organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Xyloccensin L

aEnvironment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Danzhou 571737, People's Republic of China, bKey Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China, and cGovernment Degree College at Amadala Valasa, Srikakulam District, Andhra Pradesh, 532185, India
*Correspondence e-mail: feng8513@sina.com, wwujun2003@yahoo.com

(Received 10 July 2010; accepted 16 July 2010; online 24 July 2010)

The title compound, C32H40O10, also known as xyloccensin L [systematic name: (1R,4aR,4bS,5aR,6aR,9R,10S,10aS,10bR,2aR,13R)-1-(furan-3-yl)-6a-hy­droxy-10-(2-meth­oxy-2-oxoeth­yl)-9,10a,12a-trimethyl-3-oxododeca­hydro-1H,3H,5aH-6,9-methano­isochromeno[6,5-f]oxireno[g]chromen-13-yl (2E)-2-methyl­but-2-enoate], is a limonoid with a C1—C29 oxygen bridge: this is the first report of the X-ray crystal structure of such a limonoid. Two fused pyran rings and two cyclo­hexane rings adopt boat conformations, while another cyclo­hexane ring and the d-lactone ring are in half-chair conformations. The mol­ecular structure is stabilized by intra­molecular O—H⋯O hydrogen bonding.

Related literature

The title compound was isolated from seeds of an Indian mangrove, Xylocarpus moluccensis, collected in the mangrove wetlands of the Godavari estuary, Andhra Pradesh. For previous investigations of the seeds of Xylocarpus granatum and X. moluccensis, see: Kubo et al. (1976[Kubo, I., Miura, I. & Nakanishi, K. (1976). J. Am. Chem. Soc. 98, 6704-6705.]); Ng et al. (1979[Ng, A. S. & Fallis, A. G. (1979). Can. J. Chem. 57, 3088-3089.]); Alvi et al. (1991[Alvi, K. A., Crews, P., Aalbersberg, B., Prasad, R., Simpson, J. & Weavers, R. T. (1991). Tetrahedron, 47, 8943-8948.]); Kokpol et al. (1996[Kokpol, U., Chavasiri, W., Tip-pyang, S., Veerachato, G. & Zhao, F. L. (1996). Phytochemistry, 41, 903-905.]); Mulholland et al. (2000[Mulholland, D. A., Parel, B. & Coombes, P. H. (2000). Curr. Org. Chem. 4, 1011-1054.]). For our group's work in this field, see: Wu et al. (2004a[Wu, J., Xiao, Q., Huang, J.-S., Xiao, Z.-H., Qi, S.-H., Li, Q.-X. & Zhang, S. (2004a). Org. Lett. 6, 1841-1844.],b[Wu, J., Zhang, S., Xiao, Q., Li, Q.-X., Huang, J.-S., Long, L.-J. & Huang, L.-M. (2004b). Tetrahedron Lett. 45, 591-593.], 2005[Wu, J., Xiao, Q., Zhang, S., Li, X., Xiao, Z.-H., Ding, H.-X. & Li, Q.-X. (2005). Tetrahedron, 61, 8382-8389.], 2008a[Wu, J., Zhang, S., Bruhn, T., Xiao, Q., Ding, H.-X. & Bringmann, G. (2008a). Chem. Eur. J. 14, 1129-1144.],b[Wu, J., Xiao, Q., Xu, J., Li, M.-Y., Pan, J.-Y. & Yang, M.-H. (2008b). Nat. Prod. Rep. 25, 955-981.]).

[Scheme 1]

Experimental

Crystal data
  • C32H40O10

  • Mr = 584.64

  • Orthorhombic, P 21 21 21

  • a = 8.3859 (4) Å

  • b = 11.0454 (5) Å

  • c = 31.0799 (13) Å

  • V = 2878.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.46 × 0.44 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.976

  • 14701 measured reflections

  • 3569 independent reflections

  • 3202 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.03

  • 3569 reflections

  • 386 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6 0.84 2.08 2.774 (2) 139

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

Two meliaceous mangroves, Xylocarpus granatum and X. moluccensis, are known for producing antifeedant limonoids, especially mexicanolides and phragmalins. Previous investigations on seeds of these two species, yielded an andirobin, an obacunol, two phragmalins, three gedunins, and 14 mexicanolides, including xyloccensins A-K (Kubo et al., 1976; Ng et al., 1979; Alvi et al., 1991; Kokpol et al., 1996; Mulholland et al., 2000). Previously, we reported the isolation and identification of eight unique 8,9,30-phragmalin ortho esters and 13 limonoids from the bark and seeds of a Chinese mangrove, X. granatum (Wu et al., 2004a, 2005, 2008a). To date, altogether 42 mexicanolides and 23 phragmalins have been isolated from the wood, seeds, and fruits of X. granatum and X. moluccensis (Wu et al., 2008b).

The title compound (I), also known as xyloccensin L (Wu et al., 2004b), was previously isolated from seeds of a Chinese mangrove, X. granatum, which was collected from the Hainan island. As part of our research on bioactive compounds from mangrove plants of the Xylocarpus genus, we obtained the title compound again from seeds of an Indian mangrove, X. moluccensis, collected in the mangrove wetlands of Godavari estuary, Andhra Pradesh. The X-ray crystal structure analysis of (I) was undertaken in order to establish its relative stereochemistry and confirm our previously reported stereostructure (Wu et al., 2004b). Two fused pyran rings, C1/C2/C3/C4/C29/O10 and C1/C10/C5/C4/C29/O10, and two cyclohexane rings, C1/C2/C3/C4/C5/C10 and C8/C9/C11/C12/C13/C14, adopt boat conformations. However, the cyclohexane ring C1/C2/C30/C8/C9/C10 and the d-lactone ring C13/C14/C15/C16/O8/C17 are in half-chair conformations. In the crystal structure, molecules are stabilized by O—H···O intramolecular hydrogen bonds between O1/O6 (Figure 1). The whole shape of the molecule is like a cage. O1 and O10 are at the bottom of the cage, whereas the furan ring and the 3-tigloyl group are on the top of the cage. Molecules are arranged like cages in an alternating bottom-to-bottom and top-to-top fashion along the b axis (Fig. 2).

Related literature top

The title compound was isolated from seeds of an Indian mangrove, Xylocarpus moluccensis, collected in the mangrove wetlands of the Godavari estuary, Andhra Pradesh. For previous investigations of the seeds of Xylocarpus granatum and X. moluccensis, see: Kubo et al. (1976); Ng et al. (1979); Alvi et al. (1991); Kokpol et al. (1996); Mulholland et al. (2000). For our group's work in this field, see: Wu et al. (2004a,b, 2005, 2008a,b).

Experimental top

Dried seeds (8.7 kg) of X. moluccensis were extracted three times with 95% EtOH at room temperature. The extract was concentrated under reduced pressure, followed by suspension in H2O and extraction with EtOAc. The resulting EtOAc extract (198.0 g) was chromatographed on silica gel eluted using a CHCl3-MeOH system (100:0 - 5:1) to yield 127 fractions. Fractions 47 to 62 (66.2 g) were combined and further separated using RP C18 CC (MeCN-H2O, 50:50 - 100:0) to afford 132 subfractions. Then subfractions 13 to 15 were combined and subjected to preparative HPLC [YMC-Pack ODS-5-A, 250×20 mm i.d. (MeOH-H2O, 57 : 43), and 250×10 mm i.d. (MeCN-H2O 43 : 57)] to yield the title compound I (15.0 mg).

Refinement top

All non-hydrogen atoms were refined anisotropically. All the H atoms were placed in geometrically idealized positions (C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C) for methyl groups; C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C) for methylene groups; C—H = 0.95 Å, with Uiso(H) = 1.2Ueq(C) for aromatic rings; C-H = 0.95 Å, with Uiso(H) = 1.2Ueq for alkyne group, O—H = 0.84 Å, with Uiso(H) = 1.5Ueq(O) for hydroxyl group) and constrained to ride on their parent atoms. In the absence of significant anomalous scattering effects 2707 Friedel pairs have been merged.

Structure description top

?

# Following replaced by publCIF - Fri June 27 10:31:02 2010

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

For related literature, see [type here to add references to related literature].

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis.
(1R,4aR,4bS,5aR,6aR,9R, 10S,10aS,10bR,12aR,13R)-1-(furan-3-yl)- 6a-hydroxy-10-(2-methoxy-2-oxoethyl)-9,10a,12a-trimethyl-3-oxododecahydro- 1H,3H,5aH-6,9-methanoisochromeno[6,5- f]oxireno[g]chromen-13-yl (2E)-2-methylbut-2-enoate top
Crystal data top
C32H40O10F(000) = 1248
Mr = 584.64Dx = 1.349 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7947 reflections
a = 8.3859 (4) Åθ = 2.3–27.0°
b = 11.0454 (5) ŵ = 0.10 mm1
c = 31.0799 (13) ÅT = 110 K
V = 2878.8 (2) Å3Block, colorless
Z = 40.46 × 0.44 × 0.25 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3569 independent reflections
Radiation source: fine-focus sealed tube3202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 108
Tmin = 0.956, Tmax = 0.976k = 1114
14701 measured reflectionsl = 3929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.880P]
where P = (Fo2 + 2Fc2)/3
3569 reflections(Δ/σ)max = 0.002
386 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C32H40O10V = 2878.8 (2) Å3
Mr = 584.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3859 (4) ŵ = 0.10 mm1
b = 11.0454 (5) ÅT = 110 K
c = 31.0799 (13) Å0.46 × 0.44 × 0.25 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3569 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3202 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.976Rint = 0.026
14701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.59 e Å3
3569 reflectionsΔρmin = 0.20 e Å3
386 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5981 (3)0.5741 (2)0.22231 (7)0.0195 (4)
C20.7232 (3)0.6275 (2)0.19155 (7)0.0182 (4)
H20.79170.68480.20820.022*
C30.6325 (3)0.7006 (2)0.15695 (7)0.0189 (5)
H30.64220.78890.16350.023*
C40.4563 (3)0.6652 (2)0.15701 (7)0.0179 (4)
C50.4478 (3)0.5242 (2)0.15534 (7)0.0164 (4)
H50.52710.49730.13330.020*
C60.2853 (3)0.4755 (2)0.14117 (7)0.0191 (4)
H6A0.27770.38970.15010.023*
H6B0.20150.52070.15680.023*
C70.2499 (3)0.4829 (2)0.09360 (7)0.0200 (5)
C80.7803 (3)0.4010 (2)0.17338 (7)0.0174 (4)
C90.6201 (3)0.36277 (19)0.19238 (7)0.0172 (4)
H90.64360.32830.22140.021*
C100.5048 (3)0.4712 (2)0.19984 (7)0.0169 (4)
C110.5487 (3)0.2586 (2)0.16552 (7)0.0184 (4)
H11A0.44580.23330.17830.022*
H11B0.52800.28740.13590.022*
C120.6618 (3)0.1505 (2)0.16406 (8)0.0212 (5)
H12A0.62350.09330.14180.025*
H12B0.65740.10840.19210.025*
C130.8391 (3)0.1833 (2)0.15411 (7)0.0187 (5)
C140.8571 (3)0.31658 (19)0.14091 (7)0.0170 (4)
H140.97380.33520.14060.020*
C150.7927 (3)0.3404 (2)0.09497 (7)0.0187 (4)
H15A0.69880.39430.09750.022*
H15B0.87550.38530.07880.022*
C160.7446 (3)0.2319 (2)0.06835 (7)0.0196 (5)
C170.8969 (3)0.1031 (2)0.11665 (7)0.0198 (5)
H170.88060.01730.12590.024*
C180.9417 (3)0.1573 (2)0.19414 (7)0.0252 (5)
H18A1.05080.18570.18910.038*
H18B0.94290.07000.19980.038*
H18C0.89660.19970.21900.038*
C190.3680 (3)0.4315 (2)0.22968 (7)0.0200 (5)
H19A0.40900.42040.25890.030*
H19B0.32300.35510.21930.030*
H19C0.28480.49390.22980.030*
C201.0686 (3)0.1145 (2)0.10408 (8)0.0229 (5)
C211.1915 (3)0.0517 (3)0.12110 (9)0.0388 (7)
H211.18060.00640.14350.047*
C221.1390 (3)0.1892 (2)0.07166 (9)0.0291 (6)
H221.08480.24450.05340.035*
C231.2970 (3)0.1660 (2)0.07200 (10)0.0352 (6)
H231.37310.20340.05360.042*
C280.3676 (3)0.7303 (2)0.12087 (7)0.0227 (5)
H28A0.25250.71920.12460.034*
H28B0.40030.69660.09310.034*
H28C0.39310.81680.12170.034*
C290.3932 (3)0.7090 (2)0.20030 (7)0.0216 (5)
H29A0.38900.79860.20040.026*
H29B0.28340.67830.20460.026*
C300.8289 (3)0.5291 (2)0.17323 (7)0.0186 (4)
H300.90320.55420.14970.022*
C310.3549 (4)0.4634 (3)0.02342 (7)0.0309 (6)
H31A0.27520.40200.01600.046*
H31B0.45550.44500.00880.046*
H31C0.31680.54330.01430.046*
C320.8270 (3)0.7374 (2)0.10287 (7)0.0201 (5)
C330.8800 (3)0.7130 (2)0.05808 (7)0.0217 (5)
C340.8116 (3)0.6249 (2)0.03490 (7)0.0239 (5)
H340.71870.58800.04640.029*
C350.8694 (4)0.5802 (3)0.00750 (8)0.0334 (6)
H35A0.92480.64580.02260.050*
H35B0.77840.55300.02480.050*
H35C0.94300.51240.00300.050*
C361.0232 (3)0.7845 (3)0.04405 (8)0.0308 (6)
H36A1.11970.74880.05650.046*
H36B1.01250.86840.05390.046*
H36C1.03090.78310.01260.046*
O10.6661 (2)0.53802 (16)0.26154 (5)0.0239 (4)
H10.74770.49600.25670.036*
O20.69261 (19)0.67773 (14)0.11384 (5)0.0196 (3)
O30.8976 (2)0.80205 (15)0.12781 (5)0.0266 (4)
O40.1193 (2)0.50008 (15)0.07891 (6)0.0272 (4)
O50.3803 (2)0.46342 (16)0.06975 (5)0.0231 (4)
O60.89406 (19)0.44735 (15)0.20546 (5)0.0208 (3)
O70.6602 (2)0.24246 (16)0.03686 (5)0.0278 (4)
O80.7975 (2)0.12148 (15)0.07864 (5)0.0217 (3)
O91.3317 (2)0.0814 (2)0.10248 (7)0.0412 (5)
O100.4921 (2)0.66853 (14)0.23485 (5)0.0219 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (11)0.0216 (11)0.0137 (9)0.0018 (9)0.0003 (9)0.0023 (8)
C20.0207 (11)0.0168 (10)0.0172 (10)0.0010 (9)0.0009 (9)0.0035 (8)
C30.0237 (11)0.0167 (10)0.0163 (10)0.0004 (9)0.0006 (9)0.0030 (8)
C40.0189 (11)0.0180 (10)0.0167 (10)0.0014 (9)0.0005 (9)0.0022 (8)
C50.0167 (10)0.0174 (10)0.0150 (10)0.0016 (9)0.0001 (8)0.0001 (8)
C60.0177 (11)0.0216 (11)0.0179 (10)0.0006 (9)0.0000 (9)0.0009 (9)
C70.0219 (11)0.0136 (10)0.0246 (11)0.0029 (9)0.0029 (9)0.0004 (9)
C80.0186 (11)0.0183 (10)0.0152 (9)0.0020 (9)0.0009 (9)0.0005 (8)
C90.0182 (10)0.0194 (10)0.0140 (9)0.0011 (9)0.0016 (9)0.0012 (8)
C100.0169 (10)0.0191 (10)0.0147 (10)0.0015 (9)0.0009 (8)0.0006 (8)
C110.0192 (10)0.0170 (10)0.0189 (10)0.0008 (9)0.0026 (8)0.0002 (8)
C120.0242 (12)0.0157 (10)0.0236 (11)0.0002 (9)0.0071 (9)0.0024 (9)
C130.0218 (11)0.0172 (10)0.0172 (10)0.0033 (9)0.0030 (9)0.0024 (8)
C140.0177 (10)0.0163 (10)0.0171 (10)0.0018 (9)0.0013 (8)0.0008 (8)
C150.0216 (11)0.0183 (10)0.0162 (10)0.0027 (9)0.0031 (9)0.0006 (8)
C160.0183 (11)0.0245 (11)0.0161 (10)0.0004 (9)0.0051 (9)0.0001 (9)
C170.0241 (11)0.0160 (10)0.0193 (10)0.0018 (9)0.0013 (9)0.0004 (8)
C180.0308 (13)0.0244 (12)0.0204 (11)0.0066 (10)0.0034 (10)0.0038 (9)
C190.0219 (11)0.0222 (11)0.0160 (10)0.0025 (10)0.0052 (9)0.0004 (8)
C200.0255 (12)0.0209 (11)0.0224 (11)0.0031 (10)0.0015 (9)0.0073 (9)
C210.0335 (15)0.0531 (18)0.0297 (13)0.0206 (14)0.0047 (12)0.0016 (13)
C220.0263 (13)0.0221 (12)0.0388 (14)0.0007 (10)0.0089 (11)0.0014 (10)
C230.0289 (14)0.0248 (13)0.0518 (17)0.0064 (12)0.0125 (12)0.0126 (12)
C280.0245 (12)0.0199 (11)0.0237 (11)0.0046 (10)0.0017 (9)0.0000 (9)
C290.0251 (12)0.0200 (11)0.0198 (11)0.0053 (10)0.0014 (10)0.0025 (9)
C300.0179 (10)0.0200 (10)0.0178 (10)0.0005 (9)0.0009 (9)0.0001 (8)
C310.0377 (14)0.0392 (14)0.0160 (11)0.0076 (13)0.0023 (10)0.0010 (10)
C320.0224 (11)0.0158 (10)0.0220 (11)0.0014 (9)0.0011 (9)0.0047 (9)
C330.0217 (11)0.0227 (11)0.0206 (11)0.0031 (10)0.0000 (9)0.0068 (9)
C340.0254 (12)0.0260 (12)0.0203 (10)0.0061 (10)0.0013 (10)0.0034 (9)
C350.0393 (15)0.0390 (15)0.0220 (12)0.0101 (13)0.0014 (11)0.0037 (11)
C360.0282 (13)0.0383 (14)0.0260 (12)0.0044 (12)0.0022 (11)0.0097 (11)
O10.0276 (9)0.0288 (9)0.0153 (7)0.0019 (8)0.0035 (7)0.0013 (7)
O20.0229 (8)0.0194 (8)0.0165 (7)0.0025 (7)0.0030 (6)0.0014 (6)
O30.0325 (10)0.0221 (8)0.0251 (8)0.0089 (8)0.0013 (8)0.0023 (7)
O40.0222 (9)0.0289 (9)0.0306 (9)0.0016 (7)0.0080 (7)0.0044 (7)
O50.0246 (8)0.0280 (8)0.0169 (7)0.0024 (8)0.0000 (7)0.0037 (7)
O60.0211 (8)0.0215 (8)0.0199 (7)0.0001 (7)0.0042 (7)0.0008 (6)
O70.0291 (9)0.0346 (9)0.0197 (8)0.0046 (8)0.0028 (7)0.0029 (7)
O80.0234 (8)0.0201 (8)0.0216 (8)0.0005 (7)0.0008 (7)0.0035 (6)
O90.0268 (10)0.0582 (14)0.0385 (11)0.0118 (10)0.0020 (9)0.0137 (10)
O100.0281 (9)0.0216 (8)0.0160 (7)0.0040 (7)0.0015 (7)0.0048 (6)
Geometric parameters (Å, º) top
C1—O11.404 (3)C16—O81.336 (3)
C1—O101.424 (3)C17—O81.460 (3)
C1—C21.537 (3)C17—C201.498 (3)
C1—C101.546 (3)C17—H171.0000
C2—C301.514 (3)C18—H18A0.9800
C2—C31.545 (3)C18—H18B0.9800
C2—H21.0000C18—H18C0.9800
C3—O21.454 (3)C19—H19A0.9800
C3—C41.529 (3)C19—H19B0.9800
C3—H31.0000C19—H19C0.9800
C4—C291.525 (3)C20—C211.350 (4)
C4—C281.527 (3)C20—C221.429 (4)
C4—C51.559 (3)C21—O91.351 (4)
C5—C61.530 (3)C21—H210.9500
C5—C101.576 (3)C22—C231.350 (4)
C5—H51.0000C22—H220.9500
C6—C71.510 (3)C23—O91.362 (4)
C6—H6A0.9900C23—H230.9500
C6—H6B0.9900C28—H28A0.9800
C7—O41.202 (3)C28—H28B0.9800
C7—O51.339 (3)C28—H28C0.9800
C8—O61.472 (3)C29—O101.429 (3)
C8—C301.472 (3)C29—H29A0.9900
C8—C141.518 (3)C29—H29B0.9900
C8—C91.527 (3)C30—O61.455 (3)
C9—C111.542 (3)C30—H301.0000
C9—C101.557 (3)C31—O51.455 (3)
C9—H91.0000C31—H31A0.9800
C10—C191.539 (3)C31—H31B0.9800
C11—C121.525 (3)C31—H31C0.9800
C11—H11A0.9900C32—O31.209 (3)
C11—H11B0.9900C32—O21.349 (3)
C12—C131.561 (3)C32—C331.486 (3)
C12—H12A0.9900C33—C341.339 (3)
C12—H12B0.9900C33—C361.503 (3)
C13—C141.536 (3)C34—C351.488 (3)
C13—C181.540 (3)C34—H340.9500
C13—C171.541 (3)C35—H35A0.9800
C14—C151.549 (3)C35—H35B0.9800
C14—H141.0000C35—H35C0.9800
C15—C161.511 (3)C36—H36A0.9800
C15—H15A0.9900C36—H36B0.9800
C15—H15B0.9900C36—H36C0.9800
C16—O71.213 (3)O1—H10.8400
O1—C1—O10102.93 (16)H15A—C15—H15B107.2
O1—C1—C2111.83 (19)O7—C16—O8118.3 (2)
O10—C1—C2108.37 (18)O7—C16—C15121.4 (2)
O1—C1—C10112.88 (18)O8—C16—C15120.26 (19)
O10—C1—C10110.26 (18)O8—C17—C20109.06 (18)
C2—C1—C10110.26 (17)O8—C17—C13110.62 (18)
C30—C2—C1110.99 (18)C20—C17—C13116.84 (19)
C30—C2—C3113.69 (18)O8—C17—H17106.6
C1—C2—C3107.30 (18)C20—C17—H17106.6
C30—C2—H2108.2C13—C17—H17106.6
C1—C2—H2108.2C13—C18—H18A109.5
C3—C2—H2108.2C13—C18—H18B109.5
O2—C3—C4106.98 (17)H18A—C18—H18B109.5
O2—C3—C2112.33 (18)C13—C18—H18C109.5
C4—C3—C2109.95 (18)H18A—C18—H18C109.5
O2—C3—H3109.2H18B—C18—H18C109.5
C4—C3—H3109.2C10—C19—H19A109.5
C2—C3—H3109.2C10—C19—H19B109.5
C29—C4—C28109.30 (18)H19A—C19—H19B109.5
C29—C4—C3104.77 (18)C10—C19—H19C109.5
C28—C4—C3110.43 (19)H19A—C19—H19C109.5
C29—C4—C5109.33 (18)H19B—C19—H19C109.5
C28—C4—C5115.08 (18)C21—C20—C22105.0 (2)
C3—C4—C5107.43 (18)C21—C20—C17126.1 (2)
C6—C5—C4113.65 (19)C22—C20—C17129.0 (2)
C6—C5—C10113.09 (18)C20—C21—O9111.8 (3)
C4—C5—C10109.14 (18)C20—C21—H21124.1
C6—C5—H5106.8O9—C21—H21124.1
C4—C5—H5106.8C23—C22—C20106.9 (3)
C10—C5—H5106.8C23—C22—H22126.6
C7—C6—C5115.98 (19)C20—C22—H22126.6
C7—C6—H6A108.3C22—C23—O9110.2 (3)
C5—C6—H6A108.3C22—C23—H23124.9
C7—C6—H6B108.3O9—C23—H23124.9
C5—C6—H6B108.3C4—C28—H28A109.5
H6A—C6—H6B107.4C4—C28—H28B109.5
O4—C7—O5124.0 (2)H28A—C28—H28B109.5
O4—C7—C6124.0 (2)C4—C28—H28C109.5
O5—C7—C6111.90 (19)H28A—C28—H28C109.5
O6—C8—C3059.23 (13)H28B—C28—H28C109.5
O6—C8—C14112.87 (18)O10—C29—C4111.23 (18)
C30—C8—C14118.07 (19)O10—C29—H29A109.4
O6—C8—C9113.87 (17)C4—C29—H29A109.4
C30—C8—C9120.70 (19)O10—C29—H29B109.4
C14—C8—C9117.45 (18)C4—C29—H29B109.4
C8—C9—C11109.77 (17)H29A—C29—H29B108.0
C8—C9—C10113.02 (18)O6—C30—C860.37 (14)
C11—C9—C10114.46 (18)O6—C30—C2113.99 (18)
C8—C9—H9106.3C8—C30—C2121.8 (2)
C11—C9—H9106.3O6—C30—H30116.2
C10—C9—H9106.3C8—C30—H30116.2
C19—C10—C1108.32 (17)C2—C30—H30116.2
C19—C10—C9109.48 (18)O5—C31—H31A109.5
C1—C10—C9108.61 (17)O5—C31—H31B109.5
C19—C10—C5114.11 (18)H31A—C31—H31B109.5
C1—C10—C5106.07 (17)O5—C31—H31C109.5
C9—C10—C5110.08 (17)H31A—C31—H31C109.5
C12—C11—C9111.02 (19)H31B—C31—H31C109.5
C12—C11—H11A109.4O3—C32—O2122.4 (2)
C9—C11—H11A109.4O3—C32—C33124.2 (2)
C12—C11—H11B109.4O2—C32—C33113.45 (19)
C9—C11—H11B109.4C34—C33—C32120.5 (2)
H11A—C11—H11B108.0C34—C33—C36124.6 (2)
C11—C12—C13114.63 (18)C32—C33—C36114.5 (2)
C11—C12—H12A108.6C33—C34—C35125.3 (2)
C13—C12—H12A108.6C33—C34—H34117.3
C11—C12—H12B108.6C35—C34—H34117.3
C13—C12—H12B108.6C34—C35—H35A109.5
H12A—C12—H12B107.6C34—C35—H35B109.5
C14—C13—C18109.84 (19)H35A—C35—H35B109.5
C14—C13—C17108.53 (17)C34—C35—H35C109.5
C18—C13—C17109.13 (18)H35A—C35—H35C109.5
C14—C13—C12111.65 (18)H35B—C35—H35C109.5
C18—C13—C12109.20 (18)C33—C36—H36A109.5
C17—C13—C12108.44 (19)C33—C36—H36B109.5
C8—C14—C13111.67 (17)H36A—C36—H36B109.5
C8—C14—C15111.12 (18)C33—C36—H36C109.5
C13—C14—C15112.00 (18)H36A—C36—H36C109.5
C8—C14—H14107.2H36B—C36—H36C109.5
C13—C14—H14107.2C1—O1—H1109.5
C15—C14—H14107.2C32—O2—C3115.97 (17)
C16—C15—C14117.57 (18)C7—O5—C31115.3 (2)
C16—C15—H15A107.9C30—O6—C860.40 (13)
C14—C15—H15A107.9C16—O8—C17120.65 (17)
C16—C15—H15B107.9C21—O9—C23106.2 (2)
C14—C15—H15B107.9C1—O10—C29112.70 (15)
O1—C1—C2—C3073.3 (2)C9—C8—C14—C1585.2 (2)
O10—C1—C2—C30173.89 (17)C18—C13—C14—C869.2 (2)
C10—C1—C2—C3053.1 (2)C17—C13—C14—C8171.59 (18)
O1—C1—C2—C3161.90 (17)C12—C13—C14—C852.1 (2)
O10—C1—C2—C349.1 (2)C18—C13—C14—C15165.47 (18)
C10—C1—C2—C371.6 (2)C17—C13—C14—C1546.2 (2)
C30—C2—C3—O212.4 (3)C12—C13—C14—C1573.2 (2)
C1—C2—C3—O2135.55 (18)C8—C14—C15—C16133.7 (2)
C30—C2—C3—C4106.6 (2)C13—C14—C15—C168.0 (3)
C1—C2—C3—C416.5 (2)C14—C15—C16—O7162.6 (2)
O2—C3—C4—C29171.39 (17)C14—C15—C16—O818.8 (3)
C2—C3—C4—C2966.4 (2)C14—C13—C17—O862.9 (2)
O2—C3—C4—C2853.8 (2)C18—C13—C17—O8177.45 (18)
C2—C3—C4—C28176.06 (17)C12—C13—C17—O858.6 (2)
O2—C3—C4—C572.4 (2)C14—C13—C17—C2062.7 (3)
C2—C3—C4—C549.8 (2)C18—C13—C17—C2057.0 (3)
C29—C4—C5—C685.0 (2)C12—C13—C17—C20175.86 (19)
C28—C4—C5—C638.5 (3)O8—C17—C20—C21145.8 (2)
C3—C4—C5—C6161.87 (17)C13—C17—C20—C2187.9 (3)
C29—C4—C5—C1042.3 (2)O8—C17—C20—C2232.4 (3)
C28—C4—C5—C10165.69 (18)C13—C17—C20—C2293.9 (3)
C3—C4—C5—C1070.9 (2)C22—C20—C21—O90.6 (3)
C4—C5—C6—C776.8 (2)C17—C20—C21—O9179.2 (2)
C10—C5—C6—C7158.06 (19)C21—C20—C22—C230.4 (3)
C5—C6—C7—O4146.4 (2)C17—C20—C22—C23178.9 (2)
C5—C6—C7—O536.0 (3)C20—C22—C23—O90.1 (3)
O6—C8—C9—C11149.39 (18)C28—C4—C29—O10168.90 (19)
C30—C8—C9—C11143.4 (2)C3—C4—C29—O1050.6 (2)
C14—C8—C9—C1114.3 (3)C5—C4—C29—O1064.3 (2)
O6—C8—C9—C1081.5 (2)C14—C8—C30—O6101.3 (2)
C30—C8—C9—C1014.3 (3)C9—C8—C30—O6101.2 (2)
C14—C8—C9—C10143.36 (19)O6—C8—C30—C2101.4 (2)
O1—C1—C10—C1961.0 (2)C14—C8—C30—C2157.3 (2)
O10—C1—C10—C1953.5 (2)C9—C8—C30—C20.2 (3)
C2—C1—C10—C19173.09 (18)C1—C2—C30—O649.4 (2)
O1—C1—C10—C957.8 (2)C3—C2—C30—O6170.44 (17)
O10—C1—C10—C9172.29 (16)C1—C2—C30—C819.5 (3)
C2—C1—C10—C968.1 (2)C3—C2—C30—C8101.6 (2)
O1—C1—C10—C5176.07 (18)O3—C32—C33—C34168.5 (2)
O10—C1—C10—C569.4 (2)O2—C32—C33—C3410.0 (3)
C2—C1—C10—C550.2 (2)O3—C32—C33—C365.3 (3)
C8—C9—C10—C19164.78 (18)O2—C32—C33—C36176.15 (19)
C11—C9—C10—C1968.6 (2)C32—C33—C34—C35170.6 (2)
C8—C9—C10—C146.7 (2)C36—C33—C34—C352.6 (4)
C11—C9—C10—C1173.34 (17)O3—C32—O2—C33.1 (3)
C8—C9—C10—C569.0 (2)C33—C32—O2—C3178.40 (18)
C11—C9—C10—C557.6 (2)C4—C3—O2—C32159.42 (17)
C6—C5—C10—C1926.6 (3)C2—C3—O2—C3279.9 (2)
C4—C5—C10—C19101.0 (2)O4—C7—O5—C310.4 (3)
C6—C5—C10—C1145.73 (18)C6—C7—O5—C31177.3 (2)
C4—C5—C10—C118.2 (2)C2—C30—O6—C8114.2 (2)
C6—C5—C10—C997.0 (2)C14—C8—O6—C30110.1 (2)
C4—C5—C10—C9135.48 (19)C9—C8—O6—C30112.7 (2)
C8—C9—C11—C1258.2 (2)O7—C16—O8—C17178.86 (19)
C10—C9—C11—C12173.53 (17)C15—C16—O8—C172.5 (3)
C9—C11—C12—C1346.5 (3)C20—C17—O8—C1691.0 (2)
C11—C12—C13—C148.9 (3)C13—C17—O8—C1638.8 (3)
C11—C12—C13—C18112.8 (2)C20—C21—O9—C230.6 (3)
C11—C12—C13—C17128.4 (2)C22—C23—O9—C210.3 (3)
O6—C8—C14—C1394.9 (2)O1—C1—O10—C29172.35 (18)
C30—C8—C14—C13161.04 (19)C2—C1—O10—C2969.1 (2)
C9—C8—C14—C1340.7 (3)C10—C1—O10—C2951.7 (2)
O6—C8—C14—C15139.27 (18)C4—C29—O10—C115.1 (3)
C30—C8—C14—C1573.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.842.082.774 (2)139

Experimental details

Crystal data
Chemical formulaC32H40O10
Mr584.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)110
a, b, c (Å)8.3859 (4), 11.0454 (5), 31.0799 (13)
V3)2878.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.44 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.956, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
14701, 3569, 3202
Rint0.026
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.03
No. of reflections3569
No. of parameters386
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.20

Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.842.082.774 (2)139.4
 

Acknowledgements

Financial support of this work by the Important Project of Chinese Academy of Sciences (KSCX2-YW-R-093, KZCX2-YW-216), the National High Technology Research and Development Program of China (863 Program) (2007AA09Z407), the National Natural Science Foundation of China (20772135) and the Research Foundation for Young Talents from the South China Sea Institute of Oceanology, Chinese Academy of Sciences (M-YL SQ200802) is gratefully acknowledged.

References

First citationAlvi, K. A., Crews, P., Aalbersberg, B., Prasad, R., Simpson, J. & Weavers, R. T. (1991). Tetrahedron, 47, 8943–8948.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKokpol, U., Chavasiri, W., Tip-pyang, S., Veerachato, G. & Zhao, F. L. (1996). Phytochemistry, 41, 903–905.  CSD CrossRef CAS Web of Science Google Scholar
First citationKubo, I., Miura, I. & Nakanishi, K. (1976). J. Am. Chem. Soc. 98, 6704–6705.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMulholland, D. A., Parel, B. & Coombes, P. H. (2000). Curr. Org. Chem. 4, 1011–1054.  Web of Science CrossRef CAS Google Scholar
First citationNg, A. S. & Fallis, A. G. (1979). Can. J. Chem. 57, 3088–3089.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Xiao, Q., Huang, J.-S., Xiao, Z.-H., Qi, S.-H., Li, Q.-X. & Zhang, S. (2004a). Org. Lett. 6, 1841–1844.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, J., Xiao, Q., Xu, J., Li, M.-Y., Pan, J.-Y. & Yang, M.-H. (2008b). Nat. Prod. Rep. 25, 955–981.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, J., Xiao, Q., Zhang, S., Li, X., Xiao, Z.-H., Ding, H.-X. & Li, Q.-X. (2005). Tetrahedron, 61, 8382–8389.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J., Zhang, S., Bruhn, T., Xiao, Q., Ding, H.-X. & Bringmann, G. (2008a). Chem. Eur. J. 14, 1129–1144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, J., Zhang, S., Xiao, Q., Li, Q.-X., Huang, J.-S., Long, L.-J. & Huang, L.-M. (2004b). Tetrahedron Lett. 45, 591–593.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds