organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Benzimidazol-2-ylmeth­­oxy)-3-eth­­oxy­benzaldehyde trihydrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 27 June 2010; accepted 11 July 2010; online 17 July 2010)

In the title compound, C17H16N2O3·3H2O, the dihedral angle between the mean planes of the benzene and benzimidazole systems is 26.2 (3)°. These groups are slightly twisted around the eth­oxy­methane unit [C—C—O—C torsion angle = 177.64 (15)°]. The crystal packing is stabilized by N—H⋯O, O—H⋯N and O—H⋯O hydrogen-bond inter­actions involving the water mol­ecules. Weak ππ stacking inter­actions [centroid–centroid distances = 3.7943 (7), 3.6919 (13) and 3.7533 (14) Å] contribute to the mol­ecular stability.

Related literature

For the biological activity of benzimidazoles, see: Pujar et al. (1988[Pujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423-425.]); Bouwman et al. 1990[Bouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143-172.]). For related structures, see: Madkour et al. (2006[Madkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon, 181, 255-265.]); Jian et al. (2003[Jian, F. F., Bei, F. L., Wang, X. & Lu, L. D. (2003). Chin. J. Struct. Chem. 22, 382-386.]); Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199-o3200.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O3·3H2O

  • Mr = 350.37

  • Orthorhombic, P 21 21 21

  • a = 7.3020 (15) Å

  • b = 9.3170 (19) Å

  • c = 25.950 (5) Å

  • V = 1765.4 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.51 × 0.45 × 0.39 mm

Data collection
  • Oxford Diffraction Xcalibur with a Ruby (Gemini CCD) detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.875, Tmax = 1.000

  • 4635 measured reflections

  • 2130 independent reflections

  • 2030 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.06

  • 2130 reflections

  • 246 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1W 0.86 1.96 2.822 (2) 175
O1W—H1W1⋯O3Wi 0.84 (2) 1.87 (2) 2.703 (2) 171 (3)
O1W—H1W2⋯O1 0.83 (2) 2.09 (2) 2.911 (2) 170 (3)
O2W—H2W1⋯O2ii 0.82 (2) 2.04 (2) 2.855 (2) 178 (4)
O2W—H2W2⋯N1 0.81 (2) 2.04 (2) 2.836 (3) 169 (5)
O3W—H3W1⋯O2W 0.84 (2) 1.89 (2) 2.721 (3) 171 (4)
O3W—H3W2⋯O1Wiii 0.83 (2) 2.05 (2) 2.870 (3) 171 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzimidazole ring system and its related compounds play an important role in pharmaceutical and agricultural fields due to their broad spectrum of biological activities (Pujar et al., 1988, Bouwman et al., 1990). The synthesis of novel benzimidazole derivatives remains a main focus of medicinal research. Benzimidazoles are useful as insecticides, acaricides, nematocides, herbicides and other plant-protective agents in the field of pest control (Madkour et al., 2006). In recent years, attention has increasingly been given to the synthesis of benzimidazole derivatives as a source of new antimicrobial agents. The crystal structures of some benzimidazole derivatives viz., 2-chloromethyl-1H-benzimidazole nitrate (Jian et al., 2003) and 5-methoxy-1H-benzo[d]imidazole-2(3H)-thione (Odabaşoğlu et al., 2007) have been reported. In view of the importance of benzimidazoles, the title compound, (I), ihas been synthesized and its crystal structure is reported here.

In (I) the dihedral angle between the mean planes of the benzene and benzimidazoles is 26.2 (6)° (Fig. 1). These groups are slightly twisted around the ethoxymethane structure (C2/C3/O3/C11 torsion angle = 177.64(15°). Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by O—H···O, O—H..N and N—H···O hydrogen bond interactions (Fig. 2, Table 1) involving lattice crystallized water molecules which form a R22(10) graph-set motif (Fig. 3) and a two-dimensional chain along (001). Weak π-π stacking interactions (Table 2) contribute to molecular stability.

Related literature top

For the biological activity of benzimidazoles, see: Pujar et al. (1988); Bouwman et al. 1990). For related structures, see: Madkour et al. (2006); Jian et al. (2003); Odabaşoğlu et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

Ethyl vanillin (0.05 mol) was dissolved in 40 ml of ethanolic KOH (0.05 mol) and the solution was stirred for 1 h. 2-Chloromethyl-1H-benzimidazole (0.05 mole) was added with continuous stirring and refluxed for 5 h. The reaction mixture was cooled at room temperature, then poured into crushed ice. The solid product that separated out was filtered off and recrystallized using 1,4-dioxane. Single crystals were grown from ethanol slow evaporation method with a yield of 48%. (m.p.: 366 K). Analytical data: Found (Calculated): C %: 68.87(68.91); H%: 5.39 (5.44); N%: 9.40 (9.45).

Refinement top

The H atoms on the water molecules (H1W1, H1W2, H2W1, H2W2, H3W1, H3W2) were originally located in a difference Fourier and then their coordinates were allowed to refine with restraints to keep them in the range of 0.80 - 0.84 Å. The remaining H atoms were then positioned geometrically and allowed to ride on their parent atoms with Atom—H lengths of 0.86Å (NH), 0.93 Å (CH), 0.97Å (CH2) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.5 times (OH), 1.2 times (NH), 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. In the absence of anomalous scattering effects Friedel opposites were merged.

Structure description top

The benzimidazole ring system and its related compounds play an important role in pharmaceutical and agricultural fields due to their broad spectrum of biological activities (Pujar et al., 1988, Bouwman et al., 1990). The synthesis of novel benzimidazole derivatives remains a main focus of medicinal research. Benzimidazoles are useful as insecticides, acaricides, nematocides, herbicides and other plant-protective agents in the field of pest control (Madkour et al., 2006). In recent years, attention has increasingly been given to the synthesis of benzimidazole derivatives as a source of new antimicrobial agents. The crystal structures of some benzimidazole derivatives viz., 2-chloromethyl-1H-benzimidazole nitrate (Jian et al., 2003) and 5-methoxy-1H-benzo[d]imidazole-2(3H)-thione (Odabaşoğlu et al., 2007) have been reported. In view of the importance of benzimidazoles, the title compound, (I), ihas been synthesized and its crystal structure is reported here.

In (I) the dihedral angle between the mean planes of the benzene and benzimidazoles is 26.2 (6)° (Fig. 1). These groups are slightly twisted around the ethoxymethane structure (C2/C3/O3/C11 torsion angle = 177.64(15°). Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by O—H···O, O—H..N and N—H···O hydrogen bond interactions (Fig. 2, Table 1) involving lattice crystallized water molecules which form a R22(10) graph-set motif (Fig. 3) and a two-dimensional chain along (001). Weak π-π stacking interactions (Table 2) contribute to molecular stability.

For the biological activity of benzimidazoles, see: Pujar et al. (1988); Bouwman et al. 1990). For related structures, see: Madkour et al. (2006); Jian et al. (2003); Odabaşoğlu et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C17H17N2O3, with 50% probability displacement ellipsoids. Dashed lines indicate O—H···N, O—H···O and N—H···O hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the c axis. Dashed lines indicate O—H···N, O—H···O and N—H···O hydrogen bonds forming a two-dimensional chain along (011).
[Figure 3] Fig. 3. R22(10) graph-set motif for C17H17N2O3 involving lattice crystallized water molecules.
4-(1H-Benzimidazol-2-ylmethoxy)-3-ethoxybenzaldehyde trihydrate top
Crystal data top
C17H16N2O3·3H2OF(000) = 744
Mr = 350.37Dx = 1.318 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 3976 reflections
a = 7.3020 (15) Åθ = 4.7–77.2°
b = 9.3170 (19) ŵ = 0.84 mm1
c = 25.950 (5) ÅT = 100 K
V = 1765.4 (6) Å3Block, colorless
Z = 40.51 × 0.45 × 0.39 mm
Data collection top
Oxford Diffraction Xcalibur with a Ruby (Gemini CCD) detector
diffractometer
2130 independent reflections
Radiation source: Enhance (Cu) X-ray Source2030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.5081 pixels mm-1θmax = 77.4°, θmin = 5.9°
ω scansh = 96
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 115
Tmin = 0.875, Tmax = 1.000l = 3232
4635 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.161P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2130 reflectionsΔρmax = 0.23 e Å3
246 parametersΔρmin = 0.16 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (2)
Crystal data top
C17H16N2O3·3H2OV = 1765.4 (6) Å3
Mr = 350.37Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.3020 (15) ŵ = 0.84 mm1
b = 9.3170 (19) ÅT = 100 K
c = 25.950 (5) Å0.51 × 0.45 × 0.39 mm
Data collection top
Oxford Diffraction Xcalibur with a Ruby (Gemini CCD) detector
diffractometer
2130 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2030 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 1.000Rint = 0.019
4635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0359 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2130 reflectionsΔρmin = 0.16 e Å3
246 parameters
Special details top

Experimental. In the absence of anomalous scattering effects Friedel opposites were merged

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1649 (2)0.05517 (14)0.09028 (5)0.0436 (3)
N10.1237 (2)0.36636 (17)0.10832 (5)0.0413 (4)
C10.1274 (2)0.1882 (2)0.10989 (6)0.0380 (4)
O20.1203 (3)0.3165 (3)0.26729 (6)0.0857 (7)
N20.0561 (2)0.15054 (16)0.07628 (5)0.0400 (3)
H2A0.02910.08570.05390.048*
C20.0862 (2)0.2957 (2)0.07342 (6)0.0368 (4)
O30.0958 (2)0.25276 (13)0.02315 (4)0.0436 (3)
C30.0434 (3)0.4335 (2)0.08910 (7)0.0443 (4)
H30.01560.50400.06500.053*
C40.0424 (3)0.4653 (2)0.14156 (8)0.0501 (5)
H40.01210.55740.15240.060*
C50.0857 (3)0.3622 (3)0.17741 (7)0.0483 (5)
C60.1279 (3)0.2223 (2)0.16162 (7)0.0441 (4)
H60.15610.15250.18600.053*
C70.2193 (3)0.0543 (2)0.12644 (8)0.0484 (5)
H7A0.12080.07320.15060.058*
H7B0.32600.02310.14570.058*
C80.2631 (4)0.1874 (2)0.09646 (11)0.0656 (7)
H8A0.15460.22100.07940.098*
H8B0.30730.26020.11950.098*
H8C0.35540.16610.07130.098*
C90.0857 (4)0.3982 (3)0.23244 (9)0.0662 (7)
H90.05650.49220.24130.079*
C100.0577 (3)0.35874 (19)0.01518 (6)0.0408 (4)
H10A0.14000.43970.01120.049*
H10B0.06710.39300.01150.049*
C110.0832 (2)0.29187 (19)0.06693 (6)0.0369 (4)
C120.1204 (3)0.2666 (2)0.14792 (7)0.0408 (4)
C130.0800 (2)0.1305 (2)0.12853 (7)0.0411 (4)
C140.0735 (3)0.0092 (3)0.15962 (9)0.0543 (5)
H140.05050.08140.14610.065*
C150.1030 (3)0.0301 (3)0.21162 (9)0.0644 (6)
H150.10000.04840.23370.077*
C160.1372 (4)0.1668 (3)0.23188 (8)0.0655 (7)
H160.15250.17720.26730.079*
C170.1488 (3)0.2858 (3)0.20093 (7)0.0541 (5)
H170.17460.37590.21460.065*
O1W0.0115 (3)0.06193 (16)0.00113 (5)0.0539 (4)
H1W10.080 (4)0.128 (3)0.0094 (11)0.081*
H1W20.025 (4)0.027 (3)0.0264 (9)0.081*
O2W0.2184 (4)0.65334 (19)0.13309 (7)0.0814 (7)
H2W10.266 (5)0.660 (4)0.1614 (10)0.122*
H2W20.206 (6)0.569 (2)0.1259 (15)0.122*
O3W0.2942 (3)0.7793 (2)0.04092 (7)0.0720 (5)
H3W10.272 (5)0.749 (4)0.0708 (9)0.108*
H3W20.198 (4)0.820 (4)0.0315 (13)0.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0604 (8)0.0383 (6)0.0320 (5)0.0041 (6)0.0044 (6)0.0040 (5)
N10.0509 (8)0.0405 (7)0.0325 (7)0.0022 (7)0.0009 (6)0.0080 (6)
C10.0385 (8)0.0428 (9)0.0326 (8)0.0030 (7)0.0005 (7)0.0004 (7)
O20.1008 (14)0.1227 (17)0.0337 (7)0.0013 (15)0.0111 (8)0.0134 (10)
N20.0478 (8)0.0384 (7)0.0337 (7)0.0014 (7)0.0012 (6)0.0067 (6)
C20.0405 (8)0.0409 (8)0.0291 (7)0.0008 (7)0.0006 (6)0.0013 (6)
O30.0653 (8)0.0388 (6)0.0269 (5)0.0073 (6)0.0005 (5)0.0022 (5)
C30.0515 (9)0.0413 (9)0.0401 (8)0.0015 (8)0.0024 (8)0.0028 (7)
C40.0540 (10)0.0490 (10)0.0473 (10)0.0017 (9)0.0058 (9)0.0143 (9)
C50.0459 (9)0.0633 (12)0.0355 (8)0.0081 (10)0.0007 (7)0.0116 (8)
C60.0465 (9)0.0549 (10)0.0309 (8)0.0040 (9)0.0015 (7)0.0009 (8)
C70.0557 (10)0.0499 (10)0.0398 (8)0.0017 (9)0.0057 (8)0.0154 (8)
C80.0841 (16)0.0432 (10)0.0696 (14)0.0093 (11)0.0202 (13)0.0082 (10)
C90.0687 (14)0.0878 (18)0.0420 (11)0.0078 (14)0.0006 (10)0.0233 (12)
C100.0529 (10)0.0376 (8)0.0319 (7)0.0034 (8)0.0003 (7)0.0045 (7)
C110.0403 (8)0.0375 (8)0.0330 (7)0.0029 (7)0.0005 (7)0.0055 (6)
C120.0416 (8)0.0479 (9)0.0330 (8)0.0046 (8)0.0010 (7)0.0054 (7)
C130.0386 (8)0.0462 (9)0.0385 (8)0.0004 (8)0.0029 (7)0.0025 (7)
C140.0540 (11)0.0515 (11)0.0574 (11)0.0048 (10)0.0042 (9)0.0096 (9)
C150.0611 (12)0.0792 (16)0.0529 (12)0.0008 (13)0.0085 (10)0.0251 (12)
C160.0672 (14)0.0958 (18)0.0333 (9)0.0059 (15)0.0025 (9)0.0080 (11)
C170.0602 (12)0.0686 (13)0.0335 (8)0.0038 (11)0.0006 (8)0.0091 (9)
O1W0.0762 (10)0.0454 (7)0.0400 (6)0.0085 (8)0.0039 (7)0.0033 (6)
O2W0.1387 (19)0.0502 (9)0.0554 (9)0.0111 (12)0.0363 (11)0.0038 (7)
O3W0.0808 (11)0.0771 (11)0.0581 (9)0.0230 (11)0.0052 (9)0.0030 (9)
Geometric parameters (Å, º) top
O1—C11.367 (2)C8—H8A0.9600
O1—C71.442 (2)C8—H8B0.9600
N1—C111.313 (2)C8—H8C0.9600
N1—C121.386 (2)C9—H90.9300
C1—C61.380 (2)C10—C111.492 (2)
C1—C21.410 (2)C10—H10A0.9700
O2—C91.209 (4)C10—H10B0.9700
N2—C111.354 (2)C12—C131.397 (3)
N2—C131.380 (2)C12—C171.402 (2)
N2—H2A0.8600C13—C141.389 (3)
C2—O31.3660 (19)C14—C151.380 (3)
C2—C31.383 (3)C14—H140.9300
O3—C101.429 (2)C15—C161.400 (4)
C3—C41.393 (3)C15—H150.9300
C3—H30.9300C16—C171.372 (4)
C4—C51.374 (3)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.400 (3)O1W—H1W10.840 (17)
C5—C91.467 (3)O1W—H1W20.829 (17)
C6—H60.9300O2W—H2W10.815 (18)
C7—C81.498 (3)O2W—H2W20.809 (19)
C7—H7A0.9700O3W—H3W10.842 (18)
C7—H7B0.9700O3W—H3W20.832 (18)
C1—O1—C7117.02 (14)H8B—C8—H8C109.5
C11—N1—C12104.39 (15)O2—C9—C5125.8 (3)
O1—C1—C6124.79 (17)O2—C9—H9117.1
O1—C1—C2115.88 (14)C5—C9—H9117.1
C6—C1—C2119.33 (17)O3—C10—C11108.28 (14)
C11—N2—C13106.84 (15)O3—C10—H10A110.0
C11—N2—H2A126.6C11—C10—H10A110.0
C13—N2—H2A126.6O3—C10—H10B110.0
O3—C2—C3124.35 (16)C11—C10—H10B110.0
O3—C2—C1114.97 (15)H10A—C10—H10B108.4
C3—C2—C1120.67 (16)N1—C11—N2113.62 (16)
C2—O3—C10116.91 (14)N1—C11—C10122.95 (16)
C2—C3—C4119.09 (18)N2—C11—C10123.31 (15)
C2—C3—H3120.5N1—C12—C13110.22 (15)
C4—C3—H3120.5N1—C12—C17129.7 (2)
C5—C4—C3120.76 (19)C13—C12—C17120.0 (2)
C5—C4—H4119.6N2—C13—C14132.61 (19)
C3—C4—H4119.6N2—C13—C12104.93 (16)
C4—C5—C6120.21 (17)C14—C13—C12122.45 (17)
C4—C5—C9119.9 (2)C15—C14—C13116.6 (2)
C6—C5—C9119.8 (2)C15—C14—H14121.7
C1—C6—C5119.92 (19)C13—C14—H14121.7
C1—C6—H6120.0C14—C15—C16121.5 (2)
C5—C6—H6120.0C14—C15—H15119.2
O1—C7—C8107.84 (16)C16—C15—H15119.2
O1—C7—H7A110.1C17—C16—C15121.76 (19)
C8—C7—H7A110.1C17—C16—H16119.1
O1—C7—H7B110.1C15—C16—H16119.1
C8—C7—H7B110.1C16—C17—C12117.5 (2)
H7A—C7—H7B108.5C16—C17—H17121.2
C7—C8—H8A109.5C12—C17—H17121.2
C7—C8—H8B109.5H1W1—O1W—H1W2102 (2)
H8A—C8—H8B109.5H2W1—O2W—H2W2109 (3)
C7—C8—H8C109.5H3W1—O3W—H3W2105 (3)
H8A—C8—H8C109.5
C7—O1—C1—C63.9 (3)C12—N1—C11—N20.8 (2)
C7—O1—C1—C2175.99 (16)C12—N1—C11—C10175.35 (17)
O1—C1—C2—O32.2 (2)C13—N2—C11—N10.3 (2)
C6—C1—C2—O3177.71 (16)C13—N2—C11—C10175.87 (16)
O1—C1—C2—C3178.95 (16)O3—C10—C11—N1154.73 (17)
C6—C1—C2—C31.1 (3)O3—C10—C11—N229.4 (2)
C3—C2—O3—C100.3 (3)C11—N1—C12—C131.1 (2)
C1—C2—O3—C10179.14 (16)C11—N1—C12—C17178.2 (2)
O3—C2—C3—C4178.37 (18)C11—N2—C13—C14178.3 (2)
C1—C2—C3—C40.4 (3)C11—N2—C13—C120.4 (2)
C2—C3—C4—C50.9 (3)N1—C12—C13—N20.9 (2)
C3—C4—C5—C61.3 (3)C17—C12—C13—N2178.49 (18)
C3—C4—C5—C9179.4 (2)N1—C12—C13—C14177.95 (18)
O1—C1—C6—C5179.41 (18)C17—C12—C13—C142.7 (3)
C2—C1—C6—C50.7 (3)N2—C13—C14—C15179.3 (2)
C4—C5—C6—C10.5 (3)C12—C13—C14—C152.2 (3)
C9—C5—C6—C1179.83 (19)C13—C14—C15—C160.1 (4)
C1—O1—C7—C8176.90 (18)C14—C15—C16—C172.1 (4)
C4—C5—C9—O2179.5 (3)C15—C16—C17—C121.6 (4)
C6—C5—C9—O20.2 (4)N1—C12—C17—C16179.9 (2)
C2—O3—C10—C11177.64 (15)C13—C12—C17—C160.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1W0.861.962.822 (2)175
O1W—H1W1···O3Wi0.84 (2)1.87 (2)2.703 (2)171 (3)
O1W—H1W2···O10.83 (2)2.09 (2)2.911 (2)170 (3)
O2W—H2W1···O2ii0.82 (2)2.04 (2)2.855 (2)178 (4)
O2W—H2W2···N10.81 (2)2.04 (2)2.836 (3)169 (5)
O3W—H3W1···O2W0.84 (2)1.89 (2)2.721 (3)171 (4)
O3W—H3W2···O1Wiii0.83 (2)2.05 (2)2.870 (3)171 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H16N2O3·3H2O
Mr350.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.3020 (15), 9.3170 (19), 25.950 (5)
V3)1765.4 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.51 × 0.45 × 0.39
Data collection
DiffractometerOxford Diffraction Xcalibur with a Ruby (Gemini CCD) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.875, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4635, 2130, 2030
Rint0.019
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.06
No. of reflections2130
No. of parameters246
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1W0.861.962.822 (2)175.3
O1W—H1W1···O3Wi0.840 (17)1.869 (18)2.703 (2)171 (3)
O1W—H1W2···O10.829 (17)2.092 (18)2.911 (2)170 (3)
O2W—H2W1···O2ii0.815 (18)2.040 (18)2.855 (2)178 (4)
O2W—H2W2···N10.809 (19)2.04 (2)2.836 (3)169 (5)
O3W—H3W1···O2W0.842 (18)1.886 (19)2.721 (3)171 (4)
O3W—H3W2···O1Wiii0.832 (18)2.045 (18)2.870 (3)171 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1, z1/2; (iii) x, y+1, z.
Cg···Cg π-stacking interactions top
Cg1 is the centroid of ring C11/N1/C12/C13/N2; Cg2 is the centroid of the ring C1–C6; Cg3 is the centroid of ring C12-C17.
CgI···CgJCgI···Perp (Å)CgJ···Perp (Å)
Cg1···Cg2i3.7943 (7)3.4481 (7)-3.5681 (8)
Cg1···Cg2ii3.6919 (13)-3.61041 (7)3.5404 (8)
Cg2···Cg3i3.7533 (14)3.5487 (8)3.3763 (9)
Symmetry codes: (i) -1/2-x, 1/2-y, -z; (ii) 1/2+x, 1/2-y,-z.
 

Acknowledgements

SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. JPJ thanks Dr Ray Butcher and Howard University for assistance with the data collection (NSF MRI grant No. CHE-0619278).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science Google Scholar
First citationJian, F. F., Bei, F. L., Wang, X. & Lu, L. D. (2003). Chin. J. Struct. Chem. 22, 382–386.  CAS Google Scholar
First citationMadkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon, 181, 255–265.  Web of Science CrossRef CAS Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199–o3200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423–425.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds