metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis[2,6-bis­­(2,4,6-triiso­propyl­phen­yl)phen­yl]-2,3,4,6,7-penta­tellura-1,5-di­stannabi­cyclo­[3.1.1]hepta­ne

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University Shimo-okubo, Saitama-city, Saitama 338-8570, Japan
*Correspondence e-mail: masaichi@chem.saitama-u.ac.jp

(Received 22 June 2010; accepted 30 June 2010; online 3 July 2010)

The title compound, [Sn2(C72H98)Te2(Te3)], has a cage-like structure with bulky aryl substituents on the Sn atoms. The mol­ecule sits over a crystallographic twofold axis, and hence the asymmetric unit consists of one half-mol­ecule. Due to the twofold axis, the tritelluride part has a 1:1 disorder. One of the six-membered rings has a boat conformation, whereas the other has a chair conformation. The ditelluradistannane ring has a bent structure, with a dihedral angle of 32.89 (2)° between the two Te—Sn—Te planes.

Related literature

For related structures, see: Sladky et al. (1985[Sladky, F., Bildstein, B., Rieker, C., Gieren, A., Betz, H. & Huebner, T. (1985). J. Chem. Soc. Chem. Commun. pp. 1800-1801.]), Hamor et al. (1986[Hamor, T. A., Al-Salim, N., West, A. A. & McWhinnie, W. R. (1986). J. Organomet. Chem. 310, C5-C7.]); Herberhold et al. (1990[Herberhold, M., Leitner, P. & Thewalt, U. (1990). Z. Naturforsch. Teil B, 45, 1503-1507.]); Beckmann et al. (2009[Beckmann, J., Bolsinger, J. & Duthie, A. (2009). Organometallics, 28, 4610-4612.]). For mol­ecular structures of polythia- and polyselena­dimetalla­bicyclo­[k.l.m]alkanes, see: Yoshida et al. (1992[Yoshida, H., Takahara, Y., Erata, T. & Ando, W. (1992). J. Am. Chem. Soc. 114, 1098-1100.]); Ando, Choi et al. (1994[Ando, W., Choi, N., Watanabe, S., Asano, K., Kadowaki, T., Kabe, Y. & Yoshida, H. (1994). Phosphorus Sulfur Silicon, 93-94, 51-60.]); Ando, Kabe et al. (1994[Ando, W., Kabe, Y. & Choi, N. (1994). Main Group Met. Chem. 17, 209-224.]); Ando et al. (1995[Ando, W., Watanabe, S. & Choi, N. (1995). J. Chem. Soc. Chem. Commun. pp. 1683-1684.]); Choi et al. (1995[Choi, N., Asano, K. & Ando, W. (1995). Organometallics, 14, 3146-3148.], 1996[Choi, N., Asano, K., Sato, N. & Ando, W. (1996). J. Organomet. Chem. 516, 155-165.], 1997[Choi, N., Asano, K., Watanabe, S. & Ando, W. (1997). Tetrahedron, 53, 12215-12224.]). For other related structures, see: Saito et al. (2007[Saito, M., Hashimoto, H., Tajima, T. & Ikeda, M. (2007). J. Organomet. Chem. 692, 2729-2735.], 2008[Saito, M., Hashimoto, H. & Tajima, T. (2008). Heterocycles, 76, 515-520.]); Puff et al. (1989[Puff, H., Bertram, G., Ebeling, B., Franken, M., Gattermayer, R., Hundt, R., Schuh, W. & Zimmer, R. (1989). J. Organomet. Chem. 379, 235-245.]); Schneider et al. (1997[Schneider, J. J., Hagen, J., Heinemann, O., Bruckmann, J. & Krueger, C. (1997). Thin Solid Films, 304, 144-148.]). For theoretical calculations see: Nagase et al. (1991[Nagase, S. (1991). Polyhedron, 10, 1299-1309.]); Gordon et al. (1991[Gordon, M. S., Nguyen, K. A. & Carroll, M. T. (1991). Polyhedron, 10, 1247-1264.]); Nguyen et al. (1991[Nguyen, K. A., Carroll, M. T. & Gordon, M. S. (1991). J. Am. Chem. Soc. 113, 7924-7929.]); Sandstroem & Ottosson (2005[Sandstroem, N. & Ottosson, H. (2005). Chem. Eur. J. 11, 5067-5079.]). For related literature, see: Nagase et al. (1988[Nagase, S., Kudo, T. & Kurakake, T. (1988). J. Chem. Soc. Chem. Commun. pp. 1063-1064.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C72H98)Te2(Te3)]

  • Mr = 1838.92

  • Monoclinic, C 2/c

  • a = 24.370 (4) Å

  • b = 11.2673 (19) Å

  • c = 26.620 (4) Å

  • β = 96.430 (4)°

  • V = 7263 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 103 K

  • 0.15 × 0.15 × 0.05 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS; (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Gοttingen University, Gοttingen, Germany.]) Tmin = 0.674, Tmax = 0.874

  • 26082 measured reflections

  • 8733 independent reflections

  • 6697 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.153

  • S = 1.06

  • 8733 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 2.83 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—Te4 2.7353 (7)
Sn1—Te3i 2.7617 (14)
Sn1—Te1 2.8383 (15)
Te1—Te2 2.705 (2)
Te2—Te3 2.6792 (18)
C1—Sn1—Te4 117.69 (14)
C1—Sn1—Te4i 122.56 (14)
Te4—Sn1—Te4i 96.03 (2)
Te3—Te2—Te1 104.02 (5)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For a few decades much attention has been paid to the chemistry of cage-like compounds containing heavier Groups 14 and 16 elements from the standpoints of their unique structure and reactivity. Among cage-like compounds, the nature of the bridgehead bond of bicyclo[1.1.1]pentanes is of considerable interest because the type of H2M2X3 [1.1.1]propellanes (M = Si, Ge, Sn; X = O) is predicted to have a short non-bonded distance between the two bridgehead group 14 atoms (Nagase et al., 1991; Gordon et al., 1991; Nguyen et al., 1991; Sandstroem and Ottosson; 2005). Although no reports on the synthesis of trioxadimetallabicyclo[1.1.1]pentanes of heavier Group 14 elements have so far appeared, trithia- and triselena-derivatives have been relatively well investigated. The synthesis of trithia- and triselenadimetallabicyclo[1.1.1]pentanes was accomplished by the dechalcogenation of the corresponding polythia- and poly-selenadimetalla-bicyclo[k.l.m]alkanes (Yoshida et al., 1992; Ando, Choi et al., 1994; Ando, Kabe et al., 1994; Ando et al., 1995; Choi et al., 1995; Choi et al., 1996; Choi et al., 1997). As for tin analogues, we have recently reported the synthesis, structures and reactions of penta- and tetra-chalcogenadistannabicyclo[k.1.1]alkanes (Saito et al., 2007; Saito et al., 2008). However, no tellurium versions of group 14 [k.l.m]alkanes have been thus far reported. We report herein the first X-ray characterization of the title compound, 1,3-bis[2,6-bis(2,4,6-triisopropylphenyl)phenyl]-2,4,5,6,7-pentatellura-1,3-distannabicyclo[3.1.1]heptane with bulky aryl substituents on the tin atoms.

The X-ray structural analysis reveals that the title compound, 1,3-bis[2,6-bis(2,4,6-triisopropylphenyl)phenyl]-2,4,5,6,7-pentatellura-1,3-distannabicyclo[3.1.1]heptane (1), has a rare tritelluride unit in its cage structure, where one of the six-membered rings has a boat conformation, whereas the other has a chair conformation. The molecule sits over a crystallographic twofold axis, and hence a half moiety of the molecule was refined. The tritelluride moiety has 1: 1 disordered two parts. There have been only four examples of X-ray characterized neutral tritellurides (Sladky et al., 1985, Hamor et al., 1986; Herberhold et al., 1990; Beckmann et al., 2009). The tellurium-tellurium bond), and hence the structures of a tritellurides are of still considerable interest. The bond angle of the central tellurium atom in the tritelluride unit is 104.02 (5) °, similar to those found in the reported neutral tritellurides (93–106 °) (Sladky et al., 1985, Hamor et al., 1986; Herberhold et al., 1990; Beckmann et al., 2009). The tellurium-tellurium bond distances (2.6792 (18) and 2.705 (2) Å) are in the same range as those of the reported neutral tritellurides (2.710–2.776 Å). The ditelluadistannetane ring has a bent structure with the dihedral angles between the Te4—Sn1—Te4# and Te4—Sn1#—Te4# planes of 32.89 (2) °. The tin-tellurim bond distances in the four-membered ring are 2.7353 (7) and 2.7556 (6) Å, similar to those found in ditelluradistannetane rings (2.754–2.771 Å) (Puff et al., 1989; Schneider et al., 1997). The sum of the internal bond angles (C1—Sn1—Te4#, Te4—Sn1—Te4# and C1—Sn1—Te4) around the tin atom is 336.3 °, which remarkably deviates from the ideal sp3 geometry of 328.5 °.

Related literature top

For related structures, see: Sladky et al. (1985), Hamor et al. (1986); Herberhold et al. (1990); Beckmann et al. (2009). For molecular structures of polythia- and polyselenadimetallabicyclo[k.l.m]alkanes, see: Yoshida et al. (1992); Ando, Choi et al. (1994); Ando, Kabe et al. (1994); Ando et al. (1995); Choi et al. (1995, 1996, 1997). For other related structures, see: Saito et al. (2007, 2008); Puff et al. (1989); Schneider et al. (1997). For theoretical calculations see: Nagase et al. (1991); Gordon et al. (1991); Nguyen et al. (1991); Sandstroem & Ottosson (2005). For related literature [on what subject?], see: Nagase et al. (1988).

Experimental top

A mixture of sodium (57.0 mg, 2.48 mmol) and tellurium (157.8 mg, 1.24 mmol) and a catalytic amount of naphthalene (33.1 mg, 0.26 mmol) in THF (3 ml) was heated under reflux for 5.5 h. To the mixture was added a THF (2 ml) solution of 2,6-bis(2,4,6-triisopropylphenyl)phenyltrichlorostannane (170.5 mg, 0.24 mmol) (Saito et al., 2007) at room temperature. The resulting mixture was subjected to gel permeation chromatography to afford the title compound, 1,3-bis[2,6-bis(2,4,6-triisopropylphenyl)phenyl]-2,4,5,6,7-pentatellura-1,3-distannabicyclo[3.1.1]heptane (1) (62.1 mg, 28%).

Refinement top

Hydrogen atoms attached to C(sp3) and C(sp2) carbon atoms were treated as riding with C—H distances of 0.96 and 0.93 Å, while all the other atoms were refined anisotropically.

Structure description top

For a few decades much attention has been paid to the chemistry of cage-like compounds containing heavier Groups 14 and 16 elements from the standpoints of their unique structure and reactivity. Among cage-like compounds, the nature of the bridgehead bond of bicyclo[1.1.1]pentanes is of considerable interest because the type of H2M2X3 [1.1.1]propellanes (M = Si, Ge, Sn; X = O) is predicted to have a short non-bonded distance between the two bridgehead group 14 atoms (Nagase et al., 1991; Gordon et al., 1991; Nguyen et al., 1991; Sandstroem and Ottosson; 2005). Although no reports on the synthesis of trioxadimetallabicyclo[1.1.1]pentanes of heavier Group 14 elements have so far appeared, trithia- and triselena-derivatives have been relatively well investigated. The synthesis of trithia- and triselenadimetallabicyclo[1.1.1]pentanes was accomplished by the dechalcogenation of the corresponding polythia- and poly-selenadimetalla-bicyclo[k.l.m]alkanes (Yoshida et al., 1992; Ando, Choi et al., 1994; Ando, Kabe et al., 1994; Ando et al., 1995; Choi et al., 1995; Choi et al., 1996; Choi et al., 1997). As for tin analogues, we have recently reported the synthesis, structures and reactions of penta- and tetra-chalcogenadistannabicyclo[k.1.1]alkanes (Saito et al., 2007; Saito et al., 2008). However, no tellurium versions of group 14 [k.l.m]alkanes have been thus far reported. We report herein the first X-ray characterization of the title compound, 1,3-bis[2,6-bis(2,4,6-triisopropylphenyl)phenyl]-2,4,5,6,7-pentatellura-1,3-distannabicyclo[3.1.1]heptane with bulky aryl substituents on the tin atoms.

The X-ray structural analysis reveals that the title compound, 1,3-bis[2,6-bis(2,4,6-triisopropylphenyl)phenyl]-2,4,5,6,7-pentatellura-1,3-distannabicyclo[3.1.1]heptane (1), has a rare tritelluride unit in its cage structure, where one of the six-membered rings has a boat conformation, whereas the other has a chair conformation. The molecule sits over a crystallographic twofold axis, and hence a half moiety of the molecule was refined. The tritelluride moiety has 1: 1 disordered two parts. There have been only four examples of X-ray characterized neutral tritellurides (Sladky et al., 1985, Hamor et al., 1986; Herberhold et al., 1990; Beckmann et al., 2009). The tellurium-tellurium bond), and hence the structures of a tritellurides are of still considerable interest. The bond angle of the central tellurium atom in the tritelluride unit is 104.02 (5) °, similar to those found in the reported neutral tritellurides (93–106 °) (Sladky et al., 1985, Hamor et al., 1986; Herberhold et al., 1990; Beckmann et al., 2009). The tellurium-tellurium bond distances (2.6792 (18) and 2.705 (2) Å) are in the same range as those of the reported neutral tritellurides (2.710–2.776 Å). The ditelluadistannetane ring has a bent structure with the dihedral angles between the Te4—Sn1—Te4# and Te4—Sn1#—Te4# planes of 32.89 (2) °. The tin-tellurim bond distances in the four-membered ring are 2.7353 (7) and 2.7556 (6) Å, similar to those found in ditelluradistannetane rings (2.754–2.771 Å) (Puff et al., 1989; Schneider et al., 1997). The sum of the internal bond angles (C1—Sn1—Te4#, Te4—Sn1—Te4# and C1—Sn1—Te4) around the tin atom is 336.3 °, which remarkably deviates from the ideal sp3 geometry of 328.5 °.

For related structures, see: Sladky et al. (1985), Hamor et al. (1986); Herberhold et al. (1990); Beckmann et al. (2009). For molecular structures of polythia- and polyselenadimetallabicyclo[k.l.m]alkanes, see: Yoshida et al. (1992); Ando, Choi et al. (1994); Ando, Kabe et al. (1994); Ando et al. (1995); Choi et al. (1995, 1996, 1997). For other related structures, see: Saito et al. (2007, 2008); Puff et al. (1989); Schneider et al. (1997). For theoretical calculations see: Nagase et al. (1991); Gordon et al. (1991); Nguyen et al. (1991); Sandstroem & Ottosson (2005). For related literature [on what subject?], see: Nagase et al. (1988).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Top view of the molecule of (1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. All H atoms and another disorderded part are omitted for clarity.
1,5-Bis[2,6-bis(2,4,6-triisopropylphenyl)phenyl]-2,3,4,6,7-pentatellura- 1,5-distannabicyclo[3.1.1]heptane top
Crystal data top
[Sn2(C72H98)Te2(Te3)]F(000) = 3560
Mr = 1838.92Dx = 1.682 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5522 reflections
a = 24.370 (4) Åθ = 2.2–25.8°
b = 11.2673 (19) ŵ = 2.69 mm1
c = 26.620 (4) ÅT = 103 K
β = 96.430 (4)°Cubic, red
V = 7263 (2) Å30.15 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
8733 independent reflections
Radiation source: fine-focus sealed tube6697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
SADABS; (Sheldrick, 1996)
h = 3132
Tmin = 0.674, Tmax = 0.874k = 1414
26082 measured reflectionsl = 3522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0699P)2 + 38.0368P]
where P = (Fo2 + 2Fc2)/3
8733 reflections(Δ/σ)max = 0.002
383 parametersΔρmax = 2.83 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
[Sn2(C72H98)Te2(Te3)]V = 7263 (2) Å3
Mr = 1838.92Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.370 (4) ŵ = 2.69 mm1
b = 11.2673 (19) ÅT = 103 K
c = 26.620 (4) Å0.15 × 0.15 × 0.05 mm
β = 96.430 (4)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
8733 independent reflections
Absorption correction: multi-scan
SADABS; (Sheldrick, 1996)
6697 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.874Rint = 0.052
26082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0699P)2 + 38.0368P]
where P = (Fo2 + 2Fc2)/3
8733 reflectionsΔρmax = 2.83 e Å3
383 parametersΔρmin = 1.08 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn11.007086 (16)0.69265 (4)0.184873 (14)0.02940 (12)
C11.0110 (2)0.7739 (5)0.1112 (2)0.0260 (11)
C20.9642 (2)0.7727 (5)0.0750 (2)0.0265 (11)
C30.9697 (2)0.8135 (6)0.0266 (2)0.0336 (13)
H10.93870.81510.00280.040*
C41.0197 (2)0.8516 (6)0.0128 (2)0.0354 (13)
H21.02290.87490.02020.042*
C51.0650 (2)0.8546 (6)0.0492 (2)0.0340 (12)
H31.09870.88180.04030.041*
C61.0615 (2)0.8182 (5)0.0981 (2)0.0271 (11)
C70.9070 (2)0.7350 (5)0.0846 (2)0.0283 (11)
C80.8878 (2)0.6205 (6)0.0715 (2)0.0346 (13)
C90.8325 (2)0.5928 (6)0.0734 (2)0.0372 (13)
H460.82020.51690.06410.045*
C100.7953 (2)0.6740 (6)0.0884 (2)0.0346 (13)
C110.8147 (2)0.7856 (6)0.1025 (2)0.0344 (13)
H470.79020.84040.11360.041*
C120.8699 (2)0.8198 (5)0.1008 (2)0.0303 (12)
C131.1112 (2)0.8364 (5)0.1365 (2)0.0288 (11)
C141.1144 (2)0.9396 (5)0.1662 (2)0.0299 (12)
C151.1620 (2)0.9601 (5)0.1993 (2)0.0350 (13)
H481.16431.02870.21890.042*
C161.2062 (2)0.8807 (6)0.2038 (2)0.0360 (13)
C171.2022 (3)0.7810 (6)0.1740 (2)0.0384 (14)
H491.23160.72770.17670.046*
C181.1559 (2)0.7561 (5)0.1399 (2)0.0318 (12)
C190.9260 (3)0.5259 (6)0.0516 (3)0.0446 (16)
H40.96390.54300.06610.054*
C200.9122 (4)0.4004 (7)0.0665 (4)0.072 (3)
H50.87920.37450.04650.108*
H60.90660.39870.10170.108*
H70.94220.34850.06090.108*
C210.9239 (3)0.5351 (8)0.0063 (3)0.065 (2)
H80.94310.46890.01880.097*
H90.94110.60760.01500.097*
H100.88610.53430.02110.097*
C220.7339 (2)0.6469 (7)0.0878 (3)0.0444 (16)
H110.72370.66430.12160.053*
C230.7193 (3)0.5164 (8)0.0763 (3)0.061 (2)
H120.72640.49800.04240.091*
H130.68090.50340.07960.091*
H140.74140.46620.09960.091*
C240.6994 (3)0.7283 (8)0.0504 (3)0.058 (2)
H150.70790.80970.05860.088*
H160.66080.71420.05250.088*
H170.70770.71190.01670.088*
C250.8866 (2)0.9482 (6)0.1111 (3)0.0393 (14)
H180.92660.95020.12050.047*
C260.8593 (3)1.0083 (7)0.1533 (3)0.0543 (18)
H190.82061.01840.14280.081*
H200.87601.08450.16050.081*
H210.86420.95990.18320.081*
C270.8735 (4)1.0224 (7)0.0632 (3)0.065 (2)
H220.89070.98710.03610.097*
H230.88741.10150.06920.097*
H240.83431.02530.05420.097*
C281.0677 (3)1.0297 (6)0.1614 (3)0.0415 (15)
H251.03380.98770.14850.050*
C291.0769 (4)1.1262 (8)0.1243 (3)0.065 (2)
H261.04601.17950.12130.098*
H271.08071.09160.09190.098*
H281.10991.16910.13600.098*
C301.0580 (5)1.0847 (8)0.2109 (4)0.084 (3)
H291.04721.02440.23320.127*
H301.02931.14310.20540.127*
H311.09141.12190.22570.127*
C311.2573 (3)0.9054 (7)0.2400 (3)0.0487 (17)
H321.24830.97090.26190.058*
C321.2743 (4)0.8040 (8)0.2731 (4)0.084 (3)
H331.24260.77280.28710.126*
H341.30120.82980.30000.126*
H351.29000.74340.25380.126*
C331.3037 (4)0.9467 (13)0.2120 (4)0.120 (5)
H361.33500.96640.23570.180*
H371.29231.01560.19230.180*
H381.31370.88470.19000.180*
C341.1559 (2)0.6477 (6)0.1064 (2)0.0397 (14)
H391.11860.63860.08870.048*
C351.1966 (4)0.6647 (9)0.0658 (3)0.069 (2)
H401.18640.73420.04610.103*
H411.19510.59640.04410.103*
H421.23350.67390.08230.103*
C361.1702 (3)0.5341 (7)0.1362 (3)0.060 (2)
H431.20660.54110.15400.090*
H441.16920.46810.11330.090*
H451.14390.52170.15990.090*
Te11.00205 (8)0.44204 (12)0.17458 (6)0.0665 (4)0.50
Te21.04546 (5)0.38902 (9)0.26993 (4)0.0605 (3)0.50
Te30.96724 (6)0.45635 (12)0.32712 (5)0.0521 (3)0.50
Te40.916196 (16)0.73879 (4)0.233347 (15)0.04013 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0337 (2)0.0306 (2)0.02381 (19)0.00283 (16)0.00285 (14)0.00094 (15)
C10.021 (2)0.030 (3)0.027 (3)0.001 (2)0.005 (2)0.001 (2)
C20.023 (3)0.029 (3)0.027 (3)0.001 (2)0.002 (2)0.005 (2)
C30.026 (3)0.046 (4)0.028 (3)0.001 (2)0.002 (2)0.003 (2)
C40.033 (3)0.052 (4)0.022 (3)0.001 (3)0.006 (2)0.005 (2)
C50.023 (3)0.041 (3)0.039 (3)0.001 (2)0.008 (2)0.002 (3)
C60.025 (2)0.032 (3)0.025 (3)0.002 (2)0.001 (2)0.002 (2)
C70.019 (2)0.037 (3)0.027 (3)0.003 (2)0.003 (2)0.001 (2)
C80.031 (3)0.037 (3)0.036 (3)0.004 (2)0.001 (2)0.006 (2)
C90.033 (3)0.040 (3)0.038 (3)0.009 (3)0.002 (2)0.002 (3)
C100.026 (3)0.048 (4)0.030 (3)0.008 (2)0.004 (2)0.001 (3)
C110.022 (3)0.049 (4)0.032 (3)0.000 (2)0.004 (2)0.001 (3)
C120.028 (3)0.034 (3)0.030 (3)0.002 (2)0.006 (2)0.001 (2)
C130.022 (2)0.036 (3)0.028 (3)0.002 (2)0.001 (2)0.002 (2)
C140.026 (3)0.030 (3)0.035 (3)0.004 (2)0.007 (2)0.003 (2)
C150.037 (3)0.029 (3)0.039 (3)0.008 (2)0.005 (2)0.007 (2)
C160.031 (3)0.043 (4)0.032 (3)0.006 (3)0.005 (2)0.000 (3)
C170.031 (3)0.038 (3)0.043 (4)0.002 (3)0.005 (3)0.006 (3)
C180.027 (3)0.034 (3)0.033 (3)0.003 (2)0.000 (2)0.005 (2)
C190.034 (3)0.043 (4)0.056 (4)0.001 (3)0.000 (3)0.016 (3)
C200.070 (6)0.047 (5)0.099 (7)0.002 (4)0.004 (5)0.020 (5)
C210.052 (4)0.079 (6)0.064 (5)0.004 (4)0.010 (4)0.038 (4)
C220.028 (3)0.064 (5)0.041 (4)0.013 (3)0.007 (3)0.002 (3)
C230.046 (4)0.069 (5)0.067 (5)0.028 (4)0.009 (4)0.001 (4)
C240.028 (3)0.084 (6)0.063 (5)0.007 (3)0.002 (3)0.014 (4)
C250.027 (3)0.034 (3)0.056 (4)0.000 (2)0.000 (3)0.006 (3)
C260.069 (5)0.044 (4)0.051 (4)0.009 (4)0.010 (4)0.008 (3)
C270.086 (6)0.046 (4)0.068 (5)0.010 (4)0.033 (5)0.006 (4)
C280.028 (3)0.034 (3)0.063 (4)0.001 (2)0.008 (3)0.006 (3)
C290.073 (5)0.063 (5)0.062 (5)0.029 (4)0.019 (4)0.013 (4)
C300.121 (8)0.071 (6)0.071 (6)0.053 (6)0.056 (6)0.016 (5)
C310.047 (4)0.050 (4)0.044 (4)0.008 (3)0.019 (3)0.006 (3)
C320.090 (7)0.065 (6)0.083 (7)0.009 (5)0.054 (6)0.005 (5)
C330.061 (6)0.193 (15)0.096 (8)0.067 (8)0.038 (6)0.023 (8)
C340.032 (3)0.042 (4)0.043 (3)0.008 (3)0.008 (3)0.013 (3)
C350.065 (5)0.084 (7)0.058 (5)0.004 (5)0.012 (4)0.029 (4)
C360.066 (5)0.042 (4)0.068 (5)0.019 (4)0.012 (4)0.012 (4)
Te10.0993 (12)0.0416 (7)0.0590 (7)0.0035 (8)0.0109 (9)0.0131 (5)
Te20.0729 (7)0.0377 (5)0.0718 (7)0.0111 (5)0.0123 (5)0.0035 (5)
Te30.0616 (7)0.0397 (6)0.0553 (7)0.0085 (6)0.0081 (6)0.0060 (5)
Te40.0296 (2)0.0599 (3)0.0308 (2)0.00078 (18)0.00283 (15)0.00159 (18)
Geometric parameters (Å, º) top
Sn1—C12.175 (5)C23—H140.9600
Sn1—Te42.7353 (7)C24—H150.9600
Sn1—Te4i2.7556 (6)C24—H160.9600
Sn1—Te3i2.7617 (14)C24—H170.9600
Sn1—Te12.8383 (15)C25—C261.526 (9)
C1—C61.408 (7)C25—C271.529 (11)
C1—C21.410 (7)C25—H180.9800
C2—C31.387 (8)C26—H190.9600
C2—C71.506 (7)C26—H200.9600
C3—C41.380 (8)C26—H210.9600
C3—H10.9300C27—H220.9600
C4—C51.385 (8)C27—H230.9600
C4—H20.9300C27—H240.9600
C5—C61.378 (8)C28—C301.497 (11)
C5—H30.9300C28—C291.503 (10)
C6—C131.510 (7)C28—H250.9800
C7—C81.403 (8)C29—H260.9600
C7—C121.416 (8)C29—H270.9600
C8—C91.390 (8)C29—H280.9600
C8—C191.546 (9)C30—H290.9600
C9—C101.380 (9)C30—H300.9600
C9—H460.9300C30—H310.9600
C10—C111.379 (9)C31—C321.473 (11)
C10—C221.525 (8)C31—C331.497 (13)
C11—C121.405 (8)C31—H320.9800
C11—H470.9300C32—H330.9600
C12—C251.520 (8)C32—H340.9600
C13—C141.404 (8)C32—H350.9600
C13—C181.411 (8)C33—H360.9600
C14—C151.394 (8)C33—H370.9600
C14—C281.521 (8)C33—H380.9600
C15—C161.395 (9)C34—C361.524 (10)
C15—H480.9300C34—C351.559 (11)
C16—C171.373 (9)C34—H390.9800
C16—C311.513 (8)C35—H400.9600
C17—C181.396 (8)C35—H410.9600
C17—H490.9300C35—H420.9600
C18—C341.512 (8)C36—H430.9600
C19—C201.516 (11)C36—H440.9600
C19—C211.540 (11)C36—H450.9600
C19—H40.9800Te1—Te3i0.7720 (15)
C20—H50.9600Te1—Te2i2.065 (2)
C20—H60.9600Te1—Te22.705 (2)
C20—H70.9600Te2—Te1i2.065 (2)
C21—H80.9600Te2—Te2i2.347 (2)
C21—H90.9600Te2—Te3i2.6770 (19)
C21—H100.9600Te2—Te32.6792 (18)
C22—C241.535 (10)Te3—Te1i0.7720 (15)
C22—C231.536 (11)Te3—Te2i2.6770 (19)
C22—H110.9800Te3—Sn1i2.7617 (14)
C23—H120.9600Te4—Sn1i2.7556 (6)
C23—H130.9600
C1—Sn1—Te4117.69 (14)H15—C24—H16109.5
C1—Sn1—Te4i122.56 (14)C22—C24—H17109.5
Te4—Sn1—Te4i96.03 (2)H15—C24—H17109.5
C1—Sn1—Te3i105.56 (15)H16—C24—H17109.5
Te4—Sn1—Te3i116.34 (3)C12—C25—C26115.2 (6)
Te4i—Sn1—Te3i97.51 (3)C12—C25—C27110.1 (6)
C1—Sn1—Te1109.72 (15)C26—C25—C27107.7 (6)
Te4—Sn1—Te1101.89 (4)C12—C25—H18107.9
Te4i—Sn1—Te1106.39 (4)C26—C25—H18107.9
Te3i—Sn1—Te115.77 (3)C27—C25—H18107.9
C6—C1—C2119.7 (5)C25—C26—H19109.5
C6—C1—Sn1120.1 (4)C25—C26—H20109.5
C2—C1—Sn1120.0 (4)H19—C26—H20109.5
C3—C2—C1118.5 (5)C25—C26—H21109.5
C3—C2—C7116.0 (5)H19—C26—H21109.5
C1—C2—C7125.4 (5)H20—C26—H21109.5
C4—C3—C2122.0 (5)C25—C27—H22109.5
C4—C3—H1119.0C25—C27—H23109.5
C2—C3—H1119.0H22—C27—H23109.5
C3—C4—C5118.8 (5)C25—C27—H24109.5
C3—C4—H2120.6H22—C27—H24109.5
C5—C4—H2120.6H23—C27—H24109.5
C6—C5—C4121.5 (5)C30—C28—C29109.2 (6)
C6—C5—H3119.2C30—C28—C14113.1 (6)
C4—C5—H3119.2C29—C28—C14111.9 (5)
C5—C6—C1119.3 (5)C30—C28—H25107.5
C5—C6—C13117.9 (5)C29—C28—H25107.5
C1—C6—C13122.6 (5)C14—C28—H25107.5
C8—C7—C12119.3 (5)C28—C29—H26109.5
C8—C7—C2120.4 (5)C28—C29—H27109.5
C12—C7—C2119.8 (5)H26—C29—H27109.5
C9—C8—C7119.7 (6)C28—C29—H28109.5
C9—C8—C19118.7 (5)H26—C29—H28109.5
C7—C8—C19121.6 (5)H27—C29—H28109.5
C10—C9—C8122.2 (6)C28—C30—H29109.5
C10—C9—H46118.9C28—C30—H30109.5
C8—C9—H46118.9H29—C30—H30109.5
C11—C10—C9117.9 (5)C28—C30—H31109.5
C11—C10—C22119.4 (6)H29—C30—H31109.5
C9—C10—C22122.7 (6)H30—C30—H31109.5
C10—C11—C12122.7 (6)C32—C31—C33111.2 (9)
C10—C11—H47118.6C32—C31—C16113.2 (6)
C12—C11—H47118.6C33—C31—C16110.8 (6)
C11—C12—C7118.2 (5)C32—C31—H32107.1
C11—C12—C25119.5 (5)C33—C31—H32107.1
C7—C12—C25122.0 (5)C16—C31—H32107.1
C14—C13—C18120.1 (5)C31—C32—H33109.5
C14—C13—C6119.0 (5)C31—C32—H34109.5
C18—C13—C6120.8 (5)H33—C32—H34109.5
C15—C14—C13118.9 (5)C31—C32—H35109.5
C15—C14—C28120.3 (5)H33—C32—H35109.5
C13—C14—C28120.8 (5)H34—C32—H35109.5
C14—C15—C16121.8 (5)C31—C33—H36109.5
C14—C15—H48119.1C31—C33—H37109.5
C16—C15—H48119.1H36—C33—H37109.5
C17—C16—C15118.1 (5)C31—C33—H38109.5
C17—C16—C31121.2 (6)H36—C33—H38109.5
C15—C16—C31120.7 (6)H37—C33—H38109.5
C16—C17—C18122.7 (6)C18—C34—C36112.8 (6)
C16—C17—H49118.7C18—C34—C35110.5 (6)
C18—C17—H49118.7C36—C34—C35109.6 (6)
C17—C18—C13118.4 (5)C18—C34—H39107.9
C17—C18—C34119.5 (5)C36—C34—H39107.9
C13—C18—C34122.1 (5)C35—C34—H39107.9
C20—C19—C21109.9 (6)C34—C35—H40109.5
C20—C19—C8113.2 (6)C34—C35—H41109.5
C21—C19—C8110.1 (6)H40—C35—H41109.5
C20—C19—H4107.8C34—C35—H42109.5
C21—C19—H4107.8H40—C35—H42109.5
C8—C19—H4107.8H41—C35—H42109.5
C19—C20—H5109.5C34—C36—H43109.5
C19—C20—H6109.5C34—C36—H44109.5
H5—C20—H6109.5H43—C36—H44109.5
C19—C20—H7109.5C34—C36—H45109.5
H5—C20—H7109.5H43—C36—H45109.5
H6—C20—H7109.5H44—C36—H45109.5
C19—C21—H8109.5Te3i—Te1—Te2i136.7 (2)
C19—C21—H9109.5Te3i—Te1—Te279.70 (19)
H8—C21—H9109.5Te2i—Te1—Te257.08 (6)
C19—C21—H10109.5Te3i—Te1—Sn176.47 (17)
H8—C21—H10109.5Te2i—Te1—Sn1103.91 (6)
H9—C21—H10109.5Te2—Te1—Sn196.95 (5)
C10—C22—C24110.7 (5)Te1i—Te2—Te2i75.33 (8)
C10—C22—C23113.5 (6)Te1i—Te2—Te3i126.51 (6)
C24—C22—C23110.1 (6)Te2i—Te2—Te3i64.06 (6)
C10—C22—H11107.4Te2i—Te2—Te363.96 (6)
C24—C22—H11107.4Te3i—Te2—Te3117.09 (6)
C23—C22—H11107.4Te1i—Te2—Te1114.56 (6)
C22—C23—H12109.5Te2i—Te2—Te147.59 (6)
C22—C23—H13109.5Te3—Te2—Te1104.02 (5)
H12—C23—H13109.5Te1i—Te3—Te2i83.82 (19)
C22—C23—H14109.5Te2i—Te3—Te251.98 (5)
H12—C23—H14109.5Te1i—Te3—Sn1i87.76 (17)
H13—C23—H14109.5Te2i—Te3—Sn1i99.49 (5)
C22—C24—H15109.5Te2—Te3—Sn1i91.29 (5)
C22—C24—H16109.5Sn1—Te4—Sn1i79.82 (2)
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn2(C72H98)Te2(Te3)]
Mr1838.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)103
a, b, c (Å)24.370 (4), 11.2673 (19), 26.620 (4)
β (°) 96.430 (4)
V3)7263 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.15 × 0.15 × 0.05
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
SADABS; (Sheldrick, 1996)
Tmin, Tmax0.674, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
26082, 8733, 6697
Rint0.052
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.153, 1.06
No. of reflections8733
No. of parameters383
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0699P)2 + 38.0368P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.83, 1.08

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—Te42.7353 (7)Te1—Te22.705 (2)
Sn1—Te3i2.7617 (14)Te2—Te32.6792 (18)
Sn1—Te12.8383 (15)
C1—Sn1—Te4117.69 (14)Te4—Sn1—Te4i96.03 (2)
C1—Sn1—Te4i122.56 (14)Te3—Te2—Te1104.02 (5)
Symmetry code: (i) x+2, y, z+1/2.
 

Acknowledgements

This work was partially supported by a Grant-in-Aid for Young Scientists (B) No. 17750032 (to MS) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. MS also acknowledges a research grant from the Asahi Glass Foundation.

References

First citationAndo, W., Choi, N., Watanabe, S., Asano, K., Kadowaki, T., Kabe, Y. & Yoshida, H. (1994). Phosphorus Sulfur Silicon, 93–94, 51–60.  CrossRef CAS Web of Science Google Scholar
First citationAndo, W., Kabe, Y. & Choi, N. (1994). Main Group Met. Chem. 17, 209–224.  CrossRef CAS Google Scholar
First citationAndo, W., Watanabe, S. & Choi, N. (1995). J. Chem. Soc. Chem. Commun. pp. 1683–1684.  CrossRef Web of Science Google Scholar
First citationBeckmann, J., Bolsinger, J. & Duthie, A. (2009). Organometallics, 28, 4610–4612.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, N., Asano, K. & Ando, W. (1995). Organometallics, 14, 3146–3148.  CSD CrossRef CAS Web of Science Google Scholar
First citationChoi, N., Asano, K., Sato, N. & Ando, W. (1996). J. Organomet. Chem. 516, 155–165.  CSD CrossRef CAS Web of Science Google Scholar
First citationChoi, N., Asano, K., Watanabe, S. & Ando, W. (1997). Tetrahedron, 53, 12215–12224.  CSD CrossRef CAS Web of Science Google Scholar
First citationGordon, M. S., Nguyen, K. A. & Carroll, M. T. (1991). Polyhedron, 10, 1247–1264.  CrossRef CAS Web of Science Google Scholar
First citationHamor, T. A., Al-Salim, N., West, A. A. & McWhinnie, W. R. (1986). J. Organomet. Chem. 310, C5–C7.  CSD CrossRef CAS Web of Science Google Scholar
First citationHerberhold, M., Leitner, P. & Thewalt, U. (1990). Z. Naturforsch. Teil B, 45, 1503–1507.  CAS Google Scholar
First citationNagase, S. (1991). Polyhedron, 10, 1299–1309.  CrossRef CAS Web of Science Google Scholar
First citationNagase, S., Kudo, T. & Kurakake, T. (1988). J. Chem. Soc. Chem. Commun. pp. 1063–1064.  CrossRef Web of Science Google Scholar
First citationNguyen, K. A., Carroll, M. T. & Gordon, M. S. (1991). J. Am. Chem. Soc. 113, 7924–7929.  CrossRef CAS Web of Science Google Scholar
First citationPuff, H., Bertram, G., Ebeling, B., Franken, M., Gattermayer, R., Hundt, R., Schuh, W. & Zimmer, R. (1989). J. Organomet. Chem. 379, 235–245.  CSD CrossRef CAS Web of Science Google Scholar
First citationSaito, M., Hashimoto, H. & Tajima, T. (2008). Heterocycles, 76, 515–520.  CSD CrossRef CAS Google Scholar
First citationSaito, M., Hashimoto, H., Tajima, T. & Ikeda, M. (2007). J. Organomet. Chem. 692, 2729–2735.  Web of Science CSD CrossRef CAS Google Scholar
First citationSandstroem, N. & Ottosson, H. (2005). Chem. Eur. J. 11, 5067–5079.  PubMed CAS Google Scholar
First citationSchneider, J. J., Hagen, J., Heinemann, O., Bruckmann, J. & Krueger, C. (1997). Thin Solid Films, 304, 144–148.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Gοttingen University, Gοttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSladky, F., Bildstein, B., Rieker, C., Gieren, A., Betz, H. & Huebner, T. (1985). J. Chem. Soc. Chem. Commun. pp. 1800–1801.  CrossRef Web of Science Google Scholar
First citationYoshida, H., Takahara, Y., Erata, T. & Ando, W. (1992). J. Am. Chem. Soc. 114, 1098–1100.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds