organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3,3-bis­­(propan-2-yl)thio­urea

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 July 2010; accepted 20 July 2010; online 24 July 2010)

Two independent thio­urea derivatives comprise the asymmetric unit of the title compound, C14H20N2OS. The major difference between the mol­ecules relates to a twist in the relative orientation of the benzene rings [torsion angles = 4.5 (2) and −19.9 (2)° for the two independent mol­ecules]. The thio­carbonyl and carbonyl groups lie to opposite sides of the mol­ecule as there are twists about the central N—S bond [torsion angles = 83.90 (15) and 81.77 (15)°]. Supra­molecular chains extending parallel to [101] with a stepped topology and mediated by N—H⋯O hydrogen bonding feature in the crystal structure. C—H⋯O and C—H⋯π inter­actions are also present.

Related literature

For the biological activity of thio­urea derivatives, see: Venkatachalam et al. (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]); Yuan et al. (2001[Yuan, Y. F., Wang, J. T., Gimeno, M. C., Laguna, A. & Jones, P. G. (2001). Inorg. Chim. Acta, 324, 309-317.]); Zhou et al. (2004[Zhou, W. Q., Li, B. L., Zhu, L. M., Ding, J. G., Yong, Z., Lu, L. & Yang, X. J. (2004). J. Mol. Struct. 690, 145-150.]). For the use of ruthenium(III) complexes of thio­ureas as catalysts, see: Gunasekaran & Karvembru (2010[Gunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun. 13, 952-955.]). For additional structural analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2OS

  • Mr = 264.38

  • Monoclinic, P 21 /n

  • a = 14.8072 (10) Å

  • b = 13.5832 (10) Å

  • c = 14.9168 (11) Å

  • β = 97.635 (1)°

  • V = 2973.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.40 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.990

  • 27965 measured reflections

  • 6833 independent reflections

  • 5254 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.02

  • 6833 reflections

  • 341 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.85 (1) 2.03 (1) 2.8568 (16) 167 (2)
N3—H3⋯O1 0.85 (1) 1.94 (1) 2.7728 (16) 163 (2)
C6—H6⋯O2i 0.95 2.40 3.3306 (18) 166
C10—H10c⋯Cgii 0.98 2.63 3.5714 (18) 160
C25—H25b⋯Cgiii 0.98 2.70 3.5717 (18) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiourea and its derivatives are useful as anti-tumour, anti-fungal, anti-bacterial, insecticidal, herbicidal, pesticidal agents, and plant-growth regulators (Venkatachalam et al., 2004; Yuan et al., 2001; Zhou et al., 2004). N-[Di(alkyl/aryl)carbamothioyl]benzamide derivatives provide immense opportunities for altering electronic and steric effects in its metal complexes. This might help in designing effective catalysts. Ruthenium(III) complexes containing these ligands have recently been used as catalysts for oxidation of alcohols to carbonyl compounds (Gunasekaran et al., 2010). The structure of the title thiourea derivative, (I), was investigated to provide reference data for subsequent studies.

Two independent molecules comprise the asymmetric unit of (I). The first independent molecule, Fig. 1, is virtually super-imposable upon the second, Fig. 2, with the major difference between them being a twist in the benzene rings, Fig. 3. This is quantified by the C2–C1–C7–O1 and C16–C15–C21–O2 torsion angles of 4.5 (2) and -19.9 (2) °, respectively. This is also reflected in the r.m.s. deviation for bond distances and angles of 0.0035 Å and 0.903 °, respectively (Spek, 2009). The molecules are twisted about the central thiourea bond as seen in the C7—N1—C8—S1 and C21—N3—C22—S2 torsion angles of 83.90 (15) and 81.77 (15) °, respectively, indicating that the thiocarbonyl and carbonyl groups lie to opposite sides of the molecule.

The most notable feature in the crystal packing is the formation of supramolecular chains mediated by N–H···O hydrogen bonding, Table 1; chains are reinforced by C–H···O contacts involving the O2 atom, Table 1. The chains comprise alternating pairs of molecules of opposite orientation so that the topology is stepped. Chains aggregate into layers in the ac plane with the primary interactions between them along the b axis being of the type C–H···π, Fig. 5 and Table 1.

Related literature top

For the biological activity of thiourea derivatives, see: Venkatachalam et al. (2004); Yuan et al. (2001); Zhou et al. (2004). For the use of ruthenium(III) complexes of thioureas as catalysts, see: Gunasekaran et al. (2010). For additional structural analysis, see: Spek (2009).

Experimental top

A solution of benzoyl chloride (0.70285 g, 5 mmol) in acetone (50 ml) was added drop wise to a suspension of potassium thiocyanate (0.4859 g, 5 mmol) in anhydrous acetone (50 ml). The reaction mixture was heated under reflux for 45 minutes and then cooled to room temperature. A solution of diisopropyl amine (0.5059 g, 5 mmol) in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered, washed with water and dried in vacuo. Single crystals for X-ray diffraction were grown at room temperature from ethyl acetate solution by the diffusion of diethyl ether vapour. Yield 78%; M. Pt. 383 K; FT—IR (KBr) ν(N—H) 3249, ν(CO) 1651, ν(C S) 1279 cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.86±0.01 Å; their Uiso values were freely refined

Structure description top

Thiourea and its derivatives are useful as anti-tumour, anti-fungal, anti-bacterial, insecticidal, herbicidal, pesticidal agents, and plant-growth regulators (Venkatachalam et al., 2004; Yuan et al., 2001; Zhou et al., 2004). N-[Di(alkyl/aryl)carbamothioyl]benzamide derivatives provide immense opportunities for altering electronic and steric effects in its metal complexes. This might help in designing effective catalysts. Ruthenium(III) complexes containing these ligands have recently been used as catalysts for oxidation of alcohols to carbonyl compounds (Gunasekaran et al., 2010). The structure of the title thiourea derivative, (I), was investigated to provide reference data for subsequent studies.

Two independent molecules comprise the asymmetric unit of (I). The first independent molecule, Fig. 1, is virtually super-imposable upon the second, Fig. 2, with the major difference between them being a twist in the benzene rings, Fig. 3. This is quantified by the C2–C1–C7–O1 and C16–C15–C21–O2 torsion angles of 4.5 (2) and -19.9 (2) °, respectively. This is also reflected in the r.m.s. deviation for bond distances and angles of 0.0035 Å and 0.903 °, respectively (Spek, 2009). The molecules are twisted about the central thiourea bond as seen in the C7—N1—C8—S1 and C21—N3—C22—S2 torsion angles of 83.90 (15) and 81.77 (15) °, respectively, indicating that the thiocarbonyl and carbonyl groups lie to opposite sides of the molecule.

The most notable feature in the crystal packing is the formation of supramolecular chains mediated by N–H···O hydrogen bonding, Table 1; chains are reinforced by C–H···O contacts involving the O2 atom, Table 1. The chains comprise alternating pairs of molecules of opposite orientation so that the topology is stepped. Chains aggregate into layers in the ac plane with the primary interactions between them along the b axis being of the type C–H···π, Fig. 5 and Table 1.

For the biological activity of thiourea derivatives, see: Venkatachalam et al. (2004); Yuan et al. (2001); Zhou et al. (2004). For the use of ruthenium(III) complexes of thioureas as catalysts, see: Gunasekaran et al. (2010). For additional structural analysis, see: Spek (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Overlay diagram of the first independent molecule (shown in red) and the second independent molecule (shown in blue).
[Figure 4] Fig. 4. Linear supramolecular chain along the 1 0 1 direction in (I) mediated by N–H···O hydrogen bonding, shown as orange dashed lines.
[Figure 5] Fig. 5. Unit-cell contents shown in projection down the c axis in (I). The N–H···O hydrogen bonding and C–H···π contacts are shown as orange and purple dashed lines, respectively.
1-Benzoyl-3,3-bis(propan-2-yl)thiourea top
Crystal data top
C14H20N2OSF(000) = 1136
Mr = 264.38Dx = 1.181 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5840 reflections
a = 14.8072 (10) Åθ = 2.4–28.1°
b = 13.5832 (10) ŵ = 0.21 mm1
c = 14.9168 (11) ÅT = 100 K
β = 97.635 (1)°Prism, colourless
V = 2973.6 (4) Å30.40 × 0.25 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
6833 independent reflections
Radiation source: fine-focus sealed tube5254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.921, Tmax = 0.990k = 1717
27965 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.4491P]
where P = (Fo2 + 2Fc2)/3
6833 reflections(Δ/σ)max = 0.001
341 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H20N2OSV = 2973.6 (4) Å3
Mr = 264.38Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.8072 (10) ŵ = 0.21 mm1
b = 13.5832 (10) ÅT = 100 K
c = 14.9168 (11) Å0.40 × 0.25 × 0.05 mm
β = 97.635 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6833 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5254 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.990Rint = 0.051
27965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
6833 reflectionsΔρmin = 0.22 e Å3
341 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75721 (3)0.79767 (3)0.15341 (3)0.01907 (10)
S21.24751 (3)0.74064 (3)0.16642 (3)0.01868 (10)
O10.97620 (7)0.75101 (8)0.11338 (7)0.0217 (2)
O21.20465 (7)0.80331 (8)0.38108 (7)0.0198 (2)
N10.84390 (8)0.70403 (9)0.03311 (8)0.0135 (2)
H10.8091 (11)0.7049 (14)0.0167 (8)0.033 (5)*
N20.80562 (8)0.60687 (9)0.15068 (8)0.0160 (3)
N31.11221 (8)0.81185 (9)0.24783 (8)0.0136 (3)
H31.0643 (9)0.7908 (14)0.2154 (12)0.037 (6)*
N41.19743 (9)0.92929 (9)0.18289 (8)0.0172 (3)
C10.97327 (10)0.74376 (10)0.04643 (10)0.0150 (3)
C21.06667 (10)0.76249 (11)0.03733 (11)0.0191 (3)
H21.09940.77400.02090.023*
C31.11180 (11)0.76431 (11)0.11299 (11)0.0213 (3)
H3A1.17540.77720.10630.026*
C41.06483 (11)0.74753 (11)0.19821 (11)0.0202 (3)
H41.09610.74780.24980.024*
C50.97160 (10)0.73027 (11)0.20766 (10)0.0183 (3)
H50.93900.71970.26620.022*
C60.92549 (10)0.72824 (10)0.13246 (10)0.0164 (3)
H60.86170.71630.13950.020*
C70.93123 (10)0.73556 (10)0.03927 (10)0.0153 (3)
C80.80264 (10)0.69632 (10)0.11469 (9)0.0142 (3)
C90.83729 (11)0.51575 (10)0.10756 (10)0.0188 (3)
H90.82390.46040.14800.023*
C100.93975 (11)0.51274 (12)0.10634 (12)0.0270 (4)
H10A0.97080.53730.16410.041*
H10B0.95570.55420.05700.041*
H10C0.95880.44480.09720.041*
C110.78275 (13)0.49311 (12)0.01598 (11)0.0295 (4)
H11A0.71750.49950.02030.044*
H11B0.79590.42580.00200.044*
H11C0.79970.53950.02920.044*
C120.77042 (12)0.59103 (12)0.23844 (11)0.0252 (4)
H120.75850.65740.26330.030*
C130.84165 (14)0.54090 (13)0.30663 (11)0.0340 (4)
H13A0.82010.53930.36600.051*
H13B0.89900.57770.31110.051*
H13C0.85160.47350.28670.051*
C140.68014 (13)0.53676 (13)0.22384 (14)0.0364 (5)
H14A0.63740.57270.17980.055*
H14B0.65520.53210.28130.055*
H14C0.68960.47040.20100.055*
C151.04692 (10)0.77094 (10)0.38361 (10)0.0162 (3)
C161.06181 (12)0.72906 (13)0.46947 (11)0.0253 (4)
H161.12180.71180.49530.030*
C170.98915 (13)0.71256 (14)0.51739 (12)0.0326 (4)
H170.99940.68280.57550.039*
C180.90163 (12)0.73933 (13)0.48099 (12)0.0290 (4)
H180.85220.72970.51470.035*
C190.88646 (11)0.78013 (12)0.39528 (11)0.0237 (4)
H190.82640.79800.37010.028*
C200.95841 (10)0.79518 (11)0.34577 (11)0.0190 (3)
H200.94740.82180.28640.023*
C211.12797 (10)0.79444 (10)0.33795 (10)0.0149 (3)
C221.18641 (10)0.83429 (10)0.19877 (9)0.0143 (3)
C231.13244 (10)1.00932 (11)0.20189 (10)0.0181 (3)
H231.16001.07200.18310.022*
C241.12179 (11)1.02287 (11)0.30114 (10)0.0200 (3)
H24A1.09851.08910.31050.030*
H24B1.18111.01440.33820.030*
H24C1.07890.97380.31870.030*
C251.04171 (11)0.99951 (12)0.14111 (11)0.0256 (4)
H25A1.05270.99260.07810.038*
H25B1.00471.05840.14720.038*
H25C1.00930.94130.15900.038*
C261.27615 (12)0.96155 (12)0.13727 (12)0.0271 (4)
H261.30950.90080.12280.033*
C271.34174 (12)1.02249 (13)0.20183 (14)0.0340 (4)
H27A1.36040.98470.25710.051*
H27B1.31161.08330.21700.051*
H27C1.39561.03880.17300.051*
C281.24534 (15)1.01339 (15)0.04833 (13)0.0446 (5)
H28A1.20100.97210.01090.067*
H28B1.29811.02510.01640.067*
H28C1.21701.07640.06020.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0237 (2)0.01671 (18)0.0177 (2)0.00430 (15)0.00614 (16)0.00098 (14)
S20.0191 (2)0.01741 (18)0.0205 (2)0.00404 (14)0.00623 (15)0.00049 (14)
O10.0178 (6)0.0305 (6)0.0161 (5)0.0038 (5)0.0002 (4)0.0028 (5)
O20.0143 (6)0.0287 (6)0.0156 (5)0.0002 (4)0.0011 (4)0.0005 (4)
N10.0135 (6)0.0170 (6)0.0098 (6)0.0006 (5)0.0010 (5)0.0005 (5)
N20.0200 (7)0.0146 (6)0.0144 (6)0.0006 (5)0.0058 (5)0.0014 (5)
N30.0116 (6)0.0160 (6)0.0129 (6)0.0011 (5)0.0007 (5)0.0003 (5)
N40.0200 (7)0.0154 (6)0.0175 (6)0.0005 (5)0.0081 (5)0.0003 (5)
C10.0148 (7)0.0134 (7)0.0169 (7)0.0013 (5)0.0026 (6)0.0016 (6)
C20.0161 (8)0.0192 (7)0.0214 (8)0.0004 (6)0.0005 (6)0.0012 (6)
C30.0136 (8)0.0216 (8)0.0294 (9)0.0005 (6)0.0052 (7)0.0034 (6)
C40.0214 (8)0.0192 (8)0.0217 (8)0.0022 (6)0.0096 (7)0.0017 (6)
C50.0192 (8)0.0185 (7)0.0177 (8)0.0023 (6)0.0046 (6)0.0014 (6)
C60.0142 (7)0.0171 (7)0.0181 (7)0.0000 (6)0.0032 (6)0.0009 (6)
C70.0145 (7)0.0143 (7)0.0167 (7)0.0009 (6)0.0007 (6)0.0002 (6)
C80.0116 (7)0.0181 (7)0.0126 (7)0.0017 (6)0.0005 (6)0.0009 (6)
C90.0260 (9)0.0134 (7)0.0176 (8)0.0023 (6)0.0050 (6)0.0008 (6)
C100.0286 (10)0.0216 (8)0.0323 (10)0.0071 (7)0.0090 (8)0.0028 (7)
C110.0416 (11)0.0195 (8)0.0256 (9)0.0008 (7)0.0015 (8)0.0059 (7)
C120.0394 (10)0.0190 (8)0.0206 (8)0.0025 (7)0.0172 (7)0.0002 (6)
C130.0594 (13)0.0255 (9)0.0180 (8)0.0026 (8)0.0090 (8)0.0029 (7)
C140.0405 (12)0.0258 (9)0.0486 (12)0.0037 (8)0.0272 (10)0.0002 (8)
C150.0172 (8)0.0164 (7)0.0155 (7)0.0023 (6)0.0038 (6)0.0011 (6)
C160.0226 (9)0.0355 (9)0.0178 (8)0.0006 (7)0.0027 (7)0.0034 (7)
C170.0370 (11)0.0463 (11)0.0158 (8)0.0056 (9)0.0080 (8)0.0066 (7)
C180.0263 (10)0.0370 (10)0.0267 (9)0.0069 (7)0.0142 (8)0.0026 (7)
C190.0176 (8)0.0266 (8)0.0282 (9)0.0015 (6)0.0072 (7)0.0013 (7)
C200.0181 (8)0.0199 (7)0.0193 (8)0.0015 (6)0.0039 (6)0.0010 (6)
C210.0163 (8)0.0135 (7)0.0149 (7)0.0011 (6)0.0015 (6)0.0000 (5)
C220.0133 (7)0.0182 (7)0.0108 (7)0.0004 (6)0.0012 (6)0.0007 (5)
C230.0218 (8)0.0140 (7)0.0189 (8)0.0022 (6)0.0045 (6)0.0010 (6)
C240.0249 (9)0.0167 (7)0.0193 (8)0.0016 (6)0.0067 (7)0.0012 (6)
C250.0290 (9)0.0215 (8)0.0247 (9)0.0045 (7)0.0029 (7)0.0012 (7)
C260.0307 (10)0.0210 (8)0.0345 (10)0.0038 (7)0.0225 (8)0.0020 (7)
C270.0254 (10)0.0310 (9)0.0485 (12)0.0062 (8)0.0153 (9)0.0021 (8)
C280.0648 (15)0.0468 (12)0.0270 (10)0.0187 (10)0.0240 (10)0.0011 (9)
Geometric parameters (Å, º) top
S1—C81.6687 (15)C12—C131.525 (2)
S2—C221.6689 (15)C12—H121.0000
O1—C71.2304 (18)C13—H13A0.9800
O2—C211.2343 (18)C13—H13B0.9800
N1—C71.3537 (19)C13—H13C0.9800
N1—C81.4362 (18)C14—H14A0.9800
N1—H10.847 (9)C14—H14B0.9800
N2—C81.3266 (18)C14—H14C0.9800
N2—C121.4877 (18)C15—C161.392 (2)
N2—C91.4986 (18)C15—C201.396 (2)
N3—C211.3542 (18)C15—C211.491 (2)
N3—C221.4316 (18)C16—C171.387 (2)
N3—H30.854 (9)C16—H160.9500
N4—C221.3260 (18)C17—C181.385 (3)
N4—C261.4915 (19)C17—H170.9500
N4—C231.5035 (18)C18—C191.384 (2)
C1—C61.397 (2)C18—H180.9500
C1—C21.395 (2)C19—C201.390 (2)
C1—C71.498 (2)C19—H190.9500
C2—C31.386 (2)C20—H200.9500
C2—H20.9500C23—C241.521 (2)
C3—C41.384 (2)C23—C251.523 (2)
C3—H3A0.9500C23—H231.0000
C4—C51.389 (2)C24—H24A0.9800
C4—H40.9500C24—H24B0.9800
C5—C61.389 (2)C24—H24C0.9800
C5—H50.9500C25—H25A0.9800
C6—H60.9500C25—H25B0.9800
C9—C101.520 (2)C25—H25C0.9800
C9—C111.523 (2)C26—C271.519 (3)
C9—H91.0000C26—C281.518 (3)
C10—H10A0.9800C26—H261.0000
C10—H10B0.9800C27—H27A0.9800
C10—H10C0.9800C27—H27B0.9800
C11—H11A0.9800C27—H27C0.9800
C11—H11B0.9800C28—H28A0.9800
C11—H11C0.9800C28—H28B0.9800
C12—C141.517 (2)C28—H28C0.9800
C7—N1—C8118.40 (12)C12—C14—H14A109.5
C7—N1—H1121.3 (13)C12—C14—H14B109.5
C8—N1—H1117.8 (13)H14A—C14—H14B109.5
C8—N2—C12119.46 (12)C12—C14—H14C109.5
C8—N2—C9125.33 (12)H14A—C14—H14C109.5
C12—N2—C9115.11 (11)H14B—C14—H14C109.5
C21—N3—C22120.13 (12)C16—C15—C20119.60 (14)
C21—N3—H3121.7 (14)C16—C15—C21117.98 (14)
C22—N3—H3114.7 (14)C20—C15—C21122.29 (13)
C22—N4—C26119.31 (12)C17—C16—C15120.10 (16)
C22—N4—C23124.95 (12)C17—C16—H16120.0
C26—N4—C23115.61 (11)C15—C16—H16120.0
C6—C1—C2119.44 (14)C18—C17—C16120.32 (16)
C6—C1—C7123.75 (13)C18—C17—H17119.8
C2—C1—C7116.70 (13)C16—C17—H17119.8
C3—C2—C1120.20 (15)C19—C18—C17119.72 (15)
C3—C2—H2119.9C19—C18—H18120.1
C1—C2—H2119.9C17—C18—H18120.1
C4—C3—C2120.46 (14)C18—C19—C20120.53 (16)
C4—C3—H3A119.8C18—C19—H19119.7
C2—C3—H3A119.8C20—C19—H19119.7
C3—C4—C5119.49 (14)C19—C20—C15119.69 (15)
C3—C4—H4120.3C19—C20—H20120.2
C5—C4—H4120.3C15—C20—H20120.2
C6—C5—C4120.67 (15)O2—C21—N3121.71 (13)
C6—C5—H5119.7O2—C21—C15121.55 (13)
C4—C5—H5119.7N3—C21—C15116.60 (13)
C5—C6—C1119.72 (14)N4—C22—N3114.80 (12)
C5—C6—H6120.1N4—C22—S2127.29 (11)
C1—C6—H6120.1N3—C22—S2117.90 (10)
O1—C7—N1120.86 (14)N4—C23—C24115.01 (12)
O1—C7—C1121.15 (13)N4—C23—C25111.13 (12)
N1—C7—C1117.83 (13)C24—C23—C25113.12 (13)
N2—C8—N1114.50 (12)N4—C23—H23105.5
N2—C8—S1127.50 (11)C24—C23—H23105.5
N1—C8—S1118.00 (10)C25—C23—H23105.5
N2—C9—C10113.40 (12)C23—C24—H24A109.5
N2—C9—C11113.13 (13)C23—C24—H24B109.5
C10—C9—C11113.26 (13)H24A—C24—H24B109.5
N2—C9—H9105.3C23—C24—H24C109.5
C10—C9—H9105.3H24A—C24—H24C109.5
C11—C9—H9105.3H24B—C24—H24C109.5
C9—C10—H10A109.5C23—C25—H25A109.5
C9—C10—H10B109.5C23—C25—H25B109.5
H10A—C10—H10B109.5H25A—C25—H25B109.5
C9—C10—H10C109.5C23—C25—H25C109.5
H10A—C10—H10C109.5H25A—C25—H25C109.5
H10B—C10—H10C109.5H25B—C25—H25C109.5
C9—C11—H11A109.5N4—C26—C27110.09 (13)
C9—C11—H11B109.5N4—C26—C28111.89 (15)
H11A—C11—H11B109.5C27—C26—C28113.20 (15)
C9—C11—H11C109.5N4—C26—H26107.1
H11A—C11—H11C109.5C27—C26—H26107.1
H11B—C11—H11C109.5C28—C26—H26107.1
N2—C12—C14110.44 (14)C26—C27—H27A109.5
N2—C12—C13111.06 (13)C26—C27—H27B109.5
C14—C12—C13113.39 (14)H27A—C27—H27B109.5
N2—C12—H12107.2C26—C27—H27C109.5
C14—C12—H12107.2H27A—C27—H27C109.5
C13—C12—H12107.2H27B—C27—H27C109.5
C12—C13—H13A109.5C26—C28—H28A109.5
C12—C13—H13B109.5C26—C28—H28B109.5
H13A—C13—H13B109.5H28A—C28—H28B109.5
C12—C13—H13C109.5C26—C28—H28C109.5
H13A—C13—H13C109.5H28A—C28—H28C109.5
H13B—C13—H13C109.5H28B—C28—H28C109.5
C6—C1—C2—C30.9 (2)C20—C15—C16—C170.7 (2)
C7—C1—C2—C3175.51 (13)C21—C15—C16—C17175.26 (15)
C1—C2—C3—C40.1 (2)C15—C16—C17—C181.3 (3)
C2—C3—C4—C51.0 (2)C16—C17—C18—C191.9 (3)
C3—C4—C5—C61.0 (2)C17—C18—C19—C200.5 (3)
C4—C5—C6—C10.0 (2)C18—C19—C20—C151.4 (2)
C2—C1—C6—C50.9 (2)C16—C15—C20—C192.0 (2)
C7—C1—C6—C5175.24 (13)C21—C15—C20—C19173.76 (14)
C8—N1—C7—O14.8 (2)C22—N3—C21—O24.6 (2)
C8—N1—C7—C1179.69 (12)C22—N3—C21—C15179.58 (12)
C6—C1—C7—O1179.23 (14)C16—C15—C21—O219.9 (2)
C2—C1—C7—O14.5 (2)C20—C15—C21—O2155.89 (14)
C6—C1—C7—N15.2 (2)C16—C15—C21—N3164.24 (14)
C2—C1—C7—N1171.00 (13)C20—C15—C21—N319.9 (2)
C12—N2—C8—N1176.10 (13)C26—N4—C22—N3176.26 (13)
C9—N2—C8—N17.7 (2)C23—N4—C22—N38.0 (2)
C12—N2—C8—S13.9 (2)C26—N4—C22—S25.0 (2)
C9—N2—C8—S1172.33 (11)C23—N4—C22—S2170.75 (11)
C7—N1—C8—N296.09 (16)C21—N3—C22—N499.35 (15)
C7—N1—C8—S183.90 (15)C21—N3—C22—S281.77 (15)
C8—N2—C9—C1072.10 (19)C22—N4—C23—C2463.67 (19)
C12—N2—C9—C10111.54 (15)C26—N4—C23—C24120.46 (15)
C8—N2—C9—C1158.6 (2)C22—N4—C23—C2566.49 (18)
C12—N2—C9—C11117.72 (15)C26—N4—C23—C25109.38 (15)
C8—N2—C12—C14106.66 (16)C22—N4—C26—C27113.95 (16)
C9—N2—C12—C1469.93 (17)C23—N4—C26—C2769.92 (18)
C8—N2—C12—C13126.65 (15)C22—N4—C26—C28119.25 (16)
C9—N2—C12—C1356.76 (17)C23—N4—C26—C2856.87 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (1)2.03 (1)2.8568 (16)167 (2)
N3—H3···O10.85 (1)1.94 (1)2.7728 (16)163 (2)
C6—H6···O2i0.952.403.3306 (18)166
C10—H10c···Cgii0.982.633.5714 (18)160
C25—H25b···Cgiii0.982.703.5717 (18)149
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+2, y+1, z; (iii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H20N2OS
Mr264.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.8072 (10), 13.5832 (10), 14.9168 (11)
β (°) 97.635 (1)
V3)2973.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
27965, 6833, 5254
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.02
No. of reflections6833
No. of parameters341
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.847 (9)2.025 (10)2.8568 (16)167.2 (18)
N3—H3···O10.854 (9)1.944 (11)2.7728 (16)163.3 (19)
C6—H6···O2i0.952.403.3306 (18)166
C10—H10c···Cgii0.982.633.5714 (18)160
C25—H25b···Cgiii0.982.703.5717 (18)149
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+2, y+1, z; (iii) x+2, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NG thanks NITT for a Fellowship.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Model. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun. 13, 952–955.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Y. F., Wang, J. T., Gimeno, M. C., Laguna, A. & Jones, P. G. (2001). Inorg. Chim. Acta, 324, 309–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, W. Q., Li, B. L., Zhu, L. M., Ding, J. G., Yong, Z., Lu, L. & Yang, X. J. (2004). J. Mol. Struct. 690, 145–150.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds