organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-3-hy­dr­oxy-2-phenyl-3H-indole 1-oxide

aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, bDipartimento ISAC, Universitá Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy, and cFakulteti i Shkencave të Natyrës, Departamenti i Kimise, Universiteti i Tiranes, Bulevardi "Zogu I", Tirana, Albania
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 18 June 2010; accepted 2 July 2010; online 10 July 2010)

The asymmetric unit of the title compound, C21H17NO2, contains two crystallographically independent mol­ecules of similar geometry. The indole ring systems form dihedral angles of 8.30 (5) and 9.58 (5)° with the attached phenyl rings, and 56.96 (5) and 57.68 (5)° with the aromatic rings of the respective benzyl groups. The mol­ecular conformations are stabilized by intra­molecular C—H⋯O hydrogen bonds. In the crystal structure, centrosymmetrically related pairs of mol­ecules are linked into dimers through pairs of inter­molecular O—H⋯O hydrogen bonds, generating 12-membered rings with R22(12) motifs. The dimers are further linked into a three-dimensional network by C—H⋯O inter­actions.

Related literature

For the use of nitro­nes in the spin-trapping technique and in organic synthesis, see: Janzen (1971[Janzen, E. G. (1971). Acc. Chem. Res. 4, 31-40.]); Zubarev (1979[Zubarev, V. E. (1979). Russ. Chem. Rev. 48, 1361-1392.]); Balasubramanian (1985[Balasubramanian, N. (1985). Org. Prep. Proced. Int. 17, 23-47.]); Pisaneschi et al. (2002[Pisaneschi, F., Della Monica, C., Cordero, F. M. & Brandi, A. (2002). Tetrahedron Lett. 43, 5711-5714.]); Jones et al. (2000[Jones, R. C. F., Martin, J. N. & Smith, P. (2000). Synlett, 7, 967-970.]); Bernotas et al. (1999[Bernotas, R. C., Sabol, J. S., Sing, L. & Friedrich, D. (1999). Synlett, 5, 653-655.]); Ali & Wazeer (1988[Ali, S. A. & Wazeer, M. I. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 597-605.]); Merino (2005[Merino, P. (2005). Compt. Rend. Chim. 8, 775-788.]); Chiacchio et al. (2006[Chiacchio, U., Saita, M. G., Crispino, L., Gumina, G., Mangiafico, S., Pistara, V., Romeo, G., Piperno, A. & De Clercq, E. (2006). Tetrahedron, 62, 1171-1181.]); Revuelta et al. (2008[Revuelta, J., Cicchi, S., de Maijere, A. & Brandi, A. (2008). Eur. J. Org. Chem. pp. 1085-1091.]); Astolfi et al. (2003[Astolfi, P., Bruni, P., Greci, L., Stipa, P., Righi, L. & Rizzoli, C. (2003). Eur. J. Org. Chem. pp. 2626-2634.]); Greci et al. (2001[Greci, L., Tommasi, G., Bruni, P., Sgarabotto, P. & Righi, L. (2001). Eur. J. Org. Chem. pp. 3147-3153.]); Tommasi et al. (1999[Tommasi, G., Bruni, P., Greci, L., Sgarabotto, P. & Righi, L. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 681-686.]); Bruni et al. (1998[Bruni, P., Giorgini, E., Tommasi, G. & Greci, L. (1998). Tetrahedron, 54, 5305-5314.]). For a related structure, see: Yamada et al. (2003[Yamada, F., Kawanishi, A., Tomita, A. & Somei, M. (2003). Arkivoc, viii, 102-111.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the preparation of 2-phenyl­isatogen, see: Bond & Hooper (1974[Bond, C. C. & Hooper, M. (1974). Synthesis, p. 443.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17NO2

  • Mr = 315.36

  • Triclinic, [P \overline 1]

  • a = 11.635 (2) Å

  • b = 11.971 (2) Å

  • c = 12.063 (3) Å

  • α = 84.773 (5)°

  • β = 88.882 (6)°

  • γ = 88.635 (6)°

  • V = 1672.5 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 294 K

  • 0.26 × 0.24 × 0.18 mm

Data collection
  • Siemens AED diffractometer

  • 6045 measured reflections

  • 6045 independent reflections

  • 5126 reflections with I > 2σ(I)

  • 3 standard reflections every 100 reflections intensity decay: 0.02%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.162

  • S = 1.05

  • 6045 reflections

  • 442 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1 0.93 2.19 2.817 (3) 124
C14—H14⋯O2 0.93 2.34 2.996 (2) 127
C31—H31⋯O4 0.93 2.47 3.107 (2) 126
C35—H35⋯O3 0.93 2.37 2.989 (3) 124
C11—H11⋯O4 0.93 2.48 3.404 (3) 175
O2—H2O⋯O1i 0.90 (2) 1.88 (2) 2.769 (2) 174 (2)
O4—H4O⋯O3ii 0.98 (2) 1.82 (2) 2.793 (2) 178 (2)
C24—H24⋯O1ii 0.93 2.48 3.310 (3) 148
C3—H3⋯O3iii 0.93 2.46 3.327 (3) 154
C34—H34⋯O2iv 0.93 2.49 3.415 (3) 176
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z.

Data collection: AED (Belletti et al., 1993[Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.]); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Many types of cyclic and acyclic nitrones, such as N-tert-butyl-α-phenylnitrone and 5,5-dimethyl-pyrroline-N-oxide, have been used frequently in the spin trapping technique since its inception (Janzen, 1971; Zubarev, 1979). Nitrones are also used in the syntheses of isoxazolidines through 1,3-dipolar cycloaddition with a series of dipolarophiles (Balasubramanian, 1985). Although the most used nitrones in cyclization reactions are acyclic, several papers have appeared in the last two decades describing cycloaddition reactions with cyclic nitrones (Pisaneschi et al., 2002; Jones et al., 2000; Bernotas et al., 1999; Ali & Wazeer, 1988). Significant advances have been described in the use of nitrones derived from sugars and aminoacids for the synthesis of interesting biological compounds including aminoacids, amino alcohols and nucleoside analogs (Merino, 2005). On this basis, enantioselective syntheses of homo-carboxylic-2'-oxo-3'-azo-nucleosides were achieved by cycloaddition reactions of N-glycosyl nitrones with allylic nucleobases (Chiacchio et al., 2006). Moreover, a series of 3-spirocyclopropane dihydro- and tetrahydropyrid-4-ones were synthesized by nitrone cycloaddition to 1,1'-bicyclopropylidene (Revuelta et al., 2008). The title compound was synthesized in order to continue our studies on 1,3-dipolar cycloaddition with different dipolarophiles, with particular focus on the catalytic activity of metal cations such as cobalt(II), calcium(II), zinc(II) and nickel(II) (Astolfi et al., 2003; Greci et al., 2001; Tommasi et al., 1999; Bruni et al., 1998).

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules with similar geometry. The indole ring systems including the N1 and N2 atoms form dihedral angles of 8.30 (5) and 9.58 (5)°, respectively, with the attached phenyl rings, and 56.96 (5) and 57.68 (5)°, respectively, with the aromatic ring of the benzyl groups. The N–O (mean value 1.304 (2) Å) and C–O (mean value 1.420 (2) Å) bond lengths are comparable with those found in 3-hydroxy-2,3-dimethyl-3H-indole N-oxide [1.3093 (17) and 1.418 (2) Å respectively; Yamada et al., 2003]. The molecular conformations are stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal packing, centrosymmetrically related molecules are linked into dimers (Fig. 2) through intermolecular O—H···O hydrogen bonds resulting in twelve-membered rings with R22(12) motifs (Bernstein et al., 1995). Within the dimers, the centroid-to-centroid separations between the opposite C1–C6/C9i–C14i and C22–C27/C30ii–C35ii aromatic rings are 3.893 (2) and 3.920 (2) Å, respectively (symmetry codes: (i) 1 - x. -y, 1 - z; (ii) -x, 1 - y, 1 - z). The dimers are further connected by C—H···O hydrogen bonds into a three-dimensional network (Fig. 3).

Related literature top

For the use of nitrones in the spin trapping technique and organic synthesis, see: Janzen (1971); Zubarev (1979); Balasubramanian (1985); Pisaneschi et al. (2002); Jones et al. (2000); Bernotas et al. (1999); Ali & Wazeer (1988); Merino (2005); Chiacchio et al. (2006); Revuelta et al. (2008); Astolfi et al. (2003); Greci et al. (2001); Tommasi et al. (1999); Bruni et al. (1998). For a related structure, see: Yamada et al. (2003). For graph-set notation, see: Bernstein et al. (1995). For the preparation of 2-phenylisatogen, see: Bond & Hooper (1974).

Experimental top

A solution of benzylmagnesium bromide (20 mmoles in 30 ml of dried THF, obtained from 0.46 g of magnesium and 2.54 g of benzyl chloride in a current of argon) was added to a solution of 2-phenylisatogen (10 mmoles, 2.23 g in 50 ml of dried THF; Bond & Hooper, 1974), at room temperature and under magnetic stirring. After the addition, the reaction mixture was kept at room temperature for 2 h, then it was poured into 10% aqueous NH4Cl (100 ml) solution. The mixture was extracted with chloroform (2 × 50 ml) and the separated organic layer was dried on Na2SO4 and evaporated to dryness. The residue was treated with diethyl ether to give a white solid corresponding to the expected nitrone, which was separated by filtration under vacuum and washed with diethyl ether (obtained 2.04 g, yield 65%, m.p. 200–201 °C. FT—IR, ν, cm-1, 3143 (OH). 1601 (O<-N=C<), 1519. 1H NMR, δ, CDCl3: 3.36 (2H, pseudo-q, –CH2Ph, distereotopic H atoms), 6.41 (2H, d, arom.), 6.81–7.07 (5H,m, arom.). 7.13–7.55 (3H, m, arom.), 7.3–7.4 (2H. m, arom.), 8.6 (2H, pseudo-q, arom). Mass. calcd. for C21H17NO2, 315.39; found: m/z (%): 315 (M+, 5.7), 224 (34.4), 208 (58.6), 179 (100). The melting point was measured on a Mitamura Riken Kogyo mp D electrochemical apparartus and was not corrected. FT—IR spectrum was recorded in KBr with a Perkin-Elmer MGX1 spectrophotometer equipped with Spectra Tech. 1H NMR spectrum was recorded on a Gemini Varian 200 MHz. Mass spectrum was recorded on a Carlo Erba QMD 1000 mass spectrometer in positive electron impact (EI) mode. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The hydroxy H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Structure description top

Many types of cyclic and acyclic nitrones, such as N-tert-butyl-α-phenylnitrone and 5,5-dimethyl-pyrroline-N-oxide, have been used frequently in the spin trapping technique since its inception (Janzen, 1971; Zubarev, 1979). Nitrones are also used in the syntheses of isoxazolidines through 1,3-dipolar cycloaddition with a series of dipolarophiles (Balasubramanian, 1985). Although the most used nitrones in cyclization reactions are acyclic, several papers have appeared in the last two decades describing cycloaddition reactions with cyclic nitrones (Pisaneschi et al., 2002; Jones et al., 2000; Bernotas et al., 1999; Ali & Wazeer, 1988). Significant advances have been described in the use of nitrones derived from sugars and aminoacids for the synthesis of interesting biological compounds including aminoacids, amino alcohols and nucleoside analogs (Merino, 2005). On this basis, enantioselective syntheses of homo-carboxylic-2'-oxo-3'-azo-nucleosides were achieved by cycloaddition reactions of N-glycosyl nitrones with allylic nucleobases (Chiacchio et al., 2006). Moreover, a series of 3-spirocyclopropane dihydro- and tetrahydropyrid-4-ones were synthesized by nitrone cycloaddition to 1,1'-bicyclopropylidene (Revuelta et al., 2008). The title compound was synthesized in order to continue our studies on 1,3-dipolar cycloaddition with different dipolarophiles, with particular focus on the catalytic activity of metal cations such as cobalt(II), calcium(II), zinc(II) and nickel(II) (Astolfi et al., 2003; Greci et al., 2001; Tommasi et al., 1999; Bruni et al., 1998).

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules with similar geometry. The indole ring systems including the N1 and N2 atoms form dihedral angles of 8.30 (5) and 9.58 (5)°, respectively, with the attached phenyl rings, and 56.96 (5) and 57.68 (5)°, respectively, with the aromatic ring of the benzyl groups. The N–O (mean value 1.304 (2) Å) and C–O (mean value 1.420 (2) Å) bond lengths are comparable with those found in 3-hydroxy-2,3-dimethyl-3H-indole N-oxide [1.3093 (17) and 1.418 (2) Å respectively; Yamada et al., 2003]. The molecular conformations are stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal packing, centrosymmetrically related molecules are linked into dimers (Fig. 2) through intermolecular O—H···O hydrogen bonds resulting in twelve-membered rings with R22(12) motifs (Bernstein et al., 1995). Within the dimers, the centroid-to-centroid separations between the opposite C1–C6/C9i–C14i and C22–C27/C30ii–C35ii aromatic rings are 3.893 (2) and 3.920 (2) Å, respectively (symmetry codes: (i) 1 - x. -y, 1 - z; (ii) -x, 1 - y, 1 - z). The dimers are further connected by C—H···O hydrogen bonds into a three-dimensional network (Fig. 3).

For the use of nitrones in the spin trapping technique and organic synthesis, see: Janzen (1971); Zubarev (1979); Balasubramanian (1985); Pisaneschi et al. (2002); Jones et al. (2000); Bernotas et al. (1999); Ali & Wazeer (1988); Merino (2005); Chiacchio et al. (2006); Revuelta et al. (2008); Astolfi et al. (2003); Greci et al. (2001); Tommasi et al. (1999); Bruni et al. (1998). For a related structure, see: Yamada et al. (2003). For graph-set notation, see: Bernstein et al. (1995). For the preparation of 2-phenylisatogen, see: Bond & Hooper (1974).

Computing details top

Data collection: AED (Belletti et al., 1993); cell refinement: AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the centrosymmetric dimers of the title formed through intermolecular O—H···O hydrogen bonds (dashed lines). Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -x, 1 - y, 1 - z.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed approximately along the c axis. Intra- and intermolecular hydrogen bonds are shown as dashed lines.
3-Benzyl-3-hydroxy-2-phenyl-3H-indole 1-oxide top
Crystal data top
C21H17NO2Z = 4
Mr = 315.36F(000) = 664
Triclinic, P1Dx = 1.252 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 11.635 (2) ÅCell parameters from 48 reflections
b = 11.971 (2) Åθ = 16.4–48.4°
c = 12.063 (3) ŵ = 0.64 mm1
α = 84.773 (5)°T = 294 K
β = 88.882 (6)°Block, pale yellow
γ = 88.635 (6)°0.26 × 0.24 × 0.18 mm
V = 1672.5 (6) Å3
Data collection top
Siemens AED
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 68.0°, θmin = 3.7°
Graphite monochromatorh = 913
θ/2θ scansk = 1410
6045 measured reflectionsl = 1414
6045 independent reflections3 standard reflections every 100 reflections
5126 reflections with I > 2σ(I) intensity decay: 0.02%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0996P)2 + 0.2753P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6045 reflectionsΔρmax = 0.22 e Å3
442 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (5)
Crystal data top
C21H17NO2γ = 88.635 (6)°
Mr = 315.36V = 1672.5 (6) Å3
Triclinic, P1Z = 4
a = 11.635 (2) ÅCu Kα radiation
b = 11.971 (2) ŵ = 0.64 mm1
c = 12.063 (3) ÅT = 294 K
α = 84.773 (5)°0.26 × 0.24 × 0.18 mm
β = 88.882 (6)°
Data collection top
Siemens AED
diffractometer
Rint = 0.000
6045 measured reflections3 standard reflections every 100 reflections
6045 independent reflections intensity decay: 0.02%
5126 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
6045 reflectionsΔρmin = 0.24 e Å3
442 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46993 (13)0.19070 (10)0.43394 (10)0.0705 (4)
O20.54286 (11)0.16774 (9)0.33565 (11)0.0571 (3)
H2O0.534 (2)0.172 (2)0.410 (2)0.088 (7)*
O30.03259 (14)0.68855 (10)0.44282 (11)0.0754 (4)
O40.00423 (11)0.33865 (9)0.32592 (12)0.0628 (3)
H4O0.013 (2)0.328 (2)0.407 (2)0.097 (8)*
N10.52177 (13)0.10469 (10)0.39161 (11)0.0549 (4)
N20.00636 (14)0.60551 (10)0.39494 (11)0.0565 (4)
C10.64142 (16)0.08049 (13)0.40690 (13)0.0555 (4)
C20.7148 (2)0.14275 (16)0.45982 (15)0.0696 (5)
H20.69200.20850.49040.084*
C30.8267 (2)0.10075 (19)0.46471 (17)0.0784 (6)
H30.88150.14010.49950.094*
C40.86049 (19)0.0018 (2)0.41950 (17)0.0772 (6)
H40.93630.02390.42610.093*
C50.78426 (17)0.05788 (16)0.36581 (16)0.0654 (5)
H50.80610.12360.33480.079*
C60.67341 (15)0.01605 (13)0.35970 (13)0.0541 (4)
C70.57370 (14)0.05489 (12)0.30169 (13)0.0511 (4)
C80.47831 (15)0.02996 (12)0.33305 (12)0.0499 (4)
C90.36031 (15)0.03120 (13)0.30073 (13)0.0537 (4)
C100.28318 (18)0.12083 (16)0.31429 (16)0.0669 (5)
H100.30740.18340.34710.080*
C110.1726 (2)0.1165 (2)0.2795 (2)0.0818 (6)
H110.12140.17590.28850.098*
C120.1379 (2)0.0260 (2)0.23201 (19)0.0826 (6)
H120.06230.02350.20870.099*
C130.21224 (19)0.06358 (19)0.21721 (19)0.0772 (6)
H130.18660.12530.18390.093*
C140.32193 (17)0.06139 (15)0.25114 (16)0.0652 (5)
H140.37190.12170.24140.078*
C150.60383 (16)0.04876 (14)0.17393 (14)0.0588 (4)
H1510.66980.09790.16300.071*
H1520.53960.07730.13570.071*
C160.63050 (16)0.06764 (15)0.12009 (13)0.0592 (4)
C170.5463 (2)0.13279 (18)0.06942 (16)0.0734 (5)
H170.47160.10670.06930.088*
C180.5709 (3)0.2378 (2)0.0179 (2)0.0979 (8)
H180.51220.27980.01830.117*
C190.6775 (3)0.2818 (2)0.0181 (2)0.1036 (9)
H190.69150.35320.01600.124*
C200.7618 (3)0.2195 (2)0.0687 (2)0.1025 (9)
H200.83560.24750.07060.123*
C210.7385 (2)0.1121 (2)0.11877 (17)0.0803 (6)
H210.79820.06930.15230.096*
C220.12773 (16)0.58215 (13)0.40787 (13)0.0560 (4)
C230.2149 (2)0.63966 (15)0.46520 (15)0.0696 (5)
H230.19880.70360.50000.084*
C240.3243 (2)0.59772 (18)0.46771 (17)0.0768 (6)
H240.38380.63310.50450.092*
C250.34455 (18)0.5030 (2)0.41531 (17)0.0753 (6)
H250.41830.47440.41800.090*
C260.25587 (17)0.44760 (17)0.35706 (16)0.0674 (5)
H260.27170.38390.32190.081*
C270.14607 (15)0.48919 (14)0.35319 (13)0.0555 (4)
C280.03287 (15)0.45255 (13)0.29552 (14)0.0534 (4)
C290.05241 (15)0.53448 (12)0.33312 (13)0.0520 (4)
C300.17631 (16)0.53540 (13)0.30252 (13)0.0552 (4)
C310.22917 (17)0.44455 (16)0.25119 (16)0.0667 (5)
H310.18450.38400.23780.080*
C320.34565 (19)0.4425 (2)0.22003 (19)0.0775 (6)
H320.37690.38140.18650.093*
C330.41384 (19)0.5308 (2)0.23898 (19)0.0807 (6)
H330.49140.53060.21880.097*
C340.3640 (2)0.62003 (19)0.28893 (19)0.0802 (6)
H340.40970.68010.30170.096*
C350.24684 (18)0.62393 (15)0.32136 (16)0.0667 (5)
H350.21690.68530.35520.080*
C360.03763 (17)0.46461 (16)0.16720 (15)0.0658 (5)
H3610.03890.45110.13720.079*
H3620.08720.40750.14360.079*
C370.08058 (18)0.5768 (2)0.11951 (14)0.0698 (5)
C380.1895 (2)0.5879 (3)0.0830 (2)0.1048 (9)
H380.23810.52700.08900.126*
C390.2281 (3)0.6934 (4)0.0360 (3)0.1300 (13)
H390.30220.70110.00830.156*
C400.1597 (4)0.7850 (3)0.0297 (2)0.1215 (12)
H400.18780.85450.00010.146*
C410.0534 (3)0.7740 (3)0.0660 (2)0.1153 (10)
H410.00580.83560.06160.138*
C420.0136 (2)0.6711 (2)0.11025 (19)0.0886 (7)
H420.06160.66440.13510.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1094 (11)0.0420 (6)0.0622 (7)0.0093 (6)0.0094 (7)0.0169 (5)
O20.0737 (8)0.0372 (5)0.0614 (7)0.0032 (5)0.0124 (6)0.0074 (5)
O30.1173 (11)0.0449 (6)0.0674 (8)0.0154 (7)0.0035 (7)0.0198 (6)
O40.0762 (8)0.0421 (6)0.0721 (8)0.0051 (5)0.0043 (6)0.0153 (5)
N10.0815 (10)0.0375 (6)0.0462 (7)0.0018 (6)0.0049 (6)0.0057 (5)
N20.0861 (10)0.0369 (6)0.0472 (7)0.0038 (6)0.0050 (7)0.0061 (5)
C10.0762 (11)0.0465 (8)0.0440 (8)0.0124 (8)0.0081 (7)0.0009 (6)
C20.0989 (15)0.0541 (10)0.0573 (10)0.0246 (10)0.0130 (10)0.0049 (8)
C30.0884 (15)0.0805 (14)0.0672 (12)0.0354 (12)0.0210 (10)0.0015 (10)
C40.0696 (12)0.0928 (15)0.0682 (12)0.0163 (11)0.0189 (9)0.0065 (11)
C50.0699 (11)0.0632 (10)0.0631 (10)0.0044 (9)0.0128 (9)0.0018 (8)
C60.0659 (10)0.0487 (8)0.0481 (8)0.0080 (7)0.0076 (7)0.0033 (6)
C70.0633 (10)0.0385 (7)0.0526 (9)0.0030 (7)0.0087 (7)0.0076 (6)
C80.0681 (10)0.0379 (7)0.0439 (8)0.0024 (7)0.0035 (7)0.0044 (6)
C90.0639 (10)0.0481 (8)0.0477 (8)0.0011 (7)0.0040 (7)0.0022 (6)
C100.0798 (13)0.0537 (10)0.0663 (11)0.0101 (9)0.0030 (9)0.0034 (8)
C110.0777 (14)0.0766 (14)0.0881 (15)0.0244 (11)0.0061 (11)0.0034 (11)
C120.0699 (13)0.0929 (16)0.0826 (14)0.0056 (11)0.0164 (11)0.0074 (12)
C130.0748 (13)0.0748 (13)0.0827 (14)0.0044 (10)0.0230 (11)0.0054 (10)
C140.0683 (11)0.0548 (10)0.0729 (11)0.0040 (8)0.0137 (9)0.0072 (8)
C150.0707 (11)0.0566 (9)0.0514 (9)0.0022 (8)0.0059 (8)0.0162 (7)
C160.0731 (11)0.0647 (10)0.0410 (8)0.0062 (8)0.0036 (7)0.0099 (7)
C170.0818 (13)0.0790 (13)0.0582 (10)0.0040 (10)0.0081 (9)0.0018 (9)
C180.120 (2)0.0863 (16)0.0831 (16)0.0026 (15)0.0070 (14)0.0172 (13)
C190.150 (3)0.0783 (15)0.0802 (16)0.0247 (17)0.0084 (16)0.0105 (12)
C200.117 (2)0.112 (2)0.0792 (15)0.0545 (17)0.0068 (14)0.0015 (14)
C210.0802 (14)0.0930 (15)0.0670 (12)0.0187 (12)0.0094 (10)0.0032 (11)
C220.0791 (11)0.0433 (8)0.0445 (8)0.0054 (7)0.0003 (7)0.0000 (6)
C230.1010 (16)0.0503 (9)0.0556 (10)0.0192 (10)0.0048 (10)0.0009 (7)
C240.0853 (14)0.0756 (13)0.0647 (11)0.0298 (11)0.0087 (10)0.0088 (10)
C250.0662 (12)0.0928 (15)0.0640 (11)0.0098 (10)0.0006 (9)0.0066 (10)
C260.0694 (11)0.0719 (12)0.0611 (10)0.0019 (9)0.0027 (9)0.0058 (9)
C270.0680 (10)0.0522 (9)0.0464 (8)0.0010 (7)0.0018 (7)0.0057 (7)
C280.0637 (10)0.0451 (8)0.0529 (9)0.0041 (7)0.0012 (7)0.0121 (7)
C290.0722 (10)0.0395 (7)0.0446 (8)0.0036 (7)0.0050 (7)0.0048 (6)
C300.0697 (11)0.0474 (8)0.0483 (8)0.0096 (7)0.0100 (7)0.0013 (7)
C310.0690 (11)0.0613 (10)0.0711 (11)0.0095 (9)0.0002 (9)0.0101 (9)
C320.0707 (12)0.0822 (14)0.0799 (13)0.0007 (10)0.0004 (10)0.0089 (11)
C330.0653 (12)0.0951 (16)0.0788 (13)0.0150 (11)0.0116 (10)0.0137 (12)
C340.0828 (14)0.0735 (13)0.0830 (14)0.0281 (11)0.0235 (11)0.0119 (11)
C350.0826 (13)0.0528 (9)0.0647 (11)0.0149 (9)0.0196 (9)0.0027 (8)
C360.0715 (11)0.0758 (12)0.0534 (10)0.0076 (9)0.0023 (8)0.0229 (9)
C370.0718 (12)0.0986 (15)0.0402 (8)0.0051 (10)0.0028 (8)0.0143 (9)
C380.0843 (16)0.148 (3)0.0839 (16)0.0134 (16)0.0179 (13)0.0224 (16)
C390.101 (2)0.193 (4)0.095 (2)0.056 (3)0.0255 (17)0.017 (2)
C400.139 (3)0.143 (3)0.0747 (16)0.051 (2)0.0073 (18)0.0141 (18)
C410.138 (3)0.109 (2)0.0904 (18)0.0069 (19)0.0045 (17)0.0307 (16)
C420.0984 (17)0.0911 (16)0.0722 (13)0.0070 (13)0.0114 (12)0.0182 (11)
Geometric parameters (Å, º) top
O1—N11.3186 (18)C19—C201.341 (4)
O2—C71.4276 (18)C19—H190.9300
O2—H2O0.90 (3)C20—C211.400 (3)
O3—N21.2898 (17)C20—H200.9300
O4—C281.413 (2)C21—H210.9300
O4—H4O0.98 (3)C22—C271.367 (2)
N1—C81.306 (2)C22—C231.417 (3)
N1—C11.427 (2)C23—C241.378 (3)
N2—C291.347 (2)C23—H230.9300
N2—C221.449 (2)C24—C251.375 (3)
C1—C21.353 (2)C24—H240.9300
C1—C61.375 (2)C25—C261.422 (3)
C2—C31.385 (3)C25—H250.9300
C2—H20.9300C26—C271.381 (3)
C3—C41.394 (3)C26—H260.9300
C3—H30.9300C27—C281.550 (2)
C4—C51.361 (3)C28—C291.516 (2)
C4—H40.9300C28—C361.543 (2)
C5—C61.373 (3)C29—C301.481 (3)
C5—H50.9300C30—C351.393 (2)
C6—C71.473 (2)C30—C311.421 (3)
C7—C81.551 (2)C31—C321.400 (3)
C7—C151.569 (2)C31—H310.9300
C8—C91.434 (2)C32—C331.375 (3)
C9—C141.393 (2)C32—H320.9300
C9—C101.401 (2)C33—C341.383 (3)
C10—C111.365 (3)C33—H330.9300
C10—H100.9300C34—C351.412 (3)
C11—C121.344 (3)C34—H340.9300
C11—H110.9300C35—H350.9300
C12—C131.384 (3)C36—C371.491 (3)
C12—H120.9300C36—H3610.9700
C13—C141.349 (3)C36—H3620.9700
C13—H130.9300C37—C381.350 (3)
C14—H140.9300C37—C421.382 (3)
C15—C161.519 (2)C38—C391.403 (5)
C15—H1510.9700C38—H380.9300
C15—H1520.9700C39—C401.366 (5)
C16—C171.357 (3)C39—H390.9300
C16—C211.375 (3)C40—C411.319 (5)
C17—C181.384 (3)C40—H400.9300
C17—H170.9300C41—C421.371 (4)
C18—C191.359 (4)C41—H410.9300
C18—H180.9300C42—H420.9300
C7—O2—H2O106.0 (15)C21—C20—H20120.1
C28—O4—H4O106.1 (14)C16—C21—C20122.4 (2)
C8—N1—O1128.88 (16)C16—C21—H21118.8
C8—N1—C1109.39 (14)C20—C21—H21118.8
O1—N1—C1121.73 (14)C27—C22—C23124.02 (19)
O3—N2—C29128.03 (17)C27—C22—N2106.63 (15)
O3—N2—C22118.08 (14)C23—C22—N2129.34 (16)
C29—N2—C22113.89 (13)C24—C23—C22117.77 (19)
C2—C1—C6123.80 (19)C24—C23—H23121.1
C2—C1—N1125.66 (18)C22—C23—H23121.1
C6—C1—N1110.54 (14)C25—C24—C23119.37 (19)
C1—C2—C3114.6 (2)C25—C24—H24120.3
C1—C2—H2122.7C23—C24—H24120.3
C3—C2—H2122.7C24—C25—C26121.8 (2)
C2—C3—C4122.57 (18)C24—C25—H25119.1
C2—C3—H3118.7C26—C25—H25119.1
C4—C3—H3118.7C27—C26—C25119.44 (19)
C5—C4—C3121.1 (2)C27—C26—H26120.3
C5—C4—H4119.5C25—C26—H26120.3
C3—C4—H4119.5C22—C27—C26117.58 (17)
C4—C5—C6116.65 (19)C22—C27—C28109.74 (15)
C4—C5—H5121.7C26—C27—C28132.67 (16)
C6—C5—H5121.7O4—C28—C29114.21 (14)
C5—C6—C1121.32 (16)O4—C28—C36105.78 (13)
C5—C6—C7130.23 (16)C29—C28—C36109.38 (14)
C1—C6—C7108.35 (15)O4—C28—C27111.76 (14)
O2—C7—C6114.25 (13)C29—C28—C27102.27 (13)
O2—C7—C8111.51 (13)C36—C28—C27113.64 (15)
C6—C7—C8101.63 (12)N2—C29—C30127.86 (15)
O2—C7—C15107.19 (12)N2—C29—C28107.32 (15)
C6—C7—C15108.21 (14)C30—C29—C28124.79 (14)
C8—C7—C15114.13 (13)C35—C30—C31116.51 (18)
N1—C8—C9123.70 (15)C35—C30—C29122.62 (17)
N1—C8—C7109.85 (14)C31—C30—C29120.87 (15)
C9—C8—C7126.41 (13)C32—C31—C30122.72 (18)
C14—C9—C10118.79 (17)C32—C31—H31118.6
C14—C9—C8117.56 (15)C30—C31—H31118.6
C10—C9—C8123.64 (16)C33—C32—C31119.9 (2)
C11—C10—C9120.11 (19)C33—C32—H32120.0
C11—C10—H10119.9C31—C32—H32120.0
C9—C10—H10119.9C32—C33—C34118.2 (2)
C12—C11—C10119.8 (2)C32—C33—H33120.9
C12—C11—H11120.1C34—C33—H33120.9
C10—C11—H11120.1C33—C34—C35122.91 (19)
C11—C12—C13121.3 (2)C33—C34—H34118.5
C11—C12—H12119.3C35—C34—H34118.5
C13—C12—H12119.3C30—C35—C34119.7 (2)
C14—C13—C12120.0 (2)C30—C35—H35120.1
C14—C13—H13120.0C34—C35—H35120.1
C12—C13—H13120.0C37—C36—C28113.77 (14)
C13—C14—C9119.97 (19)C37—C36—H361108.8
C13—C14—H14120.0C28—C36—H361108.8
C9—C14—H14120.0C37—C36—H362108.8
C16—C15—C7115.08 (13)C28—C36—H362108.8
C16—C15—H151108.5H361—C36—H362107.7
C7—C15—H151108.5C38—C37—C42117.8 (3)
C16—C15—H152108.5C38—C37—C36119.2 (2)
C7—C15—H152108.5C42—C37—C36122.99 (19)
H151—C15—H152107.5C37—C38—C39118.7 (3)
C17—C16—C21116.76 (19)C37—C38—H38120.7
C17—C16—C15120.24 (18)C39—C38—H38120.7
C21—C16—C15123.00 (18)C40—C39—C38121.7 (3)
C16—C17—C18120.4 (2)C40—C39—H39119.1
C16—C17—H17119.8C38—C39—H39119.1
C18—C17—H17119.8C41—C40—C39119.5 (3)
C19—C18—C17122.5 (3)C41—C40—H40120.2
C19—C18—H18118.7C39—C40—H40120.2
C17—C18—H18118.7C40—C41—C42119.5 (3)
C20—C19—C18118.1 (2)C40—C41—H41120.3
C20—C19—H19120.9C42—C41—H41120.3
C18—C19—H19120.9C41—C42—C37122.8 (3)
C19—C20—C21119.8 (3)C41—C42—H42118.6
C19—C20—H20120.1C37—C42—H42118.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.192.817 (3)124
C14—H14···O20.932.342.996 (2)127
C31—H31···O40.932.473.107 (2)126
C35—H35···O30.932.372.989 (3)124
C11—H11···O40.932.483.404 (3)175
O2—H2O···O1i0.90 (2)1.88 (2)2.769 (2)174 (2)
O4—H4O···O3ii0.98 (2)1.82 (2)2.793 (2)178 (2)
C24—H24···O1ii0.932.483.310 (3)148
C3—H3···O3iii0.932.463.327 (3)154
C34—H34···O2iv0.932.493.415 (3)176
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H17NO2
Mr315.36
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)11.635 (2), 11.971 (2), 12.063 (3)
α, β, γ (°)84.773 (5), 88.882 (6), 88.635 (6)
V3)1672.5 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.26 × 0.24 × 0.18
Data collection
DiffractometerSiemens AED
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6045, 6045, 5126
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.162, 1.05
No. of reflections6045
No. of parameters442
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.192.817 (3)124
C14—H14···O20.932.342.996 (2)127
C31—H31···O40.932.473.107 (2)126
C35—H35···O30.932.372.989 (3)124
C11—H11···O40.932.483.404 (3)175
O2—H2O···O1i0.90 (2)1.88 (2)2.769 (2)174 (2)
O4—H4O···O3ii0.98 (2)1.82 (2)2.793 (2)178 (2)
C24—H24···O1ii0.932.483.310 (3)148
C3—H3···O3iii0.932.463.327 (3)154
C34—H34···O2iv0.932.493.415 (3)176
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z.
 

Acknowledgements

Financial support from the Universitá Politecnica delle Marche and the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationAli, S. A. & Wazeer, M. I. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 597–605.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAstolfi, P., Bruni, P., Greci, L., Stipa, P., Righi, L. & Rizzoli, C. (2003). Eur. J. Org. Chem. pp. 2626–2634.  Web of Science CSD CrossRef Google Scholar
First citationBalasubramanian, N. (1985). Org. Prep. Proced. Int. 17, 23–47.  CrossRef CAS Google Scholar
First citationBelletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.  Google Scholar
First citationBernotas, R. C., Sabol, J. S., Sing, L. & Friedrich, D. (1999). Synlett, 5, 653–655.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBond, C. C. & Hooper, M. (1974). Synthesis, p. 443.  CrossRef Google Scholar
First citationBruni, P., Giorgini, E., Tommasi, G. & Greci, L. (1998). Tetrahedron, 54, 5305–5314.  Web of Science CrossRef CAS Google Scholar
First citationChiacchio, U., Saita, M. G., Crispino, L., Gumina, G., Mangiafico, S., Pistara, V., Romeo, G., Piperno, A. & De Clercq, E. (2006). Tetrahedron, 62, 1171–1181.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGreci, L., Tommasi, G., Bruni, P., Sgarabotto, P. & Righi, L. (2001). Eur. J. Org. Chem. pp. 3147–3153.  CrossRef Google Scholar
First citationJanzen, E. G. (1971). Acc. Chem. Res. 4, 31–40.  CrossRef CAS Web of Science Google Scholar
First citationJones, R. C. F., Martin, J. N. & Smith, P. (2000). Synlett, 7, 967–970.  Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationMerino, P. (2005). Compt. Rend. Chim. 8, 775–788.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPisaneschi, F., Della Monica, C., Cordero, F. M. & Brandi, A. (2002). Tetrahedron Lett. 43, 5711–5714.  Web of Science CrossRef CAS Google Scholar
First citationRevuelta, J., Cicchi, S., de Maijere, A. & Brandi, A. (2008). Eur. J. Org. Chem. pp. 1085–1091.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTommasi, G., Bruni, P., Greci, L., Sgarabotto, P. & Righi, L. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 681–686.  Web of Science CSD CrossRef Google Scholar
First citationYamada, F., Kawanishi, A., Tomita, A. & Somei, M. (2003). Arkivoc, viii, 102–111.  CrossRef Google Scholar
First citationZubarev, V. E. (1979). Russ. Chem. Rev. 48, 1361–1392.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds