organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Amino­phen­yl)-3-(2,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 2 July 2010; accepted 4 July 2010; online 10 July 2010)

Mol­ecules of the title amino­chalcone, C18H19NO4, are twisted, with a dihedral angle of 11.26 (6)° between the 4-amino­phenyl and 2,4,5-trimeth­oxy­phenyl rings. The conformations of the three meth­oxy groups with respect to the benzene ring are slightly different. Two meth­oxy groups are almost coplanar with the attached benzene ring [C—O—C—C torsion angles of −1.45 (19) and 1.5 (2)°], while the third is (−)-synclinal with the attached benzene ring [C—O—C—C = −81.36 (17)°]. In the crystal structure, mol­ecules are stacked into columns along the b axis and mol­ecules in adjacent columns are linked by N—H⋯O hydrogen bonds into V-shaped double columns. Weak ππ inter­actions are also observed, with a centroid-centroid distance of 3.7532 (8) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.], 2010[Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312-o313.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]). For background to and applications of chalcones, see: Batovska et al. (2007[Batovska, D., Parushev, St., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M. & Najdenski, H. (2007). Eur. J. Med. Chem. 42, 87-92.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron. 27, 861-867.]); Kim et al. (2010[Kim, E.-J., Ryu, H. W., Curtis-Long, M. J., Han, J., Kim, J. Y., Cho, J. K., Kang, D. & Park, K. H. (2010). Bioorg. Med. Chem. Lett. 20, 4237-4239.]); Nielsen et al. (2004[Nielsen, S. F., Boesen, T., Larsen, M., Schønning, K. & Kromann, H. (2004). Bioorg. Med. Chem. 12, 3047-3054.]); Niu et al. (2006[Niu, C. G., Guan, A. L., Zeng, G. M., Liu, Y. G. & Li, Z. W. (2006). Anal. Chim. Acta, 577, 264-270.]); Romagnoli et al. (2008[Romagnoli, R., Baraldi, P. G., Carrion, M. D., Cara, C. L., Cruz-Lopez, O., Preti, D., Tolomeo, M., Grimaudo, S., Cristina, A. D., Zonta, N., Balzarini, J., Brancale, A., Sarkar, T. & Hamel, E. (2008). Bioorg. Med. Chem. 16, 5367-5376.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]); Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]); Xia et al. (2000[Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K.-H. (2000). Bioorg. Med. Chem. Lett. 10, 699-701.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO4

  • Mr = 313.34

  • Monoclinic, C 2/c

  • a = 13.6117 (2) Å

  • b = 10.3540 (2) Å

  • c = 22.3920 (4) Å

  • β = 100.879 (1)°

  • V = 3099.11 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.38 × 0.32 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.991

  • 19818 measured reflections

  • 4506 independent reflections

  • 3581 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.131

  • S = 1.05

  • 4506 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.86 (2) 2.12 (2) 2.9692 (16) 170.4 (17)
N1—H2N1⋯O1ii 0.88 (2) 2.21 (2) 3.0176 (17) 153.4 (19)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are important compounds which have considerable interesting applications involving biological activities such as antibacterial (Nielsen et al., 2004), antifungal (Batovska et al., 2007), anti-inflammatory (Won et al., 2005), anti-HIV-1 protease inhibition (Tewtrakul et al., 2003) and antitumor (Romagnoli et al., 2008) properties. Moreover they also show electroactive fluorescent properties (Jung et al., 2008; Niu et al., 2006). From previous reports, aminochalcone showed good cytotoxicity in vitro against human tumor cell lines (Xia et al., 2000) and was a new class of both activator and inhibitor of the TREK2 channel which turn out to be an important channel in charge of tuning neuronal transmitter and hormone levels (Kim et al., 2010). In continuing our on-going research on bioactivity and fluorescence properties of chalcones (Chantrapromma et al., 2009; 2010; Suwunwong et al., 2009), the title aminochalcone (I) was synthesized. (I) doesn't possess antibacterial and cytotoxic activities. However (I) exhibits fluorescence with the maximum emission at 480 nm when the compound is excited at 320 nm in chloroform solution.

The molecule of the title aminochalcone, (Fig. 1), exists in an E configuration with respect to the C8C9 double bond [1.3407 (19) Å] with torsion angle C7–C8–C9–C10 = 177.99 (13)°. The whole molecule is not planar indicated by the dihedral angle between 4-aminophenyl and 2,4,5-trimethoxyphenyl rings being 11.26 (6)°. The propenone unit (C7—C9/O1) is planar with the r.m.s. deviation 0.0031 (1) Å. The mean plane through the propenone unit makes dihedral angles of 11.70 (9) and 9.19 (9)° respectively with the planes of 4-aminophenyl and 2,4,5-trimethoxyphenyl rings. The three methoxy groups of 2,4,5-trimethoxyphenyl unit have two different orientations: two methoxy groups (at atom C11 and C13 positions) are co-planar with the attached benzene ring with torsion angles C16–O2–C11–C12 = -1.45 (19)° and C17–O3–C13–C12 = 1.5 (2)° whereas the one at atom C14 position is (-)-syn-clinally attached with the torsion angle C18–O4–C14–C13 = -81.36 (17)°. Weak C9—H9A···O1 and C9—H9A···O2 intramolecular interactions generate two S(5) motifs (Bernstein et al., 1995) (Fig. 1 and Table 1). The bond distances and angles are of normal values (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2009; 2010; Suwunwong et al., 2009).

In the crystal packing (Fig. 2), the molecules are stacked into columns along the b axis. The molecules in the adjacent columns are linked by N—H···O hydrogen bonds (Table 1) into a V-shape double columns. ππ interaction was observed with the Cg1···Cg2 distance of 3.7532 (8) Å (symmetry code -1/2 - x, 3/2 - y, 1 - z); Cg1 and Cg2 are the centroids of C1–C6 and C10–C15 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009, 2010); Suwunwong et al. (2009). For background to and applications of chalcones, see: Batovska et al. (2007); Jung et al. (2008); Kim et al. (2010); Nielsen et al. (2004); Niu et al. (2006); Romagnoli et al. (2008); Tewtrakul et al. (2003); Won et al. (2005); Xia et al. (2000).

Experimental top

The title compound was synthesized by the condensation of 2,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 4-aminoacetophenone (0.28 g, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH(aq) (5 ml). After stirring for 3 h at room temperature, the resulting orange solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Orange block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone by the slow evaporation of the solvent at room temperature after several days, Mp. 393–394 K.

Refinement top

Amino H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.74 Å from H18C and the deepest hole is located at 1.39 Å from C15.

Structure description top

Chalcones are important compounds which have considerable interesting applications involving biological activities such as antibacterial (Nielsen et al., 2004), antifungal (Batovska et al., 2007), anti-inflammatory (Won et al., 2005), anti-HIV-1 protease inhibition (Tewtrakul et al., 2003) and antitumor (Romagnoli et al., 2008) properties. Moreover they also show electroactive fluorescent properties (Jung et al., 2008; Niu et al., 2006). From previous reports, aminochalcone showed good cytotoxicity in vitro against human tumor cell lines (Xia et al., 2000) and was a new class of both activator and inhibitor of the TREK2 channel which turn out to be an important channel in charge of tuning neuronal transmitter and hormone levels (Kim et al., 2010). In continuing our on-going research on bioactivity and fluorescence properties of chalcones (Chantrapromma et al., 2009; 2010; Suwunwong et al., 2009), the title aminochalcone (I) was synthesized. (I) doesn't possess antibacterial and cytotoxic activities. However (I) exhibits fluorescence with the maximum emission at 480 nm when the compound is excited at 320 nm in chloroform solution.

The molecule of the title aminochalcone, (Fig. 1), exists in an E configuration with respect to the C8C9 double bond [1.3407 (19) Å] with torsion angle C7–C8–C9–C10 = 177.99 (13)°. The whole molecule is not planar indicated by the dihedral angle between 4-aminophenyl and 2,4,5-trimethoxyphenyl rings being 11.26 (6)°. The propenone unit (C7—C9/O1) is planar with the r.m.s. deviation 0.0031 (1) Å. The mean plane through the propenone unit makes dihedral angles of 11.70 (9) and 9.19 (9)° respectively with the planes of 4-aminophenyl and 2,4,5-trimethoxyphenyl rings. The three methoxy groups of 2,4,5-trimethoxyphenyl unit have two different orientations: two methoxy groups (at atom C11 and C13 positions) are co-planar with the attached benzene ring with torsion angles C16–O2–C11–C12 = -1.45 (19)° and C17–O3–C13–C12 = 1.5 (2)° whereas the one at atom C14 position is (-)-syn-clinally attached with the torsion angle C18–O4–C14–C13 = -81.36 (17)°. Weak C9—H9A···O1 and C9—H9A···O2 intramolecular interactions generate two S(5) motifs (Bernstein et al., 1995) (Fig. 1 and Table 1). The bond distances and angles are of normal values (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2009; 2010; Suwunwong et al., 2009).

In the crystal packing (Fig. 2), the molecules are stacked into columns along the b axis. The molecules in the adjacent columns are linked by N—H···O hydrogen bonds (Table 1) into a V-shape double columns. ππ interaction was observed with the Cg1···Cg2 distance of 3.7532 (8) Å (symmetry code -1/2 - x, 3/2 - y, 1 - z); Cg1 and Cg2 are the centroids of C1–C6 and C10–C15 rings, respectively.

For bond-length data, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009, 2010); Suwunwong et al. (2009). For background to and applications of chalcones, see: Batovska et al. (2007); Jung et al. (2008); Kim et al. (2010); Nielsen et al. (2004); Niu et al. (2006); Romagnoli et al. (2008); Tewtrakul et al. (2003); Won et al. (2005); Xia et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines represent the intramolecular C—H···O interactions.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(4-Aminophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H19NO4F(000) = 1328
Mr = 313.34Dx = 1.343 Mg m3
Monoclinic, C2/cMelting point = 393–394 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.6117 (2) ÅCell parameters from 4506 reflections
b = 10.3540 (2) Åθ = 1.9–30.0°
c = 22.3920 (4) ŵ = 0.10 mm1
β = 100.879 (1)°T = 100 K
V = 3099.11 (9) Å3Block, orange
Z = 80.38 × 0.32 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4506 independent reflections
Radiation source: sealed tube3581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.965, Tmax = 0.991k = 1412
19818 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0552P)2 + 3.4363P]
where P = (Fo2 + 2Fc2)/3
4506 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H19NO4V = 3099.11 (9) Å3
Mr = 313.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.6117 (2) ŵ = 0.10 mm1
b = 10.3540 (2) ÅT = 100 K
c = 22.3920 (4) Å0.38 × 0.32 × 0.10 mm
β = 100.879 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4506 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3581 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.991Rint = 0.029
19818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
4506 reflectionsΔρmin = 0.23 e Å3
219 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38020 (7)0.71239 (11)0.65434 (5)0.0236 (2)
O20.40102 (7)0.40284 (10)0.49618 (5)0.0226 (2)
O30.10593 (7)0.26403 (10)0.35317 (5)0.0237 (2)
O40.00667 (7)0.42294 (10)0.40878 (5)0.0230 (2)
N10.09228 (9)1.16277 (13)0.71073 (6)0.0226 (3)
H1N10.0289 (15)1.1700 (18)0.6971 (8)0.028 (5)*
H2N10.1136 (15)1.197 (2)0.7468 (9)0.036 (5)*
C10.23640 (9)0.84035 (13)0.65403 (6)0.0165 (3)
C20.28745 (9)0.92608 (13)0.69789 (6)0.0169 (3)
H2A0.35520.91290.71310.020*
C30.23973 (10)1.02891 (13)0.71892 (6)0.0174 (3)
H3A0.27491.08290.74860.021*
C40.13779 (10)1.05267 (13)0.69558 (6)0.0171 (3)
C50.08494 (9)0.96364 (14)0.65447 (6)0.0183 (3)
H5A0.01660.97460.64070.022*
C60.13318 (10)0.86001 (14)0.63425 (6)0.0182 (3)
H6A0.09680.80200.60700.022*
C70.29247 (10)0.73650 (13)0.63014 (6)0.0177 (3)
C80.24234 (10)0.66396 (14)0.57644 (6)0.0201 (3)
H8A0.17620.68350.55980.024*
C90.28853 (9)0.57075 (13)0.55064 (6)0.0177 (3)
H9A0.35530.55490.56730.021*
C100.24334 (9)0.49221 (13)0.49882 (6)0.0163 (3)
C110.30112 (9)0.40495 (13)0.47178 (6)0.0174 (3)
C120.25784 (10)0.32686 (13)0.42310 (6)0.0185 (3)
H12A0.29730.26970.40590.022*
C130.15546 (10)0.33465 (13)0.40038 (6)0.0181 (3)
C140.09645 (9)0.42119 (13)0.42698 (6)0.0181 (3)
C150.14011 (10)0.49721 (13)0.47490 (6)0.0177 (3)
H15A0.10020.55380.49210.021*
C160.46300 (10)0.31421 (15)0.47127 (7)0.0227 (3)
H16A0.53100.32310.49220.034*
H16B0.45900.33240.42880.034*
H16C0.44060.22760.47600.034*
C170.16178 (11)0.17238 (15)0.32512 (7)0.0249 (3)
H17A0.11890.13380.29080.037*
H17B0.18770.10650.35400.037*
H17C0.21620.21550.31180.037*
C180.04143 (12)0.49413 (19)0.35457 (8)0.0338 (4)
H18A0.11290.50170.34820.051*
H18B0.02280.45000.32070.051*
H18C0.01200.57870.35820.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (5)0.0295 (6)0.0228 (5)0.0039 (4)0.0025 (4)0.0032 (4)
O20.0130 (4)0.0288 (6)0.0253 (5)0.0038 (4)0.0019 (4)0.0025 (4)
O30.0197 (5)0.0270 (5)0.0244 (5)0.0026 (4)0.0043 (4)0.0092 (4)
O40.0132 (4)0.0286 (6)0.0263 (5)0.0023 (4)0.0012 (4)0.0023 (4)
N10.0168 (6)0.0277 (7)0.0220 (6)0.0043 (5)0.0001 (4)0.0045 (5)
C10.0151 (6)0.0176 (6)0.0160 (6)0.0007 (5)0.0009 (4)0.0023 (5)
C20.0126 (5)0.0202 (6)0.0164 (6)0.0009 (5)0.0009 (4)0.0036 (5)
C30.0157 (6)0.0201 (6)0.0151 (6)0.0029 (5)0.0004 (4)0.0012 (5)
C40.0162 (6)0.0200 (6)0.0152 (6)0.0005 (5)0.0035 (4)0.0034 (5)
C50.0116 (5)0.0230 (7)0.0195 (6)0.0014 (5)0.0003 (4)0.0023 (5)
C60.0151 (6)0.0206 (6)0.0176 (6)0.0038 (5)0.0002 (4)0.0006 (5)
C70.0160 (6)0.0194 (6)0.0170 (6)0.0002 (5)0.0012 (5)0.0022 (5)
C80.0151 (6)0.0225 (7)0.0203 (6)0.0011 (5)0.0024 (5)0.0015 (5)
C90.0137 (5)0.0220 (7)0.0170 (6)0.0018 (5)0.0019 (4)0.0029 (5)
C100.0145 (6)0.0184 (6)0.0161 (6)0.0008 (5)0.0034 (4)0.0018 (5)
C110.0135 (5)0.0202 (6)0.0186 (6)0.0002 (5)0.0034 (5)0.0035 (5)
C120.0178 (6)0.0186 (6)0.0209 (6)0.0013 (5)0.0080 (5)0.0005 (5)
C130.0190 (6)0.0186 (6)0.0174 (6)0.0038 (5)0.0052 (5)0.0006 (5)
C140.0129 (6)0.0208 (7)0.0206 (6)0.0023 (5)0.0033 (5)0.0008 (5)
C150.0148 (6)0.0187 (6)0.0200 (6)0.0003 (5)0.0045 (5)0.0005 (5)
C160.0166 (6)0.0260 (7)0.0265 (7)0.0058 (5)0.0071 (5)0.0040 (6)
C170.0281 (7)0.0221 (7)0.0260 (7)0.0023 (6)0.0091 (6)0.0064 (6)
C180.0208 (7)0.0432 (10)0.0345 (9)0.0005 (7)0.0023 (6)0.0071 (7)
Geometric parameters (Å, º) top
O1—C71.2400 (16)C8—C91.3407 (19)
O2—C111.3666 (15)C8—H8A0.9300
O2—C161.4293 (17)C9—C101.4549 (18)
O3—C131.3557 (16)C9—H9A0.9300
O3—C171.4329 (17)C10—C151.4071 (18)
O4—C141.3859 (15)C10—C111.4076 (18)
O4—C181.4228 (19)C11—C121.3953 (19)
N1—C41.3704 (18)C12—C131.3927 (18)
N1—H1N10.862 (19)C12—H12A0.9300
N1—H2N10.88 (2)C13—C141.4083 (19)
C1—C61.4060 (18)C14—C151.3724 (19)
C1—C21.4064 (18)C15—H15A0.9300
C1—C71.4760 (19)C16—H16A0.9600
C2—C31.3758 (19)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.4089 (18)C17—H17A0.9600
C3—H3A0.9300C17—H17B0.9600
C4—C51.4016 (19)C17—H17C0.9600
C5—C61.378 (2)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—H6A0.9300C18—H18C0.9600
C7—C81.4718 (19)
C11—O2—C16118.06 (11)C11—C10—C9121.02 (12)
C13—O3—C17118.17 (11)O2—C11—C12123.00 (12)
C14—O4—C18114.38 (11)O2—C11—C10115.65 (12)
C4—N1—H1N1117.0 (13)C12—C11—C10121.35 (12)
C4—N1—H2N1118.4 (13)C13—C12—C11119.84 (12)
H1N1—N1—H2N1115.1 (18)C13—C12—H12A120.1
C6—C1—C2117.47 (12)C11—C12—H12A120.1
C6—C1—C7123.07 (12)O3—C13—C12124.72 (12)
C2—C1—C7119.46 (11)O3—C13—C14115.69 (12)
C3—C2—C1121.63 (12)C12—C13—C14119.59 (12)
C3—C2—H2A119.2C15—C14—O4119.17 (12)
C1—C2—H2A119.2C15—C14—C13119.88 (12)
C2—C3—C4120.24 (12)O4—C14—C13120.72 (12)
C2—C3—H3A119.9C14—C15—C10122.04 (12)
C4—C3—H3A119.9C14—C15—H15A119.0
N1—C4—C5120.65 (12)C10—C15—H15A119.0
N1—C4—C3120.86 (12)O2—C16—H16A109.5
C5—C4—C3118.44 (12)O2—C16—H16B109.5
C6—C5—C4120.69 (12)H16A—C16—H16B109.5
C6—C5—H5A119.7O2—C16—H16C109.5
C4—C5—H5A119.7H16A—C16—H16C109.5
C5—C6—C1121.26 (12)H16B—C16—H16C109.5
C5—C6—H6A119.4O3—C17—H17A109.5
C1—C6—H6A119.4O3—C17—H17B109.5
O1—C7—C8120.93 (12)H17A—C17—H17B109.5
O1—C7—C1120.63 (12)O3—C17—H17C109.5
C8—C7—C1118.43 (11)H17A—C17—H17C109.5
C9—C8—C7122.45 (12)H17B—C17—H17C109.5
C9—C8—H8A118.8O4—C18—H18A109.5
C7—C8—H8A118.8O4—C18—H18B109.5
C8—C9—C10125.73 (12)H18A—C18—H18B109.5
C8—C9—H9A117.1O4—C18—H18C109.5
C10—C9—H9A117.1H18A—C18—H18C109.5
C15—C10—C11117.31 (12)H18B—C18—H18C109.5
C15—C10—C9121.64 (12)
C6—C1—C2—C32.81 (19)C15—C10—C11—O2179.96 (11)
C7—C1—C2—C3176.14 (12)C9—C10—C11—O21.95 (18)
C1—C2—C3—C41.5 (2)C15—C10—C11—C120.21 (19)
C2—C3—C4—N1172.31 (13)C9—C10—C11—C12178.30 (12)
C2—C3—C4—C55.09 (19)O2—C11—C12—C13179.69 (12)
N1—C4—C5—C6173.09 (13)C10—C11—C12—C130.0 (2)
C3—C4—C5—C64.31 (19)C17—O3—C13—C121.5 (2)
C4—C5—C6—C10.1 (2)C17—O3—C13—C14178.72 (12)
C2—C1—C6—C53.6 (2)C11—C12—C13—O3179.60 (13)
C7—C1—C6—C5175.30 (13)C11—C12—C13—C140.2 (2)
C6—C1—C7—O1170.62 (13)C18—O4—C14—C15104.12 (16)
C2—C1—C7—O110.5 (2)C18—O4—C14—C1381.36 (17)
C6—C1—C7—C810.37 (19)O3—C13—C14—C15179.72 (12)
C2—C1—C7—C8168.52 (12)C12—C13—C14—C150.1 (2)
O1—C7—C8—C91.0 (2)O3—C13—C14—O45.79 (19)
C1—C7—C8—C9177.98 (13)C12—C13—C14—O4174.38 (12)
C7—C8—C9—C10177.99 (13)O4—C14—C15—C10174.73 (12)
C8—C9—C10—C157.9 (2)C13—C14—C15—C100.2 (2)
C8—C9—C10—C11174.10 (14)C11—C10—C15—C140.3 (2)
C16—O2—C11—C121.45 (19)C9—C10—C15—C14178.39 (13)
C16—O2—C11—C10178.80 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.86 (2)2.12 (2)2.9692 (16)170.4 (17)
N1—H2N1···O1ii0.88 (2)2.21 (2)3.0176 (17)153.4 (19)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H19NO4
Mr313.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)13.6117 (2), 10.3540 (2), 22.3920 (4)
β (°) 100.879 (1)
V3)3099.11 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.32 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19818, 4506, 3581
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.131, 1.05
No. of reflections4506
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.86 (2)2.12 (2)2.9692 (16)170.4 (17)
N1—H2N1···O1ii0.88 (2)2.21 (2)3.0176 (17)153.4 (19)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for the research grant (RSA5280033), Prince of Songkla University and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. TK and PR thank the Graduate School, Prince of Songkla University, for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBatovska, D., Parushev, St., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M. & Najdenski, H. (2007). Eur. J. Med. Chem. 42, 87–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312–o313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron. 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, E.-J., Ryu, H. W., Curtis-Long, M. J., Han, J., Kim, J. Y., Cho, J. K., Kang, D. & Park, K. H. (2010). Bioorg. Med. Chem. Lett. 20, 4237–4239.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNielsen, S. F., Boesen, T., Larsen, M., Schønning, K. & Kromann, H. (2004). Bioorg. Med. Chem. 12, 3047–3054.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNiu, C. G., Guan, A. L., Zeng, G. M., Liu, Y. G. & Li, Z. W. (2006). Anal. Chim. Acta, 577, 264–270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRomagnoli, R., Baraldi, P. G., Carrion, M. D., Cara, C. L., Cruz-Lopez, O., Preti, D., Tolomeo, M., Grimaudo, S., Cristina, A. D., Zonta, N., Balzarini, J., Brancale, A., Sarkar, T. & Hamel, E. (2008). Bioorg. Med. Chem. 16, 5367–5376.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K.-H. (2000). Bioorg. Med. Chem. Lett. 10, 699–701.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds