metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(4-cyano­pyridine)­palladium(II) bis­­(tri­fluoro­methane­sulfonate)

aDepartment of Chemistry, University of the Incarnate Word, San Antonio, TX 78209, USA, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cDepartment of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 July 2010; accepted 13 July 2010; online 17 July 2010)

The title salt, [Pd(C6H4N2)4](CF3SO3)2, comprises Pd(4-cyano­pyridine)4 dications balanced by two trifluoro­methane­sulfonate anions. The PdII atom lies in a square-planar geometry defined by four N atoms which form equivalent Pd—N inter­actions. The 4-cyano­pyridine ligands are twisted out of the N4 plane, forming dihedral angles ranging from 66.5 (2) to 89.9 (2)°. In the crystal packing, columns of edge-to-edge dications define channels in which reside the anions. A range of C—H⋯N and C—H⋯O hydrogen-bonding interactions stabilizes the crystal packing.

Related literature

For related palladium(II) complexes with 4-cyano­pyridine, see: Kopylovich et al. (2009[Kopylovich, M. N., Lasri, J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 3074-3084.]); Lang et al. (2006[Lang, H., Taher, D., Walfort, B. & Pritzkow, H. (2006). J. Organomet. Chem. 691, 3834-3845.]); Taher et al. (2006[Taher, D., Walfort, B. & Lang, H. (2006). Inorg. Chim. Acta, 359, 1899-1906.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C6H4N2)4](CF3O3S)2

  • Mr = 820.99

  • Monoclinic, P 21 /c

  • a = 18.550 (4) Å

  • b = 9.2993 (19) Å

  • c = 20.688 (4) Å

  • β = 114.55 (3)°

  • V = 3246.1 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 153 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.829, Tmax = 1.000

  • 12799 measured reflections

  • 5478 independent reflections

  • 5000 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.14

  • 5478 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

Pd—N1 2.027 (4)
Pd—N3 2.031 (4)
Pd—N5 2.029 (4)
Pd—N7 2.027 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N8i 0.95 2.56 3.489 (8) 166
C5—H5⋯O2 0.95 2.44 3.159 (6) 132
C7—H7⋯O5ii 0.95 2.52 3.202 (6) 129
C8—H8⋯N6iii 0.95 2.53 3.441 (8) 160
C13—H13⋯O5ii 0.95 2.33 3.134 (7) 141
C16—H16⋯N6iv 0.95 2.61 3.403 (8) 142
C22—H22⋯O3v 0.95 2.52 3.170 (7) 126
C23—H23⋯O2 0.95 2.34 3.163 (7) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

While studying the palladium-catalyzed hydration of nitriles, we sought to crystallize palladium(II) complexes with 4-cyanopyridine, similar to those created by Kopylovich et al. (2009), Lang et al. (2006) and Taher et al. (2006). The resulting yellow crystals that formed, (I), were found not to contain any ethylenediamine, but contained a palladium(II) center where the inner coordination sphere is occupied by 4-cyanopyridine ligands.

The molecular structure of (I) comprises a Pd(4-cyanopyridine)4 dication, Fig. 1, and two trifluoromethanesulfonate anions. The palladium atom lies in a square planar geometry defined by four pyridine-N atoms which form experimentally equivalent Pd–N bond distances, Table 1. The palladium atom lies in the least-squares plane through the N4 donor set with the r.m.s. deviation for the PdN4 atoms being 0.021 Å. For steric reasons, each of the 4-cyanopyridine molecules is twisted with respect to the N4 plane, forming dihedral angles with it of 72.21 (19), 66.5 (2), 80.1 (2), and 89.9 (2) ° for the N1-, N3-, N5-, and N7-pyridine rings, respectively.

In the crystal packing, molecules self-assemble into layers in the ab plane via CH···Ncyano and C–H···O interactions, Table 2. The resulting 2-D array, Fig. 2, can be described as comprising rows of edge-to-edge complex dications that define channels in which reside the anions, Fig. 3.

Related literature top

For related palladium(II) complexes with 4-cyanopyridine, see: Kopylovich et al. (2009); Lang et al. (2006); Taher et al. (2006).

Experimental top

Pd(ethylenediamine)(trifluoromethanesulfonate)2 was prepared by adding solid Ag(trifluoromethanesulfonate) to an aqueous solution of Pd(ethylenediamine)Cl2 (0.050 g, 0.21 mmol). After stirring for 1 h, the mixture was filtered to remove AgCl. 4-Cyanopyridine (0.090 g, 0.85 mmol) was added to the Pd(ethylenediamine)(trifluoromethanesulfonate)2 solution and heated at 323 K for 2 h. The solution was then allowed to evaporate at room temperature, yielding a yellow solid. X-ray diffraction quality crystals were obtained by vapor diffusion of diethyl ether over a CH3CN solution of the title complex, (I). (0.026 g, 15% yield). IR (cm-1, solid): ν(CH) 3112 (w), 3083(w), 3022(w); ν(CN) 2244 (w); νs(CF3) 1220 (s), νs(SO3) 1028 (s). M.pt.: 498 K (dec.) with melting at 523 K.

Refinement top

The H-atoms were included in the refinement in the riding model approximation (C–H = 0.95 Å) with Uiso(H) set to 1.2Ueq(carrier atom). The maximum and minimum residual electron density peaks of 1.05 and 0.74 e Å-3, respectively, were located 0.71 Å and 0.63 Å from the C11 and S1 atoms, respectively.

Structure description top

While studying the palladium-catalyzed hydration of nitriles, we sought to crystallize palladium(II) complexes with 4-cyanopyridine, similar to those created by Kopylovich et al. (2009), Lang et al. (2006) and Taher et al. (2006). The resulting yellow crystals that formed, (I), were found not to contain any ethylenediamine, but contained a palladium(II) center where the inner coordination sphere is occupied by 4-cyanopyridine ligands.

The molecular structure of (I) comprises a Pd(4-cyanopyridine)4 dication, Fig. 1, and two trifluoromethanesulfonate anions. The palladium atom lies in a square planar geometry defined by four pyridine-N atoms which form experimentally equivalent Pd–N bond distances, Table 1. The palladium atom lies in the least-squares plane through the N4 donor set with the r.m.s. deviation for the PdN4 atoms being 0.021 Å. For steric reasons, each of the 4-cyanopyridine molecules is twisted with respect to the N4 plane, forming dihedral angles with it of 72.21 (19), 66.5 (2), 80.1 (2), and 89.9 (2) ° for the N1-, N3-, N5-, and N7-pyridine rings, respectively.

In the crystal packing, molecules self-assemble into layers in the ab plane via CH···Ncyano and C–H···O interactions, Table 2. The resulting 2-D array, Fig. 2, can be described as comprising rows of edge-to-edge complex dications that define channels in which reside the anions, Fig. 3.

For related palladium(II) complexes with 4-cyanopyridine, see: Kopylovich et al. (2009); Lang et al. (2006); Taher et al. (2006).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular 2-D array (I) mediated by C–H···N and C–H···O contacts (blue and orange dashed lines, respectively). Colour code: Pd, orange; S, yellow; O, red; N, blue; C, grey; H, green.
[Figure 3] Fig. 3. Stacking of layers in (I), highlighting the formation of channels by the dications in which reside the anions. The C–H···N and C–H···O contacts are shown as blue and orange dashed lines, respectively. Colour code: Pd, orange; S, yellow; O, red; N, blue; C, grey; H, green.
Tetrakis(4-cyanopyridine)palladium(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Pd(C6H4N2)4](CF3O3S)2F(000) = 1632
Mr = 820.99Dx = 1.680 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4545 reflections
a = 18.550 (4) Åθ = 2.4–26.7°
b = 9.2993 (19) ŵ = 0.79 mm1
c = 20.688 (4) ÅT = 153 K
β = 114.55 (3)°Block, pale-yellow
V = 3246.1 (14) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5478 independent reflections
Radiation source: fine-focus sealed tube5000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2220
Tmin = 0.829, Tmax = 1.000k = 911
12799 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0534P)2 + 6.3187P]
where P = (Fo2 + 2Fc2)/3
5478 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Pd(C6H4N2)4](CF3O3S)2V = 3246.1 (14) Å3
Mr = 820.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.550 (4) ŵ = 0.79 mm1
b = 9.2993 (19) ÅT = 153 K
c = 20.688 (4) Å0.20 × 0.20 × 0.20 mm
β = 114.55 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5478 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5000 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1.000Rint = 0.035
12799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.14Δρmax = 1.05 e Å3
5478 reflectionsΔρmin = 0.74 e Å3
442 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.254695 (18)0.02757 (4)0.766848 (17)0.02851 (14)
S10.39867 (7)0.39076 (14)0.77597 (7)0.0421 (3)
S20.11861 (7)0.66442 (14)0.77812 (7)0.0384 (3)
F10.3763 (3)0.3677 (5)0.6440 (2)0.0951 (14)
F20.4595 (3)0.5294 (4)0.7007 (3)0.0944 (14)
F30.4938 (3)0.3095 (5)0.7191 (2)0.0874 (13)
F40.03138 (19)0.7372 (4)0.7237 (2)0.0733 (10)
F50.0103 (2)0.5195 (4)0.7061 (3)0.0954 (15)
F60.0144 (2)0.6830 (5)0.64715 (19)0.0856 (12)
O10.3355 (2)0.4938 (4)0.7542 (2)0.0559 (10)
O20.3714 (2)0.2450 (4)0.7711 (2)0.0571 (10)
O30.4674 (2)0.4248 (5)0.8390 (2)0.0701 (13)
O40.1119 (2)0.6364 (5)0.8435 (2)0.0661 (12)
O50.1394 (2)0.8100 (4)0.7697 (2)0.0499 (9)
O60.1616 (2)0.5589 (4)0.7574 (2)0.0545 (10)
N10.3470 (2)0.0809 (4)0.84066 (18)0.0300 (8)
N20.5954 (3)0.3914 (7)1.0098 (3)0.0771 (17)
N30.2329 (2)0.1341 (4)0.84253 (19)0.0306 (8)
N40.1540 (3)0.4235 (6)1.0271 (3)0.0672 (14)
N50.1614 (2)0.1304 (4)0.69095 (19)0.0316 (8)
N60.0892 (3)0.4022 (6)0.4987 (3)0.0653 (14)
N70.2771 (2)0.0774 (4)0.69126 (19)0.0318 (8)
N80.3503 (3)0.3732 (6)0.5062 (2)0.0570 (12)
C10.3401 (3)0.2230 (5)0.8488 (2)0.0354 (10)
H10.29050.26820.82300.042*
C20.4029 (3)0.3051 (5)0.8936 (2)0.0392 (11)
H20.39660.40520.89880.047*
C30.4752 (3)0.2391 (6)0.9307 (2)0.0380 (11)
C40.4820 (3)0.0920 (6)0.9233 (2)0.0405 (11)
H40.53100.04440.94900.049*
C50.4169 (3)0.0165 (5)0.8782 (2)0.0349 (10)
H50.42150.08430.87350.042*
C60.5424 (3)0.3230 (6)0.9757 (3)0.0501 (13)
C70.2062 (3)0.0623 (6)0.8847 (2)0.0399 (11)
H70.20070.03920.88040.048*
C80.1865 (3)0.1317 (6)0.9340 (3)0.0437 (12)
H80.16790.07930.96340.052*
C90.1945 (3)0.2796 (5)0.9396 (2)0.0360 (11)
C100.2225 (3)0.3537 (5)0.8974 (2)0.0374 (11)
H100.22880.45520.90110.045*
C110.2414 (3)0.2758 (5)0.8491 (2)0.0364 (11)
H110.26100.32580.81970.044*
C120.1719 (3)0.3602 (6)0.9892 (3)0.0493 (13)
C130.0912 (3)0.0632 (6)0.6598 (3)0.0390 (11)
H130.08690.03320.67310.047*
C140.0258 (3)0.1282 (6)0.6098 (3)0.0419 (12)
H140.02300.07790.58820.050*
C150.0324 (3)0.2699 (6)0.5912 (2)0.0424 (12)
C160.1042 (3)0.3394 (6)0.6227 (3)0.0460 (12)
H160.10960.43600.61050.055*
C170.1682 (3)0.2669 (5)0.6723 (2)0.0406 (11)
H170.21790.31420.69380.049*
C180.0355 (3)0.3426 (6)0.5394 (3)0.0514 (14)
C190.2442 (3)0.2063 (5)0.6675 (2)0.0383 (11)
H190.20790.24500.68450.046*
C200.2615 (3)0.2836 (6)0.6192 (3)0.0425 (12)
H200.23770.37460.60280.051*
C210.3145 (3)0.2260 (5)0.5948 (2)0.0370 (11)
C220.3479 (3)0.0935 (6)0.6189 (3)0.0453 (12)
H220.38390.05190.60240.054*
C230.3278 (3)0.0227 (6)0.6675 (3)0.0426 (12)
H230.35090.06840.68470.051*
C240.3344 (3)0.3078 (6)0.5450 (3)0.0462 (13)
C250.4345 (4)0.4002 (7)0.7071 (4)0.0596 (16)
C260.0176 (3)0.6496 (6)0.7111 (3)0.0548 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0277 (2)0.0264 (2)0.0324 (2)0.00416 (13)0.01340 (16)0.00318 (13)
S10.0410 (7)0.0374 (7)0.0541 (7)0.0029 (6)0.0259 (6)0.0035 (6)
S20.0339 (6)0.0349 (7)0.0495 (7)0.0020 (5)0.0202 (5)0.0073 (5)
F10.120 (4)0.117 (4)0.054 (2)0.012 (3)0.042 (2)0.002 (2)
F20.125 (4)0.060 (3)0.141 (4)0.020 (2)0.098 (3)0.008 (2)
F30.105 (3)0.089 (3)0.106 (3)0.034 (3)0.081 (3)0.019 (2)
F40.0419 (18)0.072 (3)0.097 (3)0.0145 (18)0.0206 (18)0.004 (2)
F50.059 (2)0.055 (2)0.155 (4)0.0209 (19)0.027 (3)0.007 (2)
F60.069 (2)0.119 (4)0.053 (2)0.011 (2)0.0098 (18)0.002 (2)
O10.051 (2)0.045 (2)0.075 (3)0.0109 (18)0.029 (2)0.0001 (19)
O20.072 (3)0.038 (2)0.078 (3)0.0120 (19)0.048 (2)0.0012 (19)
O30.045 (2)0.097 (4)0.063 (3)0.002 (2)0.017 (2)0.026 (3)
O40.060 (2)0.092 (3)0.060 (2)0.019 (2)0.038 (2)0.026 (2)
O50.041 (2)0.038 (2)0.066 (2)0.0062 (16)0.0177 (18)0.0011 (17)
O60.048 (2)0.048 (2)0.074 (3)0.0121 (18)0.032 (2)0.002 (2)
N10.0284 (19)0.031 (2)0.0310 (19)0.0028 (16)0.0124 (16)0.0009 (16)
N20.047 (3)0.080 (4)0.086 (4)0.017 (3)0.009 (3)0.031 (3)
N30.0274 (18)0.029 (2)0.0354 (19)0.0015 (16)0.0130 (16)0.0055 (16)
N40.080 (4)0.079 (4)0.057 (3)0.001 (3)0.042 (3)0.014 (3)
N50.032 (2)0.029 (2)0.0340 (19)0.0043 (16)0.0146 (16)0.0028 (16)
N60.058 (3)0.064 (3)0.058 (3)0.018 (3)0.007 (3)0.010 (3)
N70.0269 (19)0.033 (2)0.0353 (19)0.0051 (16)0.0123 (16)0.0062 (17)
N80.063 (3)0.065 (3)0.049 (3)0.010 (3)0.030 (2)0.005 (2)
C10.032 (2)0.031 (3)0.041 (2)0.001 (2)0.013 (2)0.002 (2)
C20.043 (3)0.031 (3)0.039 (3)0.007 (2)0.013 (2)0.002 (2)
C30.035 (3)0.045 (3)0.032 (2)0.011 (2)0.012 (2)0.005 (2)
C40.030 (2)0.051 (3)0.038 (3)0.003 (2)0.011 (2)0.000 (2)
C50.039 (3)0.032 (3)0.036 (2)0.001 (2)0.018 (2)0.002 (2)
C60.037 (3)0.055 (4)0.051 (3)0.008 (3)0.011 (2)0.009 (3)
C70.043 (3)0.038 (3)0.040 (3)0.001 (2)0.019 (2)0.004 (2)
C80.049 (3)0.048 (3)0.040 (3)0.005 (2)0.025 (2)0.000 (2)
C90.032 (2)0.046 (3)0.029 (2)0.004 (2)0.0117 (19)0.000 (2)
C100.040 (3)0.033 (3)0.038 (2)0.006 (2)0.016 (2)0.001 (2)
C110.041 (3)0.032 (3)0.041 (3)0.001 (2)0.021 (2)0.006 (2)
C120.052 (3)0.057 (4)0.043 (3)0.001 (3)0.024 (3)0.003 (3)
C130.039 (3)0.038 (3)0.043 (3)0.005 (2)0.019 (2)0.008 (2)
C140.035 (3)0.048 (3)0.043 (3)0.003 (2)0.016 (2)0.005 (2)
C150.044 (3)0.047 (3)0.036 (2)0.017 (2)0.017 (2)0.003 (2)
C160.053 (3)0.031 (3)0.044 (3)0.005 (2)0.009 (2)0.006 (2)
C170.042 (3)0.034 (3)0.039 (3)0.003 (2)0.009 (2)0.001 (2)
C180.051 (3)0.049 (3)0.046 (3)0.015 (3)0.011 (3)0.002 (3)
C190.043 (3)0.038 (3)0.042 (3)0.007 (2)0.026 (2)0.007 (2)
C200.048 (3)0.036 (3)0.046 (3)0.009 (2)0.022 (2)0.007 (2)
C210.036 (2)0.040 (3)0.034 (2)0.010 (2)0.014 (2)0.003 (2)
C220.048 (3)0.044 (3)0.055 (3)0.005 (2)0.032 (3)0.002 (2)
C230.046 (3)0.036 (3)0.055 (3)0.007 (2)0.030 (3)0.005 (2)
C240.049 (3)0.052 (3)0.041 (3)0.008 (3)0.022 (2)0.001 (2)
C250.076 (4)0.044 (4)0.077 (4)0.003 (3)0.050 (4)0.002 (3)
C260.047 (3)0.044 (3)0.073 (4)0.007 (3)0.024 (3)0.002 (3)
Geometric parameters (Å, º) top
Pd—N12.027 (4)C2—H20.9500
Pd—N32.031 (4)C3—C41.388 (7)
Pd—N52.029 (4)C3—C61.437 (7)
Pd—N72.027 (4)C4—C51.373 (7)
S1—O31.430 (4)C4—H40.9500
S1—O11.434 (4)C5—H50.9500
S1—O21.435 (4)C7—C81.377 (7)
S1—C251.808 (6)C7—H70.9500
S2—O41.433 (4)C8—C91.383 (7)
S2—O51.438 (4)C8—H80.9500
S2—O61.439 (4)C9—C101.372 (7)
S2—C261.815 (6)C9—C121.465 (7)
F1—C251.338 (8)C10—C111.392 (6)
F2—C251.313 (7)C10—H100.9500
F3—C251.325 (7)C11—H110.9500
F4—C261.325 (7)C13—C141.366 (7)
F5—C261.304 (7)C13—H130.9500
F6—C261.335 (7)C14—C151.393 (7)
N1—C51.344 (6)C14—H140.9500
N1—C11.345 (6)C15—C161.377 (7)
N2—C61.137 (7)C15—C181.439 (7)
N3—C111.327 (6)C16—C171.379 (7)
N3—C71.346 (6)C16—H160.9500
N4—C121.135 (7)C17—H170.9500
N5—C131.343 (6)C19—C201.373 (7)
N5—C171.347 (6)C19—H190.9500
N6—C181.146 (7)C20—C211.385 (7)
N7—C231.330 (6)C20—H200.9500
N7—C191.342 (6)C21—C221.376 (7)
N8—C241.140 (6)C21—C241.447 (7)
C1—C21.379 (6)C22—C231.377 (7)
C1—H10.9500C22—H220.9500
C2—C31.380 (7)C23—H230.9500
N1—Pd—N787.80 (14)C10—C9—C12118.8 (5)
N1—Pd—N5178.15 (15)C8—C9—C12121.1 (4)
N7—Pd—N590.70 (14)C9—C10—C11118.0 (5)
N1—Pd—N392.21 (14)C9—C10—H10121.0
N7—Pd—N3179.53 (15)C11—C10—H10121.0
N5—Pd—N389.29 (14)N3—C11—C10122.4 (4)
O3—S1—O1116.1 (3)N3—C11—H11118.8
O3—S1—O2115.4 (3)C10—C11—H11118.8
O1—S1—O2113.0 (2)N4—C12—C9179.4 (7)
O3—S1—C25103.2 (3)N5—C13—C14122.4 (5)
O1—S1—C25103.9 (3)N5—C13—H13118.8
O2—S1—C25102.9 (3)C14—C13—H13118.8
O4—S2—O5114.7 (3)C13—C14—C15118.5 (5)
O4—S2—O6115.7 (3)C13—C14—H14120.8
O5—S2—O6113.4 (2)C15—C14—H14120.8
O4—S2—C26103.9 (3)C16—C15—C14119.4 (5)
O5—S2—C26102.8 (2)C16—C15—C18120.5 (5)
O6—S2—C26104.2 (3)C14—C15—C18120.1 (5)
C5—N1—C1119.0 (4)C15—C16—C17119.2 (5)
C5—N1—Pd121.6 (3)C15—C16—H16120.4
C1—N1—Pd119.3 (3)C17—C16—H16120.4
C11—N3—C7119.1 (4)N5—C17—C16121.3 (5)
C11—N3—Pd120.7 (3)N5—C17—H17119.4
C7—N3—Pd120.2 (3)C16—C17—H17119.4
C13—N5—C17119.2 (4)N6—C18—C15179.0 (6)
C13—N5—Pd119.8 (3)N7—C19—C20121.7 (4)
C17—N5—Pd121.0 (3)N7—C19—H19119.1
C23—N7—C19119.3 (4)C20—C19—H19119.1
C23—N7—Pd120.2 (3)C19—C20—C21118.6 (5)
C19—N7—Pd120.4 (3)C19—C20—H20120.7
N1—C1—C2122.0 (4)C21—C20—H20120.7
N1—C1—H1119.0C22—C21—C20119.7 (4)
C2—C1—H1119.0C22—C21—C24121.3 (5)
C1—C2—C3118.8 (5)C20—C21—C24119.1 (5)
C1—C2—H2120.6C21—C22—C23118.3 (5)
C3—C2—H2120.6C21—C22—H22120.8
C2—C3—C4119.2 (4)C23—C22—H22120.8
C2—C3—C6120.0 (5)N7—C23—C22122.3 (5)
C4—C3—C6120.8 (5)N7—C23—H23118.8
C5—C4—C3119.0 (5)C22—C23—H23118.8
C5—C4—H4120.5N8—C24—C21179.4 (6)
C3—C4—H4120.5F2—C25—F3107.5 (5)
N1—C5—C4122.0 (5)F2—C25—F1106.5 (6)
N1—C5—H5119.0F3—C25—F1108.1 (5)
C4—C5—H5119.0F2—C25—S1112.5 (4)
N2—C6—C3178.1 (7)F3—C25—S1111.7 (4)
N3—C7—C8121.9 (5)F1—C25—S1110.2 (4)
N3—C7—H7119.0F5—C26—F4107.6 (5)
C8—C7—H7119.0F5—C26—F6106.6 (5)
C7—C8—C9118.5 (5)F4—C26—F6107.5 (5)
C7—C8—H8120.8F5—C26—S2112.4 (4)
C9—C8—H8120.8F4—C26—S2112.2 (4)
C10—C9—C8120.1 (4)F6—C26—S2110.3 (4)
N7—Pd—N1—C5105.2 (3)Pd—N5—C13—C14178.3 (4)
N3—Pd—N1—C574.3 (3)N5—C13—C14—C150.7 (7)
N7—Pd—N1—C170.1 (3)C13—C14—C15—C160.9 (7)
N3—Pd—N1—C1110.4 (3)C13—C14—C15—C18179.2 (5)
N1—Pd—N3—C11115.5 (4)C14—C15—C16—C170.2 (7)
N5—Pd—N3—C1165.6 (4)C18—C15—C16—C17179.9 (5)
N1—Pd—N3—C767.5 (3)C13—N5—C17—C160.9 (7)
N5—Pd—N3—C7111.5 (3)Pd—N5—C17—C16177.5 (4)
N7—Pd—N5—C1381.3 (3)C15—C16—C17—N50.7 (8)
N3—Pd—N5—C1399.2 (3)C23—N7—C19—C200.1 (7)
N7—Pd—N5—C17100.3 (4)Pd—N7—C19—C20176.4 (4)
N3—Pd—N5—C1779.2 (4)N7—C19—C20—C210.0 (7)
N1—Pd—N7—C2388.8 (4)C19—C20—C21—C220.4 (7)
N5—Pd—N7—C2392.3 (4)C19—C20—C21—C24178.8 (5)
N1—Pd—N7—C1987.7 (4)C20—C21—C22—C230.7 (7)
N5—Pd—N7—C1991.3 (4)C24—C21—C22—C23178.5 (5)
C5—N1—C1—C21.2 (7)C19—N7—C23—C220.2 (7)
Pd—N1—C1—C2174.3 (3)Pd—N7—C23—C22176.7 (4)
N1—C1—C2—C30.5 (7)C21—C22—C23—N70.6 (8)
C1—C2—C3—C41.6 (7)O3—S1—C25—F262.4 (6)
C1—C2—C3—C6177.7 (5)O1—S1—C25—F259.2 (6)
C2—C3—C4—C51.1 (7)O2—S1—C25—F2177.3 (5)
C6—C3—C4—C5178.2 (4)O3—S1—C25—F358.7 (5)
C1—N1—C5—C41.7 (7)O1—S1—C25—F3179.7 (4)
Pd—N1—C5—C4173.6 (3)O2—S1—C25—F361.6 (5)
C3—C4—C5—N10.6 (7)O3—S1—C25—F1178.8 (4)
C11—N3—C7—C80.7 (7)O1—S1—C25—F159.5 (5)
Pd—N3—C7—C8176.3 (4)O2—S1—C25—F158.5 (5)
N3—C7—C8—C90.2 (7)O4—S2—C26—F565.3 (5)
C7—C8—C9—C100.9 (7)O5—S2—C26—F5174.8 (5)
C7—C8—C9—C12177.8 (5)O6—S2—C26—F556.3 (5)
C8—C9—C10—C110.6 (7)O4—S2—C26—F456.1 (5)
C12—C9—C10—C11178.0 (4)O5—S2—C26—F463.8 (5)
C7—N3—C11—C101.0 (7)O6—S2—C26—F4177.7 (4)
Pd—N3—C11—C10176.1 (3)O4—S2—C26—F6175.9 (4)
C9—C10—C11—N30.3 (7)O5—S2—C26—F656.0 (5)
C17—N5—C13—C140.2 (7)O6—S2—C26—F662.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N8i0.952.563.489 (8)166
C5—H5···O20.952.443.159 (6)132
C7—H7···O5ii0.952.523.202 (6)129
C8—H8···N6iii0.952.533.441 (8)160
C13—H13···O5ii0.952.333.134 (7)141
C16—H16···N6iv0.952.613.403 (8)142
C22—H22···O3v0.952.523.170 (7)126
C23—H23···O20.952.343.163 (7)145
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1, z; (iii) x, y1/2, z+3/2; (iv) x, y+1, z+1; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Pd(C6H4N2)4](CF3O3S)2
Mr820.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)18.550 (4), 9.2993 (19), 20.688 (4)
β (°) 114.55 (3)
V3)3246.1 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.829, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12799, 5478, 5000
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.14
No. of reflections5478
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.74

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pd—N12.027 (4)Pd—N52.029 (4)
Pd—N32.031 (4)Pd—N72.027 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N8i0.952.563.489 (8)166
C5—H5···O20.952.443.159 (6)132
C7—H7···O5ii0.952.523.202 (6)129
C8—H8···N6iii0.952.533.441 (8)160
C13—H13···O5ii0.952.333.134 (7)141
C16—H16···N6iv0.952.613.403 (8)142
C22—H22···O3v0.952.523.170 (7)126
C23—H23···O20.952.343.163 (7)145
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1, z; (iii) x, y1/2, z+3/2; (iv) x, y+1, z+1; (v) x+1, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: adrian@uiwtx.edu.

§Additional correspondence author, e-mail: judith.walmsley@utsa.edu.

Acknowledgements

This research was supported by National Institutes of Health grant No. SO6–08194. The authors also appreciate the support of the Chemistry Department at The University of the Incarnate Word.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKopylovich, M. N., Lasri, J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 3074–3084.  Web of Science CSD CrossRef Google Scholar
First citationLang, H., Taher, D., Walfort, B. & Pritzkow, H. (2006). J. Organomet. Chem. 691, 3834–3845.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaher, D., Walfort, B. & Lang, H. (2006). Inorg. Chim. Acta, 359, 1899–1906.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds