1.0912 (3)1.0374 (2)0.0443 (6)
H290.07901.06491.07860.053*
C300.15875 (16)1.0129 (3)0.9527 (2)0.0429 (6)
H300.13680.92120.92480.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0232 (2)0.0247 (2)0.0228 (2)0.0000.00434 (14)0.000
O110.0247 (8)0.0311 (9)0.0300 (8)0.0069 (7)0.0045 (7)0.0004 (7)
O120.0319 (9)0.0500 (11)0.0286 (9)0.0016 (7)0.0017 (7)0.0079 (7)
C110.0262 (12)0.0236 (12)0.0279 (12)0.0047 (10)0.0060 (9)0.0044 (10)
C120.0244 (11)0.0186 (11)0.0291 (12)0.0026 (9)0.0053 (9)0.0004 (9)
C130.0300 (12)0.0264 (12)0.0319 (12)0.0026 (10)0.0073 (10)0.0006 (10)
C140.0398 (14)0.0333 (14)0.0307 (13)0.0035 (11)0.0039 (11)0.0008 (10)
C150.0244 (13)0.0347 (14)0.0524 (16)0.0013 (11)0.0066 (11)0.0031 (12)
C160.0274 (13)0.0373 (14)0.0528 (16)0.0030 (11)0.0121 (12)0.0014 (12)
C170.0303 (13)0.0293 (12)0.0337 (13)0.0007 (10)0.0078 (10)0.0015 (10)
N210.0230 (10)0.0257 (10)0.0228 (9)0.0016 (7)0.0054 (7)0.0014 (8)
N220.0309 (10)0.0248 (10)0.0403 (11)0.0040 (9)0.0104 (8)0.0000 (9)
C210.0243 (12)0.0289 (12)0.0240 (12)0.0007 (9)0.0051 (9)0.0047 (10)
C220.0374 (14)0.0400 (14)0.0196 (11)0.0015 (11)0.0052 (10)0.0004 (10)
C230.0416 (14)0.0297 (12)0.0290 (12)0.0012 (11)0.0121 (10)0.0053 (11)
C240.0312 (12)0.0252 (12)0.0296 (12)0.0010 (10)0.0094 (10)0.0008 (10)
C250.0266 (12)0.0290 (12)0.0209 (11)0.0006 (10)0.0038 (9)0.0017 (10)
C260.0456 (15)0.0331 (14)0.0367 (14)0.0114 (11)0.0122 (12)0.0002 (11)
C270.0319 (13)0.0268 (13)0.0417 (14)0.0008 (10)0.0070 (11)0.0017 (11)
C280.0350 (15)0.0418 (15)0.0410 (14)0.0066 (11)0.0107 (12)0.0063 (12)
C290.0298 (13)0.0471 (16)0.0604 (17)0.0038 (12)0.0197 (12)0.0083 (14)
C300.0353 (15)0.0275 (14)0.0649 (18)0.0029 (11)0.0093 (13)0.0004 (12)
Geometric parameters (Å, º) top
Zn1—O11i1.9248 (13)N22—C271.359 (3)
Zn1—O111.9248 (13)N22—C261.457 (3)
Zn1—N21i2.0621 (16)C21—C221.373 (3)
Zn1—N212.0621 (16)C21—H210.9500
O11—C111.287 (2)C22—C231.377 (3)
O12—C111.239 (2)C22—H220.9500
C11—C121.494 (3)C23—C241.387 (3)
C12—C131.391 (3)C23—H230.9500
C12—C171.395 (3)C24—C251.376 (3)
C13—C141.379 (3)C24—C261.514 (3)
C13—H130.9500C25—H250.9500
C14—C151.383 (3)C26—H26A0.9900
C14—H140.9500C26—H26B0.9900
C15—C161.384 (3)C27—C281.359 (3)
C15—H150.9500C27—H270.9500
C16—C171.377 (3)C28—C291.400 (3)
C16—H160.9500C28—H280.9500
C17—H170.9500C29—C301.359 (3)
N21—C211.336 (2)C29—H290.9500
N21—C251.349 (2)C30—H300.9500
N22—C301.355 (3)
O11i—Zn1—O11139.60 (9)N21—C21—C22122.29 (19)
O11i—Zn1—N21i108.40 (6)N21—C21—H21118.9
O11—Zn1—N21i97.49 (6)C22—C21—H21118.9
O11i—Zn1—N2197.48 (6)C21—C22—C23119.3 (2)
O11—Zn1—N21108.39 (6)C21—C22—H22120.3
N21i—Zn1—N2199.58 (9)C23—C22—H22120.3
C11—O11—Zn1113.47 (13)C22—C23—C24119.6 (2)
O12—C11—O11122.87 (19)C22—C23—H23120.2
O12—C11—C12121.42 (19)C24—C23—H23120.2
O11—C11—C12115.70 (18)C25—C24—C23117.37 (19)
C13—C12—C17118.95 (19)C25—C24—C26120.30 (18)
C13—C12—C11120.95 (18)C23—C24—C26122.32 (19)
C17—C12—C11120.04 (18)N21—C25—C24123.58 (18)
C14—C13—C12120.5 (2)N21—C25—H25118.2
C14—C13—H13119.8C24—C25—H25118.2
C12—C13—H13119.8N22—C26—C24112.46 (17)
C13—C14—C15119.9 (2)N22—C26—H26A109.1
C13—C14—H14120.0C24—C26—H26A109.1
C15—C14—H14120.0N22—C26—H26B109.1
C14—C15—C16120.2 (2)C24—C26—H26B109.1
C14—C15—H15119.9H26A—C26—H26B107.8
C16—C15—H15119.9N22—C27—C28108.1 (2)
C17—C16—C15119.9 (2)N22—C27—H27125.9
C17—C16—H16120.0C28—C27—H27125.9
C15—C16—H16120.0C27—C28—C29107.3 (2)
C16—C17—C12120.5 (2)C27—C28—H28126.3
C16—C17—H17119.8C29—C28—H28126.3
C12—C17—H17119.8C30—C29—C28107.3 (2)
C21—N21—C25117.83 (17)C30—C29—H29126.3
C21—N21—Zn1120.05 (14)C28—C29—H29126.3
C25—N21—Zn1122.09 (13)N22—C30—C29108.3 (2)
C30—N22—C27108.97 (18)N22—C30—H30125.9
C30—N22—C26125.30 (19)C29—C30—H30125.9
C27—N22—C26125.43 (19)
O11i—Zn1—O11—C1156.95 (13)N21i—Zn1—N21—C2556.41 (14)
N21i—Zn1—O11—C11172.84 (13)C25—N21—C21—C220.7 (3)
N21—Zn1—O11—C1170.10 (14)Zn1—N21—C21—C22178.71 (15)
Zn1—O11—C11—O1210.7 (3)N21—C21—C22—C231.2 (3)
Zn1—O11—C11—C12168.33 (12)C21—C22—C23—C240.3 (3)
O12—C11—C12—C13164.0 (2)C22—C23—C24—C251.0 (3)
O11—C11—C12—C1317.0 (3)C22—C23—C24—C26178.4 (2)
O12—C11—C12—C1718.9 (3)C21—N21—C25—C240.8 (3)
O11—C11—C12—C17160.13 (18)Zn1—N21—C25—C24177.24 (15)
C17—C12—C13—C141.1 (3)C23—C24—C25—N211.6 (3)
C11—C12—C13—C14176.02 (19)C26—C24—C25—N21177.83 (19)
C12—C13—C14—C150.5 (3)C30—N22—C26—C2470.4 (3)
C13—C14—C15—C161.1 (3)C27—N22—C26—C24102.6 (2)
C14—C15—C16—C170.1 (4)C25—C24—C26—N22153.59 (19)
C15—C16—C17—C121.8 (3)C23—C24—C26—N2227.0 (3)
C13—C12—C17—C162.3 (3)C30—N22—C27—C280.7 (3)
C11—C12—C17—C16174.9 (2)C26—N22—C27—C28174.69 (19)
O11i—Zn1—N21—C2111.37 (15)N22—C27—C28—C290.2 (3)
O11—Zn1—N21—C21137.18 (14)C27—C28—C29—C300.3 (3)
N21i—Zn1—N21—C21121.55 (16)C27—N22—C30—C290.9 (3)
O11i—Zn1—N21—C25166.58 (15)C26—N22—C30—C29174.90 (19)
O11—Zn1—N21—C2544.86 (16)C28—C29—C30—N220.8 (3)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H5O2)2(C10H10N2)2]
Mr623.99
Crystal system, space groupMonoclinic, P2/c
Temperature (K)170
a, b, c (Å)14.4347 (14), 9.4399 (9), 11.1959 (11)
β (°) 102.896 (2)
V3)1487.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.15 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8090, 2904, 2204
Rint0.065
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.071, 0.91
No. of reflections2904
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.51

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from Korea Ministry Environment "ET-Human resource development Project" and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds