organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Bromo-N-(2,3,4-trimeth­­oxy­benzyl­­idene)aniline

aInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: fejfarov@fzu.cz

(Received 2 July 2010; accepted 14 July 2010; online 21 July 2010)

The title Schiff base compound, C16H16BrNO3, adopts an E configuration with respect to the C=N bond. The dihedral angle between the two aromatic rings is 64.02 (6)°.

Related literature

For applications of Schiff-base compounds, see: Yildiz et al. (2008[Yildiz, M., Unver, H., Dulger, B., Erdener, D., Ocak, N., Erdonmez, A. & Durlu, T. N. (2008). J. Mol. Struct. 738, 253-260.]); Hijji et al. (2009[Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297-302.]); Karakas et al. (2008[Karakas, A., Univer, H. & Elmali, A. (2008). J. Mol. Struct. 877, 152-157.]); Hadjoudis et al. (2004[Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Aziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521-530.]). For related structures, see: Khalaji et al. (2007[Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.], 2008[Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci. 24, x138-x139.], 2009[Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.], 2010[Khalaji, A. D., Fejfarová, K. & Dušek, M. (2010). Acta Chim. Slov. 57, 257-261.]); Khalaji & Harrison (2008[Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.]); Khalaji & Simpson (2009[Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrNO3

  • Mr = 350.2

  • Triclinic, [P \overline 1]

  • a = 7.9103 (3) Å

  • b = 9.9902 (4) Å

  • c = 10.7821 (3) Å

  • α = 93.068 (3)°

  • β = 108.568 (3)°

  • γ = 109.679 (3)°

  • V = 748.10 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.83 mm−1

  • T = 120 K

  • 0.49 × 0.38 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini Ultra Cu) detector

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.308, Tmax = 0.631

  • 11571 measured reflections

  • 2546 independent reflections

  • 2485 reflections with I > 3σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.093

  • S = 1.73

  • 2546 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The chemistry of Schiff-bases is very diverse because of a variety of possible substituents with different electron donating and withdrawing groups (Yildiz et al., 2008; Hijji et al., 2009; Karakas et al., 2008). These compounds have been studied for their use as anion sensors (Hijji et al., 2009), antimicrobial activity (Yildiz et al., 2008), photochromism and thermochromism (Hadjoudis et al., 2004) and nonlinear optical properties (Karakas et al., 2008). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds we report the synthesis and crystal structure of (E)-4-bromo-N-(2,3-dimethoxybenzylidene)aniline (1).

An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. Bond lengths in the title compound are normal (Allen et al., 1987). The C1—N1 and C11—N1 bond lengths of 1.286 (3) and 1.415 (3) Å, respectively, conform to the value for a double and single bonds as found in similar Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji et al., 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009; Khalaji et al., 2010). The dihedral angle between the two aromatic rings is 64.02 (6)°, while the plane through the central C1—N1—C1—C2 system is inclined at 21.65 (18)° to the dimethoxyphenyl ring and 42.37 (18)° to the bromobenzene ring. The two methoxy groups attached at C3 and C4 are twisted away from the C2—C7 benzene ring, with corresponding torsion angles C8—O1—C3—C2, C9—O2—C4—C3 of 103.6 (2)°, -88.7 (2)°, respectively. The third methoxy group attached at C5 is almost coplanar with the C2—C7 ring, as shown by the torsion angle C10—O3—C5—C6 of -7.2 (3)°.

Related literature top

For applications of Schiff-base compounds, see: Yildiz et al. (2008); Hijji et al. (2009); Karakas et al. (2008); Hadjoudis et al. (2004). For related structures, see: Khalaji et al. (2007, 2008, 2009, 2010); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared in 83% yield from 2,3,4-trimethoxybenzaldehyde and 4-bromoaniline as reported elsewhere (Khalaji & Harrison, 2008) and recrystallized from chloroform. Anal. Calc. for C16H16BrNO3: C, 54.87; H, 4.60; N, 4.00%. Found: C, 54.66; H, 4.52; N, 4.06%. IR (KBr pellet, cm-1): 2911–2998 (m, C—H aromatic and aliphatic), 2837 (s, –CH=N–); 1615 (s, C=N), 1413–1594 (C=C aromatic).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice the H atoms were placed in geometrically ideal positions and allowed to ride on their respective parent atoms, with C—H distance of 0.96 Å. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Structure description top

The chemistry of Schiff-bases is very diverse because of a variety of possible substituents with different electron donating and withdrawing groups (Yildiz et al., 2008; Hijji et al., 2009; Karakas et al., 2008). These compounds have been studied for their use as anion sensors (Hijji et al., 2009), antimicrobial activity (Yildiz et al., 2008), photochromism and thermochromism (Hadjoudis et al., 2004) and nonlinear optical properties (Karakas et al., 2008). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds we report the synthesis and crystal structure of (E)-4-bromo-N-(2,3-dimethoxybenzylidene)aniline (1).

An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. Bond lengths in the title compound are normal (Allen et al., 1987). The C1—N1 and C11—N1 bond lengths of 1.286 (3) and 1.415 (3) Å, respectively, conform to the value for a double and single bonds as found in similar Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji et al., 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009; Khalaji et al., 2010). The dihedral angle between the two aromatic rings is 64.02 (6)°, while the plane through the central C1—N1—C1—C2 system is inclined at 21.65 (18)° to the dimethoxyphenyl ring and 42.37 (18)° to the bromobenzene ring. The two methoxy groups attached at C3 and C4 are twisted away from the C2—C7 benzene ring, with corresponding torsion angles C8—O1—C3—C2, C9—O2—C4—C3 of 103.6 (2)°, -88.7 (2)°, respectively. The third methoxy group attached at C5 is almost coplanar with the C2—C7 ring, as shown by the torsion angle C10—O3—C5—C6 of -7.2 (3)°.

For applications of Schiff-base compounds, see: Yildiz et al. (2008); Hijji et al. (2009); Karakas et al. (2008); Hadjoudis et al. (2004). For related structures, see: Khalaji et al. (2007, 2008, 2009, 2010); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(E)-4-Bromo-N-(2,3,4-trimethoxybenzylidene)aniline top
Crystal data top
C16H16BrNO3Z = 2
Mr = 350.2F(000) = 356
Triclinic, P1Dx = 1.554 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.9103 (3) ÅCell parameters from 11782 reflections
b = 9.9902 (4) Åθ = 4.4–66.7°
c = 10.7821 (3) ŵ = 3.83 mm1
α = 93.068 (3)°T = 120 K
β = 108.568 (3)°Irregular shape, colourless
γ = 109.679 (3)°0.49 × 0.38 × 0.25 mm
V = 748.10 (5) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini Ultra Cu) detector
2546 independent reflections
Radiation source: X-ray tube2485 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.3784 pixels mm-1θmax = 65.1°, θmin = 4.4°
Rotation method data acquisition using ω scansh = 99
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.308, Tmax = 0.631l = 1212
11571 measured reflections
Refinement top
Refinement on F264 constraints
R[F > 3σ(F)] = 0.026H-atom parameters constrained
wR(F) = 0.093Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0025000002I2]
S = 1.73(Δ/σ)max = 0.010
2546 reflectionsΔρmax = 0.29 e Å3
190 parametersΔρmin = 0.28 e Å3
0 restraints
Crystal data top
C16H16BrNO3γ = 109.679 (3)°
Mr = 350.2V = 748.10 (5) Å3
Triclinic, P1Z = 2
a = 7.9103 (3) ÅCu Kα radiation
b = 9.9902 (4) ŵ = 3.83 mm1
c = 10.7821 (3) ÅT = 120 K
α = 93.068 (3)°0.49 × 0.38 × 0.25 mm
β = 108.568 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini Ultra Cu) detector
2546 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
2485 reflections with I > 3σ(I)
Tmin = 0.308, Tmax = 0.631Rint = 0.023
11571 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0260 restraints
wR(F) = 0.093H-atom parameters constrained
S = 1.73Δρmax = 0.29 e Å3
2546 reflectionsΔρmin = 0.28 e Å3
190 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74999 (3)0.08307 (2)0.325568 (16)0.02973 (14)
O10.27449 (16)0.17106 (14)0.96566 (12)0.0209 (5)
O20.28261 (17)0.27191 (14)1.21239 (13)0.0204 (5)
O30.58807 (17)0.49203 (14)1.37866 (12)0.0217 (5)
N10.7545 (2)0.28811 (17)0.86865 (15)0.0205 (6)
C10.5987 (2)0.27332 (18)0.88986 (17)0.0196 (6)
C20.6019 (2)0.33388 (19)1.01757 (17)0.0183 (6)
C30.4387 (2)0.27855 (18)1.05351 (17)0.0179 (6)
C40.4391 (2)0.33244 (18)1.17524 (16)0.0177 (6)
C50.6034 (2)0.44399 (19)1.26324 (17)0.0188 (6)
C60.7671 (2)0.50042 (19)1.22894 (17)0.0205 (7)
C70.7633 (2)0.4451 (2)1.10740 (17)0.0209 (7)
C80.2463 (3)0.0301 (2)1.0001 (2)0.0275 (7)
C90.1411 (2)0.3364 (2)1.16845 (19)0.0225 (7)
C100.7574 (3)0.5963 (2)1.4782 (2)0.0283 (8)
C110.7401 (2)0.23365 (19)0.74029 (17)0.0190 (6)
C120.8644 (2)0.16622 (19)0.73130 (18)0.0214 (7)
C130.8630 (3)0.1162 (2)0.60794 (19)0.0228 (7)
C140.7397 (3)0.1383 (2)0.49439 (18)0.0212 (7)
C150.6134 (3)0.2048 (2)0.50017 (19)0.0232 (7)
C160.6156 (3)0.2530 (2)0.62404 (18)0.0224 (7)
H10.4771120.221210.8201070.0236*
H60.8804650.5765861.2891790.0246*
H70.8754050.4844211.0840820.0251*
H8a0.1177560.0351460.9486380.0329*
H8b0.3366040.0045890.9814720.0329*
H8c0.2655450.0359211.0930090.0329*
H9a0.0392260.2943091.2013480.0269*
H9b0.2000610.4386011.2017140.0269*
H9c0.0895880.31941.0730.0269*
H10a0.7257420.6251091.5515870.034*
H10b0.8526510.5543341.5088650.034*
H10c0.8072260.6793081.4408790.034*
H120.952080.1540770.8109370.0256*
H130.9462880.0670320.601730.0274*
H150.5264580.2171140.420290.0278*
H160.5303090.3003480.6297780.0268*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03787 (19)0.03187 (19)0.02105 (19)0.00904 (13)0.01747 (12)0.00097 (11)
O10.0192 (6)0.0209 (7)0.0176 (6)0.0033 (5)0.0045 (5)0.0034 (5)
O20.0202 (6)0.0239 (7)0.0230 (7)0.0091 (5)0.0132 (5)0.0103 (5)
O30.0227 (6)0.0259 (7)0.0175 (6)0.0079 (5)0.0099 (5)0.0019 (5)
N10.0230 (7)0.0245 (8)0.0159 (7)0.0089 (6)0.0090 (6)0.0047 (6)
C10.0214 (8)0.0192 (8)0.0189 (9)0.0072 (7)0.0078 (7)0.0067 (7)
C20.0206 (8)0.0211 (8)0.0174 (8)0.0098 (7)0.0094 (7)0.0071 (7)
C30.0179 (8)0.0183 (8)0.0178 (8)0.0071 (7)0.0059 (6)0.0058 (7)
C40.0196 (8)0.0197 (8)0.0192 (8)0.0096 (7)0.0107 (7)0.0095 (7)
C50.0214 (8)0.0216 (9)0.0177 (8)0.0104 (7)0.0093 (7)0.0069 (7)
C60.0196 (8)0.0213 (9)0.0199 (9)0.0059 (7)0.0082 (7)0.0030 (7)
C70.0201 (8)0.0238 (9)0.0213 (9)0.0073 (7)0.0114 (7)0.0060 (7)
C80.0309 (9)0.0197 (9)0.0304 (11)0.0044 (8)0.0147 (8)0.0038 (8)
C90.0187 (9)0.0268 (9)0.0248 (10)0.0093 (8)0.0105 (7)0.0066 (7)
C100.0256 (9)0.0369 (11)0.0186 (9)0.0094 (8)0.0066 (7)0.0024 (8)
C110.0192 (8)0.0185 (8)0.0188 (9)0.0039 (7)0.0091 (7)0.0044 (7)
C120.0208 (8)0.0256 (9)0.0208 (9)0.0097 (7)0.0098 (7)0.0078 (7)
C130.0232 (9)0.0227 (9)0.0265 (10)0.0097 (7)0.0126 (7)0.0055 (7)
C140.0261 (9)0.0205 (9)0.0186 (9)0.0053 (7)0.0140 (7)0.0022 (7)
C150.0277 (9)0.0249 (9)0.0185 (9)0.0105 (8)0.0088 (7)0.0083 (7)
C160.0255 (9)0.0241 (9)0.0223 (9)0.0118 (7)0.0116 (7)0.0066 (7)
Geometric parameters (Å, º) top
Br1—C141.908 (2)C8—H8a0.96
O1—C31.3805 (16)C8—H8b0.96
O1—C81.438 (2)C8—H8c0.96
O2—C41.377 (2)C9—H9a0.96
O2—C91.440 (3)C9—H9b0.96
O3—C51.365 (2)C9—H9c0.96
O3—C101.4342 (19)C10—H10a0.96
N1—C11.286 (3)C10—H10b0.96
N1—C111.415 (3)C10—H10c0.96
C1—C21.463 (3)C11—C121.390 (3)
C1—H10.96C11—C161.395 (3)
C2—C31.408 (3)C12—C131.391 (3)
C2—C71.3946 (19)C12—H120.96
C3—C41.391 (3)C13—C141.383 (3)
C4—C51.3990 (19)C13—H130.96
C5—C61.403 (3)C14—C151.387 (3)
C6—C71.382 (3)C15—C161.388 (3)
C6—H60.96C15—H150.96
C7—H70.96C16—H160.96
C3—O1—C8113.46 (13)O2—C9—H9a109.4709
C4—O2—C9112.97 (15)O2—C9—H9b109.4713
C5—O3—C10117.80 (15)O2—C9—H9c109.4711
C1—N1—C11118.43 (13)H9a—C9—H9b109.4714
N1—C1—C2121.70 (13)H9a—C9—H9c109.4709
N1—C1—H1119.1502H9b—C9—H9c109.4718
C2—C1—H1119.1489O3—C10—H10a109.4713
C1—C2—C3119.84 (13)O3—C10—H10b109.4716
C1—C2—C7122.20 (18)O3—C10—H10c109.4711
C3—C2—C7117.96 (17)H10a—C10—H10b109.4714
O1—C3—C2119.60 (16)H10a—C10—H10c109.4707
O1—C3—C4119.38 (16)H10b—C10—H10c109.4713
C2—C3—C4121.01 (13)N1—C11—C12117.91 (16)
O2—C4—C3120.43 (12)N1—C11—C16122.8 (2)
O2—C4—C5119.83 (17)C12—C11—C16119.21 (19)
C3—C4—C5119.66 (17)C11—C12—C13120.60 (17)
O3—C5—C4115.31 (17)C11—C12—H12119.6985
O3—C5—C6124.62 (13)C13—C12—H12119.6991
C4—C5—C6120.06 (17)C12—C13—C14118.9 (2)
C5—C6—C7119.23 (13)C12—C13—H13120.5337
C5—C6—H6120.3876C14—C13—H13120.5339
C7—C6—H6120.3865Br1—C14—C13119.31 (18)
C2—C7—C6122.09 (18)Br1—C14—C15118.89 (14)
C2—C7—H7118.9551C13—C14—C15121.8 (2)
C6—C7—H7118.9554C14—C15—C16118.52 (18)
O1—C8—H8a109.4712C14—C15—H15120.7399
O1—C8—H8b109.4712C16—C15—H15120.7397
O1—C8—H8c109.4713C11—C16—C15120.9 (2)
H8a—C8—H8b109.4713C11—C16—H16119.5302
H8a—C8—H8c109.4709C15—C16—H16119.5303
H8b—C8—H8c109.4714
C8—O1—C3—C2103.6 (2)C11—N1—C1—C2176.48 (16)
C8—O1—C3—C477.6 (2)C1—N1—C11—C12140.37 (18)
C9—O2—C4—C388.7 (2)C1—N1—C11—C1643.7 (3)
C9—O2—C4—C594.54 (19)N1—C1—C2—C3159.30 (17)
C10—O3—C5—C4174.08 (16)N1—C1—C2—C720.0 (3)
C10—O3—C5—C67.2 (3)

Experimental details

Crystal data
Chemical formulaC16H16BrNO3
Mr350.2
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.9103 (3), 9.9902 (4), 10.7821 (3)
α, β, γ (°)93.068 (3), 108.568 (3), 109.679 (3)
V3)748.10 (5)
Z2
Radiation typeCu Kα
µ (mm1)3.83
Crystal size (mm)0.49 × 0.38 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini Ultra Cu) detector
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.308, 0.631
No. of measured, independent and
observed [I > 3σ(I)] reflections
11571, 2546, 2485
Rint0.023
(sin θ/λ)max1)0.588
Refinement
R[F > 3σ(F)], wR(F), S 0.026, 0.093, 1.73
No. of reflections2546
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

We acknowledge the Golestan University (GU), the Institutional research plan No. AVOZ1010051 of the Institute of Physics and the Praemium academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Rontoyianni, A., Ambroziak, K., Aziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationHijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297–302.  Web of Science CrossRef CAS Google Scholar
First citationKarakas, A., Univer, H. & Elmali, A. (2008). J. Mol. Struct. 877, 152–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Fejfarová, K. & Dušek, M. (2010). Acta Chim. Slov. 57, 257–261.  CAS PubMed Google Scholar
First citationKhalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4.  CAS Google Scholar
First citationKhalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci. 24, x138–x139.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationYildiz, M., Unver, H., Dulger, B., Erdener, D., Ocak, N., Erdonmez, A. & Durlu, T. N. (2008). J. Mol. Struct. 738, 253–260.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds