organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­phen­yl)-3-(3,4-dimeth­­oxy­phen­yl)quinoxaline

aDepartment of Chemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@mail.ccsu.edu

(Received 8 June 2010; accepted 24 June 2010; online 31 July 2010)

The title compound, C22H17ClN2O2, was synthesized by the condensation reaction between 1,2-phenyl­enediamine and 2-chloro-3′,4′-dimeth­oxy­benzil in boiling acetic acid. The chloro­phenyl and dimeth­oxy­phenyl rings make dihedral angles of 78.45 (5) and 35.60 (4)°, respectively, with the quinoxaline unit.

Related literature

N-heterocyclic aromatic compounds are of current inter­est as ligands in one- and two-dimensional coordination polymers with silver, see: Fitchett & Steel (2006[Fitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886-4888.]). The quinoxaline moiety yields a wide variety of potential bidentate bridges in polymeric networks with silver, see: Patra et al. (2007[Patra, G. K., Goldberg, I., De, S. & Datta, D. (2007). CrystEngComm, 9, 828-832.]). For the synthesis and characterization of quinoxalines, see: Crundwell & Stacy (2005[Crundwell, G. & Stacy, V. (2005). Acta Cryst. E61, o3159-o3160.]), of benzo[g]quinoxalines, see: Cantalupo et al. (2006[Cantalupo, S., Salvati, H., McBurney, B., Raju, R., Glagovich, N. & Crundwell, G. (2006). J. Chem. Crystallogr. 36, 17-24.]) and of pyrazino­[2,3-g]quinoxalines, see: Bellizzi et al. (2006[Bellizzi, M., Crundwell, G., Zeller, M., Hunter, A. D. & McBurney, B. (2006). Acta Cryst. E62, o5249-o5251.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17ClN2O2

  • Mr = 376.83

  • Monoclinic, P 21 /c

  • a = 14.6741 (13) Å

  • b = 7.9731 (7) Å

  • c = 21.6996 (17) Å

  • β = 132.560 (6)°

  • V = 1870.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.42 × 0.24 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.699, Tmax = 1.000

  • 46880 measured reflections

  • 7159 independent reflections

  • 4223 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.202

  • S = 1.03

  • 7159 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

N-heterocyclic aromatic compounds are of current interest as ligands in one- and two-dimensional coordination polymers with silver (Fitchett et al., 2006). The quinoxaline moiety specifically is an enticing aromatic heterocycle since it is readily formed via condensation reactions between diketones and di- or tetra-amines and it yields a wide variety of potential bidentate bridges in polymeric networks with silver (Patra et al., 2007).

The Crundwell lab has synthesized and characterized many quinoxalines (Crundwell et al., 2005), benzo[g]quinoxalines (Cantalupo et al., 2006), and pyrazino[2,3-g]quinoxalines (Bellizzi et al., 2006) as potential metal ligands. The title compound was formed by the condensation of two commercial products: 1,2-phenylenediamine and 2-chloro-3',4'-dimethoxybenzil. The resulting quinoxaline had bond lengths that fell within expectated values and had ring torsion angles of 78.45 (5)° and 35.60 (4)° with respect to the planar quinoxaline moiety.

Related literature top

N-heterocyclic aromatic compounds are of current interest as ligands in one- and two-dimensional coordination polymers with silver, see: Fitchett & Steel (2006). The quinoxaline moiety yields a wide variety of potential bidentate bridges in polymeric networks with silver, see: Patra et al. (2007). For the synthesis and characterization of quinoxalines, see: Crundwell & Stacy (2005), of benzo[g]quinoxalines, see: Cantalupo et al. (2006) and of pyrazino[2,3-g]quinoxalines, see: Bellizzi et al. (2006).

Experimental top

To a 100 mL round bottom flask equipped with a Hickman still and a reflux condenser was combined 0.1556 g (1.46 mmol) 1,2-phenylenediamine and 0.4465 g (1.46 mmol) of 2-chloro-3',4'-dimethoxybenzil in 50 mL of concentrated acetic acid.

The mixture was refluxed for 16 h and the resulting solution was chilled then filtered to produce a pale yellow solid. The solid was recrystallized from a 50/50 mixture of toluene and ethanol to yield 0.312 g of 2-(2-chlorophenyl)-3-(3,4-dimethoxyphenyl)-quinoxaline (56.5%).

mp 407.8; 1H NMR (300 MHz, CDCl3): δ 8.193 (ddd, 2H, J = 7.2 Hz, J = 2.4 Hz, J = 0.6 Hz), 7.797 (ddt, 2H, J = 7.2 Hz, J = 6.9 Hz, J = 2.4 Hz), 7.528 (ddd, 1H, J = 5.7 Hz, J = 2.4 Hz, J = 1.8 Hz), 7.372 (m, 3H), 7.210 (dd, 1H, J = 8.4 Hz, J = 2.1 Hz), 7.014 (d, 1H, J = 2.1 Hz), 6.818 (d, 1H, J = 8.4 Hz), 3.878 (s, 3H), 3.657 (s, 3H); 13C NMR (300 MHz, CDCl3): δ 153.15, 151.93, 149.77, 148.31, 141.76, 140.54, 139.02, 133.11, 131.27, 130.83, 130.39, 130.04, 129.88, 129.74, 129.22, 129.19, 127.13, 122.69, 112.43, 110.76, 55.84, 55.62.

Refinement top

Hydrogen atoms were included in calculated positions with a C—H distance of 0.95 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Structure description top

N-heterocyclic aromatic compounds are of current interest as ligands in one- and two-dimensional coordination polymers with silver (Fitchett et al., 2006). The quinoxaline moiety specifically is an enticing aromatic heterocycle since it is readily formed via condensation reactions between diketones and di- or tetra-amines and it yields a wide variety of potential bidentate bridges in polymeric networks with silver (Patra et al., 2007).

The Crundwell lab has synthesized and characterized many quinoxalines (Crundwell et al., 2005), benzo[g]quinoxalines (Cantalupo et al., 2006), and pyrazino[2,3-g]quinoxalines (Bellizzi et al., 2006) as potential metal ligands. The title compound was formed by the condensation of two commercial products: 1,2-phenylenediamine and 2-chloro-3',4'-dimethoxybenzil. The resulting quinoxaline had bond lengths that fell within expectated values and had ring torsion angles of 78.45 (5)° and 35.60 (4)° with respect to the planar quinoxaline moiety.

N-heterocyclic aromatic compounds are of current interest as ligands in one- and two-dimensional coordination polymers with silver, see: Fitchett & Steel (2006). The quinoxaline moiety yields a wide variety of potential bidentate bridges in polymeric networks with silver, see: Patra et al. (2007). For the synthesis and characterization of quinoxalines, see: Crundwell & Stacy (2005), of benzo[g]quinoxalines, see: Cantalupo et al. (2006) and of pyrazino[2,3-g]quinoxalines, see: Bellizzi et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level.
2-(2-Chlorophenyl)-3-(3,4-dimethoxyphenyl)quinoxaline top
Crystal data top
C22H17ClN2O2F(000) = 784
Mr = 376.83Dx = 1.338 Mg m3
Monoclinic, P21/cMelting point: 407.8 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.6741 (13) ÅCell parameters from 11257 reflections
b = 7.9731 (7) Åθ = 4.3–34.1°
c = 21.6996 (17) ŵ = 0.22 mm1
β = 132.560 (6)°T = 293 K
V = 1870.0 (3) Å3Block, yellow
Z = 40.42 × 0.24 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
7159 independent reflections
Radiation source: Enhance (Mo) X-ray Source4223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 16.1790 pixels mm-1θmax = 33.9°, θmin = 4.4°
ω scansh = 2222
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.699, Tmax = 1.000l = 3333
46880 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0955P)2 + 0.4554P]
where P = (Fo2 + 2Fc2)/3
7159 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C22H17ClN2O2V = 1870.0 (3) Å3
Mr = 376.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6741 (13) ŵ = 0.22 mm1
b = 7.9731 (7) ÅT = 293 K
c = 21.6996 (17) Å0.42 × 0.24 × 0.19 mm
β = 132.560 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
7159 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4223 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 1.000Rint = 0.051
46880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
7159 reflectionsΔρmin = 0.37 e Å3
246 parameters
Special details top

Experimental. Hydrogen atoms were included in calculated positions with a C—H distance of 0.95 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

CrysAlisPro (Oxford Diffraction Ltd., 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25132 (14)0.6495 (2)0.51893 (9)0.0385 (3)
N10.34516 (13)0.7171 (2)0.59164 (8)0.0450 (3)
C20.12494 (14)0.6840 (2)0.47750 (9)0.0370 (3)
N20.09944 (13)0.7886 (2)0.51157 (8)0.0442 (3)
C30.19586 (15)0.8590 (2)0.58719 (9)0.0408 (3)
C40.17061 (19)0.9715 (3)0.62465 (12)0.0566 (5)
H40.08930.99850.59730.068*
C50.2658 (2)1.0397 (3)0.70076 (12)0.0597 (5)
H50.24901.11320.72530.072*
C60.3897 (2)1.0000 (3)0.74291 (12)0.0583 (5)
H60.45371.04650.79520.070*
C70.41593 (18)0.8936 (3)0.70727 (11)0.0537 (5)
H70.49780.86840.73520.064*
C80.31893 (15)0.8217 (2)0.62808 (9)0.0410 (3)
C90.28488 (14)0.5376 (2)0.48137 (9)0.0413 (4)
C100.27772 (17)0.3643 (3)0.48187 (11)0.0501 (4)
C110.30563 (18)0.2628 (3)0.44390 (13)0.0590 (5)
H110.30050.14660.44460.071*
C120.34054 (19)0.3366 (3)0.40569 (13)0.0647 (6)
H120.35830.27000.37980.078*
C130.3498 (2)0.5088 (3)0.40510 (14)0.0652 (6)
H130.37440.55650.37920.078*
C140.32275 (16)0.6126 (3)0.44284 (12)0.0524 (4)
H140.32950.72850.44260.063*
Cl10.23549 (8)0.27027 (8)0.53138 (5)0.0854 (2)
C150.01547 (14)0.6069 (2)0.39677 (9)0.0379 (3)
C160.00943 (14)0.5764 (2)0.33031 (10)0.0396 (3)
H160.07770.60000.33700.047*
C170.09655 (14)0.5118 (2)0.25514 (10)0.0397 (3)
C180.20106 (15)0.4789 (2)0.24403 (10)0.0422 (4)
C190.19425 (16)0.5068 (2)0.30999 (11)0.0474 (4)
H190.26220.48260.30360.057*
C200.08736 (16)0.5706 (2)0.38564 (11)0.0457 (4)
H200.08470.58910.42910.055*
O10.10954 (11)0.47659 (19)0.18770 (8)0.0534 (3)
C210.0123 (2)0.5263 (3)0.19222 (14)0.0655 (6)
H21A0.00160.64470.20270.098*
H21B0.03460.50120.14020.098*
H21C0.06180.46670.23680.098*
O20.30319 (12)0.42185 (19)0.16651 (8)0.0567 (4)
C220.4155 (2)0.4121 (4)0.14824 (15)0.0743 (7)
H22A0.40750.33130.18450.111*
H22B0.48080.37850.09100.111*
H22C0.43450.51990.15680.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (7)0.0417 (8)0.0320 (7)0.0051 (6)0.0204 (6)0.0026 (6)
N10.0359 (6)0.0552 (9)0.0349 (6)0.0019 (6)0.0203 (6)0.0007 (6)
C20.0338 (7)0.0411 (8)0.0293 (6)0.0050 (6)0.0186 (6)0.0025 (6)
N20.0368 (6)0.0536 (8)0.0321 (6)0.0080 (6)0.0193 (5)0.0007 (6)
C30.0417 (8)0.0429 (8)0.0317 (7)0.0051 (6)0.0223 (6)0.0019 (6)
C40.0561 (11)0.0628 (12)0.0428 (9)0.0140 (9)0.0302 (9)0.0030 (8)
C50.0749 (13)0.0549 (11)0.0437 (9)0.0048 (10)0.0378 (10)0.0061 (8)
C60.0662 (12)0.0590 (12)0.0391 (8)0.0155 (10)0.0315 (9)0.0108 (8)
C70.0441 (9)0.0661 (12)0.0392 (8)0.0103 (8)0.0235 (7)0.0077 (8)
C80.0394 (8)0.0446 (8)0.0327 (7)0.0015 (6)0.0218 (6)0.0007 (6)
C90.0316 (7)0.0486 (9)0.0331 (7)0.0069 (6)0.0176 (6)0.0021 (6)
C100.0454 (9)0.0512 (10)0.0430 (8)0.0113 (8)0.0256 (7)0.0072 (7)
C110.0497 (10)0.0554 (11)0.0498 (10)0.0138 (8)0.0248 (9)0.0027 (8)
C120.0530 (11)0.0824 (16)0.0535 (11)0.0104 (10)0.0339 (10)0.0119 (10)
C130.0634 (12)0.0839 (16)0.0655 (13)0.0011 (11)0.0504 (11)0.0087 (11)
C140.0441 (9)0.0675 (12)0.0512 (10)0.0010 (8)0.0345 (8)0.0038 (9)
Cl10.1261 (6)0.0590 (4)0.1054 (5)0.0107 (3)0.0921 (5)0.0207 (3)
C150.0331 (7)0.0407 (8)0.0318 (7)0.0055 (6)0.0187 (6)0.0020 (6)
C160.0323 (7)0.0445 (8)0.0358 (7)0.0019 (6)0.0206 (6)0.0008 (6)
C170.0379 (7)0.0402 (8)0.0350 (7)0.0024 (6)0.0222 (6)0.0015 (6)
C180.0361 (7)0.0378 (8)0.0403 (8)0.0029 (6)0.0208 (6)0.0038 (6)
C190.0407 (8)0.0528 (10)0.0490 (9)0.0066 (7)0.0305 (8)0.0023 (8)
C200.0433 (8)0.0528 (10)0.0413 (8)0.0004 (7)0.0287 (7)0.0002 (7)
O10.0455 (7)0.0715 (9)0.0404 (6)0.0064 (6)0.0279 (6)0.0139 (6)
C210.0643 (12)0.0865 (16)0.0571 (11)0.0110 (11)0.0456 (11)0.0154 (11)
O20.0420 (6)0.0675 (9)0.0488 (7)0.0163 (6)0.0259 (6)0.0196 (6)
C220.0475 (11)0.0965 (19)0.0659 (13)0.0286 (11)0.0332 (10)0.0219 (13)
Geometric parameters (Å, º) top
C1—N11.318 (2)C12—H120.9300
C1—C21.438 (2)C13—C141.397 (3)
C1—C91.499 (2)C13—H130.9300
N1—C81.371 (2)C14—H140.9300
C2—N21.325 (2)C15—C201.388 (2)
C2—C151.490 (2)C15—C161.405 (2)
N2—C31.367 (2)C16—C171.383 (2)
C3—C81.403 (2)C16—H160.9300
C3—C41.418 (2)C17—O11.371 (2)
C4—C51.362 (3)C17—C181.407 (2)
C4—H40.9300C18—O21.368 (2)
C5—C61.411 (3)C18—C191.384 (3)
C5—H50.9300C19—C201.389 (2)
C6—C71.367 (3)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.414 (2)O1—C211.419 (3)
C7—H70.9300C21—H21A0.9600
C9—C101.386 (3)C21—H21B0.9600
C9—C141.412 (3)C21—H21C0.9600
C10—C111.400 (3)O2—C221.412 (3)
C10—Cl11.732 (2)C22—H22A0.9600
C11—C121.368 (3)C22—H22B0.9600
C11—H110.9300C22—H22C0.9600
C12—C131.381 (4)
N1—C1—C2122.11 (15)C12—C13—C14121.0 (2)
N1—C1—C9115.67 (14)C12—C13—H13119.5
C2—C1—C9122.21 (13)C14—C13—H13119.5
C1—N1—C8117.75 (14)C13—C14—C9118.5 (2)
N2—C2—C1120.19 (14)C13—C14—H14120.7
N2—C2—C15115.39 (13)C9—C14—H14120.7
C1—C2—C15124.41 (14)C20—C15—C16118.62 (14)
C2—N2—C3118.32 (14)C20—C15—C2118.11 (14)
N2—C3—C8121.09 (15)C16—C15—C2123.21 (14)
N2—C3—C4119.23 (16)C17—C16—C15121.01 (15)
C8—C3—C4119.69 (16)C17—C16—H16119.5
C5—C4—C3119.79 (19)C15—C16—H16119.5
C5—C4—H4120.1O1—C17—C16124.67 (15)
C3—C4—H4120.1O1—C17—C18115.51 (14)
C4—C5—C6120.75 (19)C16—C17—C18119.82 (15)
C4—C5—H5119.6O2—C18—C19125.31 (16)
C6—C5—H5119.6O2—C18—C17115.67 (16)
C7—C6—C5120.32 (17)C19—C18—C17119.02 (15)
C7—C6—H6119.8C18—C19—C20121.00 (16)
C5—C6—H6119.8C18—C19—H19119.5
C6—C7—C8120.12 (18)C20—C19—H19119.5
C6—C7—H7119.9C15—C20—C19120.50 (16)
C8—C7—H7119.9C15—C20—H20119.7
N1—C8—C3120.49 (14)C19—C20—H20119.7
N1—C8—C7120.19 (16)C17—O1—C21117.50 (14)
C3—C8—C7119.31 (17)O1—C21—H21A109.5
C10—C9—C14119.28 (17)O1—C21—H21B109.5
C10—C9—C1122.33 (16)H21A—C21—H21B109.5
C14—C9—C1118.37 (16)O1—C21—H21C109.5
C9—C10—C11121.20 (19)H21A—C21—H21C109.5
C9—C10—Cl1119.82 (15)H21B—C21—H21C109.5
C11—C10—Cl1118.97 (17)C18—O2—C22117.59 (16)
C12—C11—C10119.1 (2)O2—C22—H22A109.5
C12—C11—H11120.4O2—C22—H22B109.5
C10—C11—H11120.4H22A—C22—H22B109.5
C11—C12—C13120.9 (2)O2—C22—H22C109.5
C11—C12—H12119.6H22A—C22—H22C109.5
C13—C12—H12119.6H22B—C22—H22C109.5

Experimental details

Crystal data
Chemical formulaC22H17ClN2O2
Mr376.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.6741 (13), 7.9731 (7), 21.6996 (17)
β (°) 132.560 (6)
V3)1870.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.42 × 0.24 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.699, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
46880, 7159, 4223
Rint0.051
(sin θ/λ)max1)0.784
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.202, 1.03
No. of reflections7159
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was funded by a CCSU-AAUP research grant.

References

First citationBellizzi, M., Crundwell, G., Zeller, M., Hunter, A. D. & McBurney, B. (2006). Acta Cryst. E62, o5249–o5251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCantalupo, S., Salvati, H., McBurney, B., Raju, R., Glagovich, N. & Crundwell, G. (2006). J. Chem. Crystallogr. 36, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrundwell, G. & Stacy, V. (2005). Acta Cryst. E61, o3159–o3160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886–4888.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatra, G. K., Goldberg, I., De, S. & Datta, D. (2007). CrystEngComm, 9, 828–832.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds