organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Meth­­oxy­phen­yl)-2-(1H-1,2,4-triazol-1-yl)ethanone

aDepartamento de Química, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile, bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 21 June 2010; accepted 5 July 2010; online 10 July 2010)

In the title compound, C11H11N3O2, the dihedral angle between the central ethanone fragment and the 4-meth­oxy­phenyl group is 2.9 (2)°, while that between the ethanone fragment and the triazole ring is 83.4 (2)°. The dihedral angle between the planes of the triazole and benzene rings is 81.7 (1)°. The 4-meth­oxy­phenyl group is cis with respect to the ethanone fragment O atom across the exocyclic C—C bond. In the crystal, mol­ecules are linked by C—H⋯N inter­actions into C(9) chains along [001].

Related literature

For the biological activity of fungal infections, see: Wingard & Leather (2004[Wingard, J. R. & Leather, H. (2004). Biol. Blood Marrow Transplant. 10, 73-90.]); Lamb et al. (1999[Lamb, D., Kelly, D. & Kelly, S. (1999). Drug Resit. Updat. 2, 390-402.]). For the synthesis, see: Emami et al. (2008[Emami, S., Foroumadi, A., Falahati, M., Lotfali, E. S., Rajabalian, S., Ebrahimi, S. A., Farahyarc, S. & Shafieeb, A. (2008). Bioorg. Med. Chem. Lett. 18, 141-146.]); Upadhayaya et al. (2009[Upadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 4681-4692]); Schiaffella et al. (2005[Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2005). J. Med. Chem. 48 7658-7666.]); Dawood et al. (2006[Dawood, K. M., Abdel-Gawad, H., Rageb, E. A., Ellitheyc, M. & Mohamed, H. A. (2006). Bioorg. Med. Chem. 14, 3672-3680.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3O2

  • Mr = 217.23

  • Monoclinic, C 2/c

  • a = 23.409 (3) Å

  • b = 4.8347 (7) Å

  • c = 20.607 (2) Å

  • β = 116.275 (8)°

  • V = 2091.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.29 × 0.25 × 0.21 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 4675 measured reflections

  • 1944 independent reflections

  • 1260 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 0.89

  • 1944 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N4i 0.95 2.42 3.336 (3) 162
Symmetry code: (i) [x, -y+2, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fungal infections caused by pathogenic species, often characterized by high mortality rates, has been increasing over the past two decades. In the treatment of fungal infections the number of efficacious antifungal drugs is limited (Wingard & Leather, 2004). Many of the currently available drugs are toxic, produce recurrence because they are fungistatic and not fungicides or lead to the development of resistance due in part to the prolonged periods of administration of the available antifungal drugs (Lamb et al., 1999). In order to seek new antifungal agents we are preparing a series of substituted triazoles, fluconazole analogues (Emami et al., 2008).

In this article we report the synthesis and crystal structure of the titl compound, (I). In (I), Fig. 1, the dihedral angle between the central OCC ethanone fragment and the o-methoxyphenyl group is 2.9 (2)°, while that with group triazole is 83.4 (2)°. The dihedral angle between the plane of triazole and benzene ring is 81.7 (1)°. The o-methoxyphenyl group is cis with respect to the ethanone fragment O atom across the C11—C1 bond. In the crystal molecules are linked by C—H···N interactions into chains with graph-set notation C(9) along [001] (Bernstein et al., 1995), Table 1, Fig. 2.

Related literature top

For the biological activity [of what?], see: Wingard & Leather (2004); Lamb et al. (1999). For the synthesis, see: Emami et al. (2008); Upadhayaya et al. (2009); Schiaffella et al. (2005); Dawood et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Compound (II), was synthesized as described by Upadhayaya, et al., (2009). Compound (I) was synthesized from (II) as described by Schiaffella et al., (2005) and Dawood et al., (2006) as shown in scheme 1. Recrystallization of (I) from methanol/chloroform (9/1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms could be located by difference Fourier synthesis but were ultimately placed in calculated positions using a riding model with C—H(aromatic) = 0.95 Å, CH(methylene) = 0.99 Å and CH(methyl) = 0.98 Å with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl)].

Structure description top

Fungal infections caused by pathogenic species, often characterized by high mortality rates, has been increasing over the past two decades. In the treatment of fungal infections the number of efficacious antifungal drugs is limited (Wingard & Leather, 2004). Many of the currently available drugs are toxic, produce recurrence because they are fungistatic and not fungicides or lead to the development of resistance due in part to the prolonged periods of administration of the available antifungal drugs (Lamb et al., 1999). In order to seek new antifungal agents we are preparing a series of substituted triazoles, fluconazole analogues (Emami et al., 2008).

In this article we report the synthesis and crystal structure of the titl compound, (I). In (I), Fig. 1, the dihedral angle between the central OCC ethanone fragment and the o-methoxyphenyl group is 2.9 (2)°, while that with group triazole is 83.4 (2)°. The dihedral angle between the plane of triazole and benzene ring is 81.7 (1)°. The o-methoxyphenyl group is cis with respect to the ethanone fragment O atom across the C11—C1 bond. In the crystal molecules are linked by C—H···N interactions into chains with graph-set notation C(9) along [001] (Bernstein et al., 1995), Table 1, Fig. 2.

For the biological activity [of what?], see: Wingard & Leather (2004); Lamb et al. (1999). For the synthesis, see: Emami et al. (2008); Upadhayaya et al. (2009); Schiaffella et al. (2005); Dawood et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with the atom numbering; displacement ellipsoids are at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Packing diagram for (I) showing the formation of a C(9) chain along [001]. Hydrogen bond shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
1-(4-Methoxyphenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone top
Crystal data top
C11H11N3O2F(000) = 912
Mr = 217.23Dx = 1.380 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3087 reflections
a = 23.409 (3) Åθ = 3.6–25.9°
b = 4.8347 (7) ŵ = 0.10 mm1
c = 20.607 (2) ÅT = 173 K
β = 116.275 (8)°Block, colourless
V = 2091.2 (5) Å30.29 × 0.25 × 0.21 mm
Z = 8
Data collection top
Stoe IPDS II two-circle
diffractometer
1260 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 25.6°, θmin = 3.5°
ω scansh = 2728
4675 measured reflectionsk = 55
1944 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
1944 reflectionsΔρmax = 0.16 e Å3
147 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (8)
Crystal data top
C11H11N3O2V = 2091.2 (5) Å3
Mr = 217.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.409 (3) ŵ = 0.10 mm1
b = 4.8347 (7) ÅT = 173 K
c = 20.607 (2) Å0.29 × 0.25 × 0.21 mm
β = 116.275 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1260 reflections with I > 2σ(I)
4675 measured reflectionsRint = 0.053
1944 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.89Δρmax = 0.16 e Å3
1944 reflectionsΔρmin = 0.16 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34820 (7)0.4726 (3)0.43819 (7)0.0493 (4)
C10.37507 (9)0.6336 (4)0.41489 (9)0.0347 (4)
C20.42565 (9)0.8304 (4)0.46522 (9)0.0358 (4)
H2A0.46510.80430.45950.043*
H2B0.41101.02300.45120.043*
N10.43985 (8)0.7900 (3)0.54036 (8)0.0355 (4)
N20.47973 (9)0.5846 (4)0.57991 (8)0.0521 (5)
C30.47828 (12)0.6132 (5)0.64287 (10)0.0512 (6)
H30.50220.49710.68300.061*
N40.44080 (9)0.8176 (4)0.64643 (8)0.0486 (5)
C50.41747 (10)0.9240 (4)0.58069 (10)0.0428 (5)
H50.38871.07530.56440.051*
C110.36082 (8)0.6444 (4)0.33756 (9)0.0307 (4)
C120.31663 (9)0.4624 (4)0.28896 (9)0.0344 (4)
H120.29540.33540.30600.041*
C130.30274 (9)0.4612 (4)0.21646 (9)0.0353 (4)
H130.27240.33510.18410.042*
C140.33387 (9)0.6477 (4)0.19143 (8)0.0335 (4)
C150.37810 (9)0.8315 (4)0.23879 (9)0.0366 (4)
H150.39930.95810.22150.044*
C160.39130 (9)0.8305 (4)0.31086 (9)0.0354 (4)
H160.42150.95770.34300.042*
O170.32364 (7)0.6657 (3)0.12113 (6)0.0433 (4)
C170.28122 (11)0.4693 (5)0.07117 (10)0.0513 (6)
H17A0.29510.28170.08930.077*
H17B0.28150.49180.02400.077*
H17C0.23800.49980.06590.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0624 (10)0.0507 (9)0.0465 (8)0.0140 (8)0.0348 (7)0.0002 (6)
C10.0380 (10)0.0301 (9)0.0422 (9)0.0052 (9)0.0235 (8)0.0035 (8)
C20.0422 (11)0.0346 (10)0.0345 (9)0.0008 (9)0.0205 (8)0.0003 (7)
N10.0396 (9)0.0362 (9)0.0349 (7)0.0056 (7)0.0202 (7)0.0004 (6)
N20.0676 (13)0.0570 (11)0.0409 (8)0.0258 (10)0.0325 (9)0.0113 (8)
C30.0627 (14)0.0583 (13)0.0397 (10)0.0182 (12)0.0290 (10)0.0059 (10)
N40.0523 (11)0.0584 (11)0.0425 (9)0.0069 (9)0.0278 (8)0.0072 (8)
C50.0439 (12)0.0443 (12)0.0424 (10)0.0044 (10)0.0210 (9)0.0097 (9)
C110.0313 (10)0.0272 (9)0.0374 (8)0.0038 (8)0.0187 (8)0.0020 (7)
C120.0342 (10)0.0297 (9)0.0434 (9)0.0003 (8)0.0209 (8)0.0033 (8)
C130.0334 (10)0.0331 (10)0.0385 (9)0.0021 (8)0.0151 (8)0.0028 (7)
C140.0352 (10)0.0330 (10)0.0343 (9)0.0061 (8)0.0172 (8)0.0030 (7)
C150.0419 (11)0.0330 (10)0.0390 (9)0.0042 (9)0.0214 (8)0.0035 (7)
C160.0380 (11)0.0308 (10)0.0391 (9)0.0040 (8)0.0187 (8)0.0010 (7)
O170.0515 (9)0.0453 (8)0.0334 (6)0.0071 (7)0.0192 (6)0.0014 (6)
C170.0568 (14)0.0580 (13)0.0361 (9)0.0122 (11)0.0178 (10)0.0087 (9)
Geometric parameters (Å, º) top
O1—C11.225 (2)C11—C161.403 (2)
C1—C111.477 (2)C12—C131.381 (2)
C1—C21.515 (3)C12—H120.9500
C2—N11.446 (2)C13—C141.394 (2)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—O171.3624 (19)
N1—C51.330 (2)C14—C151.386 (3)
N1—N21.360 (2)C15—C161.377 (2)
N2—C31.320 (2)C15—H150.9500
C3—N41.345 (3)C16—H160.9500
C3—H30.9500O17—C171.429 (2)
N4—C51.320 (2)C17—H17A0.9800
C5—H50.9500C17—H17B0.9800
C11—C121.389 (3)C17—H17C0.9800
O1—C1—C11122.36 (18)C13—C12—C11121.74 (16)
O1—C1—C2120.80 (15)C13—C12—H12119.1
C11—C1—C2116.83 (14)C11—C12—H12119.1
N1—C2—C1112.82 (14)C12—C13—C14119.11 (17)
N1—C2—H2A109.0C12—C13—H13120.4
C1—C2—H2A109.0C14—C13—H13120.4
N1—C2—H2B109.0O17—C14—C15115.64 (15)
C1—C2—H2B109.0O17—C14—C13124.08 (17)
H2A—C2—H2B107.8C15—C14—C13120.28 (15)
C5—N1—N2109.70 (14)C16—C15—C14119.90 (16)
C5—N1—C2129.47 (17)C16—C15—H15120.0
N2—N1—C2120.79 (14)C14—C15—H15120.0
C3—N2—N1101.70 (15)C15—C16—C11121.00 (18)
N2—C3—N4115.60 (18)C15—C16—H16119.5
N2—C3—H3122.2C11—C16—H16119.5
N4—C3—H3122.2C14—O17—C17117.55 (14)
C5—N4—C3102.33 (15)O17—C17—H17A109.5
N4—C5—N1110.67 (18)O17—C17—H17B109.5
N4—C5—H5124.7H17A—C17—H17B109.5
N1—C5—H5124.7O17—C17—H17C109.5
C12—C11—C16117.97 (15)H17A—C17—H17C109.5
C12—C11—C1119.73 (15)H17B—C17—H17C109.5
C16—C11—C1122.29 (17)
O1—C1—C2—N13.8 (2)C2—C1—C11—C161.2 (3)
C11—C1—C2—N1175.44 (15)C16—C11—C12—C130.2 (3)
C1—C2—N1—C596.6 (2)C1—C11—C12—C13178.68 (17)
C1—C2—N1—N280.8 (2)C11—C12—C13—C140.0 (3)
C5—N1—N2—C30.3 (2)C12—C13—C14—O17179.61 (17)
C2—N1—N2—C3178.21 (18)C12—C13—C14—C150.0 (3)
N1—N2—C3—N40.3 (3)O17—C14—C15—C16179.50 (17)
N2—C3—N4—C50.2 (3)C13—C14—C15—C160.1 (3)
C3—N4—C5—N10.0 (2)C14—C15—C16—C110.3 (3)
N2—N1—C5—N40.1 (2)C12—C11—C16—C150.4 (3)
C2—N1—C5—N4177.86 (19)C1—C11—C16—C15178.51 (17)
O1—C1—C11—C121.6 (3)C15—C14—O17—C17176.40 (18)
C2—C1—C11—C12177.64 (16)C13—C14—O17—C174.0 (3)
O1—C1—C11—C16179.50 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N4i0.952.423.336 (3)162
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H11N3O2
Mr217.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)23.409 (3), 4.8347 (7), 20.607 (2)
β (°) 116.275 (8)
V3)2091.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.25 × 0.21
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4675, 1944, 1260
Rint0.053
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 0.89
No. of reflections1944
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N4i0.952.423.336 (3)162
Symmetry code: (i) x, y+2, z1/2.
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge license for the CSD system. MP-F thanks the Universidad de Antofagasta for PhD fellowships.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDawood, K. M., Abdel-Gawad, H., Rageb, E. A., Ellitheyc, M. & Mohamed, H. A. (2006). Bioorg. Med. Chem. 14, 3672–3680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEmami, S., Foroumadi, A., Falahati, M., Lotfali, E. S., Rajabalian, S., Ebrahimi, S. A., Farahyarc, S. & Shafieeb, A. (2008). Bioorg. Med. Chem. Lett. 18, 141–146.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLamb, D., Kelly, D. & Kelly, S. (1999). Drug Resit. Updat. 2, 390–402.  Web of Science CrossRef CAS Google Scholar
First citationSchiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2005). J. Med. Chem. 48 7658–7666.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUpadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 4681–4692  Web of Science CrossRef PubMed CAS Google Scholar
First citationWingard, J. R. & Leather, H. (2004). Biol. Blood Marrow Transplant. 10, 73–90.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds