organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­anilinium 2-chloro­acetate

aSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: skdsc@uohyd.ernet.in

(Received 28 May 2010; accepted 23 June 2010; online 7 July 2010)

In the crystal structure of the title compound, C6H9N2+·ClCH2COO, prepared by the reaction of OPDA (orthophenelynediamine) with chloro­acetic ­acid, N—H⋯O hydrogen bonds generate ladder-like chains and very weak inter­molecular C—H⋯Cl hydrogen-bonding inter­actions between the anions and cations lead to a supra­molecular network. C—H⋯O inter­actions also occur.

Related literature

For hydrogen bonding with chlorine, see: Brammer et al. (2008[Brammer, L., Espellargas, G. M. & Libri, S. (2008). CrystEngComm, 10, 1712-1727.]); Metrangolo et al. (2006[Metrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946-947.], 2009[Metrangolo, P., Pilati, T., Terraneo, G., Biella, S. & Resnati, G. (2009). CrystEngComm, 11, 1187-1196.]). For ladder-like networks, see: Kinbara, Hashimoto et al. (1996[Kinbara, K., Hashimoto, Y., Sukegawa, Y., Nohira, H. & Saigo, A. (1996). J. Am. Chem. Soc. 118, 3441-3449.]); Kinbara, Kai et al. (1996[Kinbara, K., Kai, A., Maekawa, Y., Hashimoto, Y., Naruse, S., Hasegawa, M. & Saigo, K. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 247-253.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C2H2ClO2

  • Mr = 202.64

  • Monoclinic, P 21 /c

  • a = 11.371 (3) Å

  • b = 4.4852 (11) Å

  • c = 20.115 (4) Å

  • β = 110.439 (12)°

  • V = 961.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.36 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.944

  • 9366 measured reflections

  • 1922 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.09

  • 1922 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2i 0.90 1.88 2.777 (2) 173
N1—H1B⋯O2ii 0.94 1.82 2.763 (2) 173
N2—H2B⋯O1 0.87 2.16 3.004 (3) 163
C4—H4⋯O1iii 0.93 2.66 3.527 (3) 156
C3—H3⋯Cl1iv 0.93 3.24 3.985 (3) 138
N2—H2A⋯N2iii 0.81 2.77 3.587 (4) 179
C8—H8A⋯Cl1v 0.90 (3) 3.10 (3) 3.878 (3) 146 (3)
C8—H8B⋯O1vi 0.99 (4) 2.71 (4) 3.491 (4) 136 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+2, -y, -z+2; (vi) x, y-1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have reported here the synthesis and structural characterization of a hitherto unknown organic ion pair compound 1, consisting of orthophenylenediammonium cation and chloroacetate anion, that provides a good supramolecular information. The ladder-type one-dimensional chainlike arrangement has been generated because of N—H···O hydrogen bonding interaction in the crystal of compound 1, as shown in Fig. 3.

Related literature top

For hydrogen bonding with chlorine, see: Brammer et al. (2008); Metrangolo et al. (2006, 2009). For ladder-like networks, see: Kinbara, Hashimoto et al. (1996); Kinbara, Kai et al. (1996).

Experimental top

OPDA (Orthophenelynediamine)(0.108 g, 1 mmol) was dissolved in 20 ml of acetonitrile solution and which was added the solution of 25 ml of methanol containing chloroaceticacid (0.23 g, 1 mmol); this reaction mixture was stirred for 5 min and kept for crystalization at room temperature. Colorless needle-like crystals were formed after 3 days (yield: 0.145 g, 72% based on OPDA).

Refinement top

All H atoms were found on difference maps, with C—H=0.93 Å and included in the final cycles of refinement using a riding model, with Uiso(H)=1.2Ueq(C)

Structure description top

We have reported here the synthesis and structural characterization of a hitherto unknown organic ion pair compound 1, consisting of orthophenylenediammonium cation and chloroacetate anion, that provides a good supramolecular information. The ladder-type one-dimensional chainlike arrangement has been generated because of N—H···O hydrogen bonding interaction in the crystal of compound 1, as shown in Fig. 3.

For hydrogen bonding with chlorine, see: Brammer et al. (2008); Metrangolo et al. (2006, 2009). For ladder-like networks, see: Kinbara, Hashimoto et al. (1996); Kinbara, Kai et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMAIT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the compound 1 (Thermal ellipsoids are at 50% probability level).
[Figure 2] Fig. 2. Interactions of C—H···cl in the compound 1 give rise to diverse supramolecular network and all the inetractions arround the cation and anion respectively with symetry codes All the symetry codes for hyderogen bonding were written in the Table 1
[Figure 3] Fig. 3. The ladder-type one-dimensional chainlike arrangement generated by N—H···O hydrogen bonding interactions.
[Figure 4] Fig. 4. Hydrogen bonding situation around the cation.
[Figure 5] Fig. 5. Hydrogen bonding situation around the anion.
[Figure 6] Fig. 6. The formation of the title compound.
2-Aminoanilinium 2-chloroacetate top
Crystal data top
C6H9N2+·C2H2ClO2F(000) = 424
Mr = 202.64Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5050 reflections
a = 11.371 (3) Åθ = 2.3–26.1°
b = 4.4852 (11) ŵ = 0.37 mm1
c = 20.115 (4) ÅT = 298 K
β = 110.439 (12)°Needle, colorless
V = 961.3 (4) Å30.36 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1922 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 26.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.879, Tmax = 0.944k = 55
9366 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.3616P]
where P = (Fo2 + 2Fc2)/3
1922 reflections(Δ/σ)max = 0.001
126 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C6H9N2+·C2H2ClO2V = 961.3 (4) Å3
Mr = 202.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.371 (3) ŵ = 0.37 mm1
b = 4.4852 (11) ÅT = 298 K
c = 20.115 (4) Å0.36 × 0.20 × 0.16 mm
β = 110.439 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1651 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.944Rint = 0.025
9366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.33 e Å3
1922 reflectionsΔρmin = 0.29 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38338 (15)0.3513 (3)0.89834 (8)0.0425 (4)
H1A0.46960.35850.90560.051*
H1B0.36870.19140.92490.051*
H1C0.36250.51140.91890.051*
N20.4570 (2)0.0303 (6)0.80725 (13)0.0819 (7)
H2A0.47580.14280.78090.098*
H2B0.52010.03940.84280.098*
C10.1923 (2)0.4640 (5)0.79778 (11)0.0539 (5)
H10.16950.59540.82690.065*
C20.1128 (2)0.4187 (6)0.72902 (12)0.0641 (6)
H20.03600.51670.71170.077*
C30.1485 (3)0.2267 (6)0.68631 (12)0.0655 (7)
H30.09500.19320.64000.079*
C40.2628 (2)0.0833 (6)0.71141 (12)0.0630 (6)
H40.28610.04220.68130.076*
C50.3443 (2)0.1229 (5)0.78112 (11)0.0499 (5)
C60.30556 (18)0.3157 (4)0.82373 (10)0.0422 (4)
Cl10.88856 (6)0.20415 (18)1.05309 (4)0.0787 (3)
O10.63853 (15)0.3221 (4)0.92605 (9)0.0630 (5)
O20.65904 (16)0.1467 (3)1.03239 (8)0.0563 (4)
C70.69161 (19)0.1690 (4)0.97966 (10)0.0453 (5)
C80.8017 (2)0.0074 (7)0.97533 (13)0.0612 (6)
H8A0.855 (3)0.122 (8)0.9661 (16)0.090 (10)*
H8B0.767 (3)0.161 (9)0.938 (2)0.118 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0520 (9)0.0381 (8)0.0424 (8)0.0007 (7)0.0229 (7)0.0024 (6)
N20.0660 (13)0.0873 (16)0.0926 (16)0.0075 (12)0.0278 (12)0.0425 (13)
C10.0615 (13)0.0508 (12)0.0534 (12)0.0014 (10)0.0250 (10)0.0040 (9)
C20.0615 (13)0.0702 (15)0.0563 (13)0.0000 (12)0.0150 (11)0.0151 (12)
C30.0715 (15)0.0782 (16)0.0434 (12)0.0223 (13)0.0160 (11)0.0026 (11)
C40.0819 (17)0.0650 (14)0.0515 (12)0.0217 (13)0.0351 (12)0.0159 (11)
C50.0571 (12)0.0476 (11)0.0528 (11)0.0117 (9)0.0290 (10)0.0088 (9)
C60.0515 (11)0.0379 (9)0.0421 (10)0.0073 (8)0.0228 (8)0.0004 (7)
Cl10.0550 (4)0.0965 (6)0.0777 (5)0.0095 (3)0.0146 (3)0.0200 (4)
O10.0545 (9)0.0749 (11)0.0602 (10)0.0028 (8)0.0207 (8)0.0171 (8)
O20.0803 (10)0.0421 (8)0.0640 (9)0.0001 (7)0.0472 (8)0.0018 (6)
C70.0480 (11)0.0445 (10)0.0471 (11)0.0094 (8)0.0214 (9)0.0046 (8)
C80.0584 (13)0.0771 (17)0.0549 (13)0.0100 (12)0.0285 (11)0.0064 (12)
Geometric parameters (Å, º) top
N1—C61.461 (2)C3—C41.378 (4)
N1—H1A0.9402C3—H30.9300
N1—H1B0.9425C4—C51.396 (3)
N1—H1C0.9015C4—H40.9300
N2—C51.385 (3)C5—C61.393 (3)
N2—H2A0.8138Cl1—C81.767 (3)
N2—H2B0.8747O1—C71.243 (3)
C1—C21.378 (3)O2—C71.244 (2)
C1—C61.380 (3)C7—C81.509 (3)
C1—H10.9300C8—H8A0.90 (3)
C2—C31.374 (4)C8—H8B0.99 (4)
C2—H20.9300
C6—N1—H1A112.9C3—C4—C5121.3 (2)
C6—N1—H1B109.6C3—C4—H4119.4
H1A—N1—H1B108.6C5—C4—H4119.4
C6—N1—H1C113.4N2—C5—C6121.6 (2)
H1A—N1—H1C109.2N2—C5—C4121.3 (2)
H1B—N1—H1C102.6C6—C5—C4117.1 (2)
C5—N2—H2A118.7C1—C6—C5121.37 (19)
C5—N2—H2B121.3C1—C6—N1119.11 (17)
H2A—N2—H2B115.2C5—C6—N1119.45 (18)
C2—C1—C6120.5 (2)O1—C7—O2125.8 (2)
C2—C1—H1119.8O1—C7—C8113.63 (18)
C6—C1—H1119.8O2—C7—C8120.5 (2)
C3—C2—C1119.1 (2)C7—C8—Cl1115.41 (16)
C3—C2—H2120.4C7—C8—H8A107 (2)
C1—C2—H2120.4Cl1—C8—H8A107 (2)
C2—C3—C4120.7 (2)C7—C8—H8B107 (2)
C2—C3—H3119.7Cl1—C8—H8B106 (2)
C4—C3—H3119.7H8A—C8—H8B114 (3)
C6—C1—C2—C30.8 (3)N2—C5—C6—C1178.9 (2)
C1—C2—C3—C40.7 (4)C4—C5—C6—C10.9 (3)
C2—C3—C4—C51.5 (4)N2—C5—C6—N11.8 (3)
C3—C4—C5—N2177.4 (2)C4—C5—C6—N1176.18 (18)
C3—C4—C5—C60.7 (3)O1—C7—C8—Cl1174.88 (19)
C2—C1—C6—C51.6 (3)O2—C7—C8—Cl17.3 (3)
C2—C1—C6—N1175.42 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.901.882.777 (2)173
N1—H1B···O2ii0.941.822.763 (2)173
N2—H2B···O10.872.163.004 (3)163
C4—H4···O1iii0.932.663.527 (3)156
C3—H3···Cl1iv0.933.243.985 (3)138
N2—H2A···N2iii0.812.773.587 (4)179
C8—H8A···Cl1v0.90 (3)3.10 (3)3.878 (3)146 (3)
C8—H8B···O1vi0.99 (4)2.71 (4)3.491 (4)136 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2; (iv) x1, y1/2, z1/2; (v) x+2, y, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C2H2ClO2
Mr202.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.371 (3), 4.4852 (11), 20.115 (4)
β (°) 110.439 (12)
V3)961.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.36 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.879, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
9366, 1922, 1651
Rint0.025
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.09
No. of reflections1922
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: SMART (Bruker, 2003), SMAIT (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.901.882.777 (2)172.7
N1—H1B···O2ii0.941.822.763 (2)173.2
N2—H2B···O10.872.163.004 (3)163.0
C4—H4···O1iii0.932.663.527 (3)155.9
C3—H3···Cl1iv0.933.243.985 (3)138.3
N2—H2A···N2iii0.812.773.587 (4)179.1
C8—H8A···Cl1v0.90 (3)3.10 (3)3.878 (3)146 (3)
C8—H8B···O1vi0.99 (4)2.71 (4)3.491 (4)136 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2; (iv) x1, y1/2, z1/2; (v) x+2, y, z+2; (vi) x, y1, z.
 

Acknowledgements

We thank the Department of Science and Technology, Government of India, for the National X-ray Diffractometer facility at the University of Hyderabad. We acknowledge the Department of Science and Technology, Government of India, for financial support (project No. SR/S1/IC-23/2007). ASR and RK are grateful to the CSIR, Government of India, and BKT thanks the UGC, Government of India, for their fellowships. We also thank Dr A. R. Bijju, School of Chemistry, University of Hyderabad, for helpful discussions.

References

First citationBrammer, L., Espellargas, G. M. & Libri, S. (2008). CrystEngComm, 10, 1712–1727.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKinbara, K., Hashimoto, Y., Sukegawa, Y., Nohira, H. & Saigo, A. (1996). J. Am. Chem. Soc. 118, 3441–3449.  CSD CrossRef CAS Web of Science Google Scholar
First citationKinbara, K., Kai, A., Maekawa, Y., Hashimoto, Y., Naruse, S., Hasegawa, M. & Saigo, K. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 247–253.  CSD CrossRef Google Scholar
First citationMetrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946–947.  Web of Science CrossRef CAS Google Scholar
First citationMetrangolo, P., Pilati, T., Terraneo, G., Biella, S. & Resnati, G. (2009). CrystEngComm, 11, 1187–1196.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds