metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­nickel(II) tetra­aqua­bis­­(μ-pyridine-2,6-di­carboxyl­ato)bis­­(pyridine-2,6-di­carboxyl­ato)trinickelate(II) octa­hydrate

aDepartment of Chemistry, Islamic Azad University, Qom Branch, Qom, Iran, bDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Qom, Iran, cDepartment of Chemistry, Iran University of Science and Technology, Tehran, Iran, dDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and eDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: javad1338@hotmail.com

(Received 30 May 2010; accepted 20 July 2010; online 24 July 2010)

The title compound, [Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2O, was obtained by the reaction of nickel(II) nitrate hexa­hydrate with pyridine-2,6-dicarb­oxy­lic acid (pydcH2) and 1,10-phenanothroline (phen) in an aqueous solution. The latter ligand is not involved in formation of the title complex. There are three different NiII atoms in the asymmetric unit, two of which are located on inversion centers, and thus the [Ni(H2O)6]2+ cation and the trinuclear {[Ni(pydc)2]2-μ-Ni(H2O)4}2− anion are centrosymmetric. All NiII atoms exhibit an octa­hedral coordination geometry. Various inter­actions, including numerous O—H⋯O and C—H⋯O hydrogen bonds and C—O⋯π stacking of the pyridine and carboxyl­ate groups [3.570 (1), 3.758 (1) and 3.609 (1) Å], are observed in the crystal structure.

Related literature

For metal complexes formed by pyridine­dicarb­oxy­lic acids, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Çolak et al. (2008[Çolak, A. T., Akduman, D., Yeşilel, O. Z. & Büyükgüngör, O. (2008). Transition Met. Chem. 34 861-868.]); Moghimi et al. (2005[Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631 160-169.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2O

  • Mr = 1219.54

  • Monoclinic, P 21 /c

  • a = 20.4561 (5) Å

  • b = 12.7587 (3) Å

  • c = 8.8582 (2) Å

  • β = 96.942 (1)°

  • V = 2294.98 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 100 K

  • 0.35 × 0.13 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.888

  • 27378 measured reflections

  • 6068 independent reflections

  • 4899 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.064

  • S = 1.00

  • 6068 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O5 0.85 2.12 2.852 (2) 143
O1W—H2⋯O6Wi 0.85 1.92 2.756 (2) 169
O2W—H3⋯O4i 0.85 1.95 2.787 (2) 166
O2W—H4⋯O6Wii 0.85 1.87 2.724 (2) 178
O3W—H5⋯O7 0.85 2.05 2.891 (2) 173
O3W—H6⋯O9Wi 0.85 1.94 2.789 (2) 180
O4W—H7⋯O2iii 0.85 1.97 2.767 (2) 155
O4W—H8⋯O9W 0.85 1.94 2.782 (2) 175
O5W—H9⋯O8 0.85 1.84 2.690 (2) 175
O5W—H10⋯O7Wiv 0.85 1.88 2.722 (2) 170
O6W—H11⋯O4 0.85 1.85 2.670 (2) 162
O6W—H12⋯O8Wv 0.85 1.93 2.777 (2) 172
O7W—H13⋯O8 0.85 1.86 2.707 (2) 173
O7W—H14⋯O1iv 0.85 1.94 2.760 (2) 163
O8W—H15⋯O1Wv 0.85 2.43 3.106 (2) 137
O8W—H16⋯O3 0.85 1.95 2.787 (2) 166
O9W—H17⋯O7Wvi 0.85 1.88 2.705 (2) 164
O9W—H18⋯O2vii 0.85 1.98 2.779 (2) 156
C2—H2A⋯O3Wi 0.95 2.37 3.266 (2) 157
C9—H9A⋯O8Wviii 0.95 2.38 3.183 (2) 143
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) x, y, z-1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridinedicarboxylic acid and 1,10-phenanthroline are well known ligands in coordination chemistry (Çolak et al., 2008). In our group, many compounds are synthesized by proton transfer between the two compounds (phenH)2(pydc) (Moghimi et al., 2005). Also, many metallic compounds have been reported (Aghabozorg et al., 2008).

The considerable case in the title compound is that despite of the presence of phen in the preparation solution, only pydc is involved in the complex formation. In the crystal structure, the Ni atom is in three types. In the anionic part, Ni1 is coordinated by two (pydc)2– groups, and Ni2 is coordinated by four water molecules and two uncoordinated O atoms of two (pydc)2– groups linked to Ni1. As shown in Fig.1, this causes that Ni2 makes a bridge between Ni1 and Ni1A. In the cationic part, Ni3 is simply coordinated by six water molecules.

As given in Table 1 and Figs. 2–3, there are nomerous hydrogen bonds of the type O—H···O between water molecules and O atoms of (pydc)2–, and C—H···O between C atoms of pyridine rings and water molecules. Also, C—O···π stackings present in the crystal structure, are as follows: C6—O2···Cg1(N1/C1—C5), 3.570 (1) Å, C14—O8···Cg2 (N2/C8—C12), 3.758 (1) Å, and C7—O4···Cg1(N1/C1—C5), 3.609 (1) Å.

Related literature top

For metal complexes formed by pyridinedicarboxylic acids, see: Aghabozorg et al. (2008); Çolak et al. (2008); Moghimi et al. (2005).

Experimental top

To an aqueous solution of Ni(NO3)2.6H2O (143 mg, 0.5 mmol), an aqueous solution of pydcH2 (167 mg, 1 mmol) and phen (198 mg, 1 mmol) in 1:2:2 molar ratio was added. The final volume was 40 ml. After less than 1 h stirring and heating, the obtained clear solution was left for 2 weeks. Then emerald green crystals were settled in the solution which were suitable for X-ray crystallography.

Refinement top

The H atoms of the water molecules were found in difference Fourier maps and the O-H bond lengths were constrained to 0.85 Å. The H atoms from C-H groups were placed in calculated positions. All H atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

Pyridinedicarboxylic acid and 1,10-phenanthroline are well known ligands in coordination chemistry (Çolak et al., 2008). In our group, many compounds are synthesized by proton transfer between the two compounds (phenH)2(pydc) (Moghimi et al., 2005). Also, many metallic compounds have been reported (Aghabozorg et al., 2008).

The considerable case in the title compound is that despite of the presence of phen in the preparation solution, only pydc is involved in the complex formation. In the crystal structure, the Ni atom is in three types. In the anionic part, Ni1 is coordinated by two (pydc)2– groups, and Ni2 is coordinated by four water molecules and two uncoordinated O atoms of two (pydc)2– groups linked to Ni1. As shown in Fig.1, this causes that Ni2 makes a bridge between Ni1 and Ni1A. In the cationic part, Ni3 is simply coordinated by six water molecules.

As given in Table 1 and Figs. 2–3, there are nomerous hydrogen bonds of the type O—H···O between water molecules and O atoms of (pydc)2–, and C—H···O between C atoms of pyridine rings and water molecules. Also, C—O···π stackings present in the crystal structure, are as follows: C6—O2···Cg1(N1/C1—C5), 3.570 (1) Å, C14—O8···Cg2 (N2/C8—C12), 3.758 (1) Å, and C7—O4···Cg1(N1/C1—C5), 3.609 (1) Å.

For metal complexes formed by pyridinedicarboxylic acids, see: Aghabozorg et al. (2008); Çolak et al. (2008); Moghimi et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids at the 50 % probability level. Symmetry codes to generate equivalent atoms: #a -x, -y+1, -z+1; #b -x+1,-y+1,-z.
[Figure 2] Fig. 2. Hydrogen bonding pattern. Hydrogen bonds are shown with dashed lines.Symmetry transformations used to generate equivalent atoms: #A x, -y + 3/2; z + 1/2; #B x, y, z + 1; #C x, y, z - 1; #D x, -y + 1/2, z - 1/2; #E -x, -y + 1, -z; #F x, -y + 3/2, z - 1/2.
[Figure 3] Fig. 3. Crystal packing fragment along the b crystal axis. Hydrogen bonds are shown with dashed lines. Only H atoms that take part in hydrogen bonding are depicted for clarity.
Hexaaquanickel(II) tetraaquabis(µ-pyridine-2,6- dicarboxylato)bis(pyridine-2,6-dicarboxylato)trinickelate(II) octahydrate top
Crystal data top
[Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2OF(000) = 1256
Mr = 1219.54Dx = 1.765 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8450 reflections
a = 20.4561 (5) Åθ = 2.6–33.9°
b = 12.7587 (3) ŵ = 1.73 mm1
c = 8.8582 (2) ÅT = 100 K
β = 96.942 (1)°Prism, green
V = 2294.98 (9) Å30.35 × 0.13 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6068 independent reflections
Radiation source: fine-focus sealed tube4899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2727
Tmin = 0.760, Tmax = 0.888k = 1717
27378 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.064H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
6068 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2OV = 2294.98 (9) Å3
Mr = 1219.54Z = 2
Monoclinic, P21/cMo Kα radiation
a = 20.4561 (5) ŵ = 1.73 mm1
b = 12.7587 (3) ÅT = 100 K
c = 8.8582 (2) Å0.35 × 0.13 × 0.07 mm
β = 96.942 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6068 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4899 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.888Rint = 0.062
27378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.00Δρmax = 0.83 e Å3
6068 reflectionsΔρmin = 0.62 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.231007 (11)0.520201 (16)0.27476 (3)0.00945 (6)
Ni20.00000.50000.50000.00895 (7)
Ni30.50000.50000.00000.01050 (7)
O10.30490 (6)0.51969 (9)0.46564 (14)0.0142 (3)
O20.38195 (6)0.62577 (10)0.58535 (14)0.0168 (3)
O30.16507 (6)0.58836 (9)0.09653 (14)0.0136 (3)
O40.12370 (6)0.74544 (9)0.02196 (14)0.0152 (3)
O50.14709 (6)0.51140 (9)0.39541 (14)0.0131 (3)
O60.06993 (6)0.39623 (9)0.44857 (14)0.0124 (3)
O70.30351 (6)0.46255 (9)0.14135 (14)0.0130 (3)
O80.33719 (6)0.31334 (9)0.04162 (14)0.0159 (3)
N10.25177 (7)0.66974 (11)0.29750 (16)0.0100 (3)
N20.20957 (7)0.37003 (10)0.26000 (16)0.0095 (3)
C10.29991 (8)0.69995 (13)0.40384 (19)0.0111 (3)
C20.31588 (9)0.80472 (14)0.4262 (2)0.0145 (4)
H2A0.35070.82580.50080.017*
C30.27913 (9)0.87836 (13)0.3356 (2)0.0147 (4)
H3A0.28870.95090.34850.018*
C40.22850 (9)0.84595 (13)0.2262 (2)0.0130 (4)
H4A0.20300.89540.16430.016*
C50.21645 (8)0.73898 (13)0.21023 (19)0.0101 (3)
C60.33232 (8)0.60828 (14)0.4934 (2)0.0124 (3)
C70.16388 (8)0.68773 (13)0.09888 (19)0.0111 (3)
C80.15876 (8)0.33432 (13)0.32572 (19)0.0102 (3)
C90.14264 (9)0.22888 (13)0.3229 (2)0.0132 (4)
H9A0.10620.20380.36940.016*
C100.18182 (9)0.16074 (13)0.2493 (2)0.0141 (4)
H10A0.17250.08780.24670.017*
C110.23432 (8)0.19915 (13)0.1799 (2)0.0130 (4)
H11A0.26090.15330.12880.016*
C120.24700 (8)0.30604 (13)0.18706 (19)0.0102 (3)
C130.12210 (8)0.42038 (13)0.39702 (19)0.0108 (3)
C140.30067 (8)0.36433 (13)0.11794 (19)0.0112 (3)
O1W0.01802 (6)0.59383 (9)0.31474 (14)0.0138 (3)
H10.05980.59560.31920.021*
H20.00990.65860.32470.021*
O2W0.06619 (6)0.58178 (9)0.64628 (14)0.0132 (3)
H30.08940.62820.60900.020*
H40.04930.61610.71400.020*
O3W0.43024 (6)0.56054 (9)0.13011 (14)0.0146 (3)
H50.39470.52690.13460.022*
H60.44390.59490.20990.022*
O4W0.47679 (6)0.61160 (9)0.16482 (14)0.0161 (3)
H70.44180.60290.22570.024*
H80.47380.67730.15110.024*
O5W0.43241 (6)0.39907 (10)0.10299 (14)0.0191 (3)
H90.40060.37500.05990.029*
H100.42150.39980.19870.029*
O6W0.00996 (6)0.69298 (10)0.14073 (14)0.0161 (3)
H110.04630.69590.08320.024*
H120.01690.65310.10240.024*
O7W0.39596 (6)0.12448 (9)0.09304 (14)0.0155 (3)
H130.37640.18190.06900.023*
H140.37370.07070.06220.023*
O8W0.06730 (6)0.44404 (10)0.00502 (15)0.0195 (3)
H150.04220.47010.07910.029*
H160.09670.49130.01030.029*
O9W0.47481 (6)0.82603 (10)0.10844 (14)0.0179 (3)
H170.51570.83800.08640.027*
H180.45640.84730.03300.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01011 (11)0.00744 (10)0.01080 (11)0.00024 (8)0.00129 (8)0.00014 (8)
Ni20.00992 (15)0.00820 (15)0.00908 (15)0.00061 (11)0.00256 (12)0.00069 (11)
Ni30.01054 (15)0.01220 (16)0.00858 (15)0.00051 (12)0.00045 (12)0.00130 (12)
O10.0152 (6)0.0122 (6)0.0146 (6)0.0005 (5)0.0003 (5)0.0015 (5)
O20.0147 (6)0.0218 (7)0.0128 (6)0.0014 (5)0.0025 (5)0.0018 (5)
O30.0146 (6)0.0090 (6)0.0166 (7)0.0002 (5)0.0012 (5)0.0017 (5)
O40.0155 (6)0.0123 (6)0.0164 (7)0.0028 (5)0.0035 (5)0.0008 (5)
O50.0130 (6)0.0095 (6)0.0175 (6)0.0009 (5)0.0051 (5)0.0022 (5)
O60.0121 (6)0.0111 (6)0.0145 (6)0.0003 (5)0.0035 (5)0.0005 (5)
O70.0152 (6)0.0094 (6)0.0148 (6)0.0010 (5)0.0038 (5)0.0011 (5)
O80.0177 (6)0.0133 (6)0.0185 (7)0.0018 (5)0.0098 (6)0.0004 (5)
N10.0103 (7)0.0098 (7)0.0103 (7)0.0004 (5)0.0022 (6)0.0008 (5)
N20.0103 (7)0.0087 (7)0.0092 (7)0.0001 (5)0.0004 (6)0.0000 (5)
C10.0112 (8)0.0130 (8)0.0096 (8)0.0011 (6)0.0023 (7)0.0004 (6)
C20.0151 (9)0.0157 (9)0.0125 (9)0.0038 (7)0.0013 (7)0.0024 (7)
C30.0184 (9)0.0084 (8)0.0177 (9)0.0027 (7)0.0041 (8)0.0029 (7)
C40.0153 (9)0.0113 (8)0.0132 (9)0.0013 (7)0.0047 (7)0.0013 (7)
C50.0096 (8)0.0107 (8)0.0104 (8)0.0003 (6)0.0031 (7)0.0003 (6)
C60.0116 (8)0.0162 (9)0.0101 (8)0.0005 (7)0.0045 (7)0.0012 (7)
C70.0117 (8)0.0120 (8)0.0102 (8)0.0004 (7)0.0042 (7)0.0008 (6)
C80.0096 (8)0.0114 (8)0.0096 (8)0.0005 (6)0.0014 (7)0.0001 (6)
C90.0139 (9)0.0116 (8)0.0145 (9)0.0014 (7)0.0037 (7)0.0000 (7)
C100.0182 (9)0.0081 (8)0.0162 (9)0.0006 (7)0.0026 (7)0.0013 (7)
C110.0143 (9)0.0109 (8)0.0141 (9)0.0026 (7)0.0021 (7)0.0013 (7)
C120.0098 (8)0.0122 (8)0.0084 (8)0.0004 (6)0.0005 (6)0.0004 (6)
C130.0115 (8)0.0116 (8)0.0087 (8)0.0011 (6)0.0007 (7)0.0007 (6)
C140.0113 (8)0.0134 (8)0.0087 (8)0.0005 (7)0.0008 (7)0.0020 (6)
O1W0.0148 (6)0.0107 (6)0.0165 (6)0.0003 (5)0.0043 (5)0.0015 (5)
O2W0.0148 (6)0.0121 (6)0.0136 (6)0.0033 (5)0.0050 (5)0.0021 (5)
O3W0.0131 (6)0.0161 (6)0.0144 (6)0.0019 (5)0.0011 (5)0.0013 (5)
O4W0.0197 (7)0.0149 (6)0.0124 (6)0.0005 (5)0.0029 (5)0.0033 (5)
O5W0.0198 (7)0.0267 (7)0.0110 (6)0.0101 (6)0.0033 (5)0.0017 (5)
O6W0.0154 (6)0.0170 (6)0.0155 (7)0.0023 (5)0.0002 (5)0.0024 (5)
O7W0.0160 (6)0.0114 (6)0.0183 (7)0.0004 (5)0.0008 (5)0.0009 (5)
O8W0.0191 (7)0.0159 (6)0.0228 (7)0.0042 (5)0.0005 (6)0.0017 (5)
O9W0.0145 (6)0.0222 (7)0.0173 (7)0.0009 (5)0.0028 (5)0.0011 (5)
Geometric parameters (Å, º) top
Ni1—N11.9598 (14)C4—C51.391 (2)
Ni1—N21.9663 (14)C4—H4A0.9500
Ni1—O12.1275 (12)C5—C71.517 (2)
Ni1—O52.1319 (12)C8—C91.385 (2)
Ni1—O32.1338 (12)C8—C131.510 (2)
Ni1—O72.1357 (13)C9—C101.396 (2)
Ni2—O62.0407 (12)C9—H9A0.9500
Ni2—O2W2.0438 (12)C10—C111.390 (2)
Ni2—O1W2.0996 (12)C10—H10A0.9500
Ni3—O5W2.0242 (12)C11—C121.388 (2)
Ni3—O4W2.0535 (12)C11—H11A0.9500
Ni3—O3W2.0879 (12)C12—C141.515 (2)
O1—C61.273 (2)O1W—H10.8500
O2—C61.243 (2)O1W—H20.8499
O3—C71.268 (2)O2W—H30.8500
O4—C71.244 (2)O2W—H40.8499
O5—C131.270 (2)O3W—H50.8498
O6—C131.249 (2)O3W—H60.8500
O7—C141.270 (2)O4W—H70.8500
O8—C141.249 (2)O4W—H80.8500
N1—C51.329 (2)O5W—H90.8499
N1—C11.335 (2)O5W—H100.8500
N2—C81.332 (2)O6W—H110.8500
N2—C121.338 (2)O6W—H120.8500
C1—C21.385 (2)O7W—H130.8499
C1—C61.520 (2)O7W—H140.8501
C2—C31.395 (2)O8W—H150.8500
C2—H2A0.9500O8W—H160.8499
C3—C41.393 (2)O9W—H170.8501
C3—H3A0.9500O9W—H180.8500
N1—Ni1—N2177.85 (6)C1—C2—C3117.79 (16)
N1—Ni1—O178.28 (5)C1—C2—H2A121.1
N2—Ni1—O1100.44 (5)C3—C2—H2A121.1
N1—Ni1—O5100.22 (5)C4—C3—C2120.27 (16)
N2—Ni1—O578.19 (5)C4—C3—H3A119.9
O1—Ni1—O598.00 (5)C2—C3—H3A119.9
N1—Ni1—O377.82 (5)C5—C4—C3118.01 (16)
N2—Ni1—O3103.41 (5)C5—C4—H4A121.0
O1—Ni1—O3156.09 (5)C3—C4—H4A121.0
O5—Ni1—O385.25 (5)N1—C5—C4121.07 (15)
N1—Ni1—O7103.64 (5)N1—C5—C7112.62 (14)
N2—Ni1—O777.99 (5)C4—C5—C7126.30 (15)
O1—Ni1—O787.97 (5)O2—C6—O1126.32 (16)
O5—Ni1—O7156.12 (5)O2—C6—C1118.31 (15)
O3—Ni1—O798.63 (5)O1—C6—C1115.37 (15)
O6—Ni2—O6i180.0O4—C7—O3126.56 (16)
O6—Ni2—O2W92.53 (5)O4—C7—C5118.08 (15)
O6i—Ni2—O2W87.47 (5)O3—C7—C5115.35 (14)
O6—Ni2—O2Wi87.47 (5)N2—C8—C9121.43 (16)
O6i—Ni2—O2Wi92.53 (5)N2—C8—C13112.79 (14)
O2W—Ni2—O2Wi180.00 (5)C9—C8—C13125.77 (16)
O6—Ni2—O1Wi89.92 (5)C8—C9—C10117.68 (16)
O6i—Ni2—O1Wi90.08 (5)C8—C9—H9A121.2
O2W—Ni2—O1Wi87.76 (5)C10—C9—H9A121.2
O2Wi—Ni2—O1Wi92.24 (5)C11—C10—C9120.33 (16)
O6—Ni2—O1W90.08 (5)C11—C10—H10A119.8
O6i—Ni2—O1W89.92 (5)C9—C10—H10A119.8
O2W—Ni2—O1W92.24 (5)C12—C11—C10118.45 (16)
O2Wi—Ni2—O1W87.76 (5)C12—C11—H11A120.8
O1Wi—Ni2—O1W180.0C10—C11—H11A120.8
O5W—Ni3—O5Wii180.00 (6)N2—C12—C11120.45 (16)
O5W—Ni3—O4Wii88.05 (5)N2—C12—C14112.37 (14)
O5Wii—Ni3—O4Wii91.95 (5)C11—C12—C14127.18 (15)
O5W—Ni3—O4W91.95 (5)O6—C13—O5126.35 (16)
O5Wii—Ni3—O4W88.05 (5)O6—C13—C8117.58 (15)
O4Wii—Ni3—O4W180.00 (5)O5—C13—C8116.05 (15)
O5W—Ni3—O3W90.51 (5)O8—C14—O7125.70 (16)
O5Wii—Ni3—O3W89.49 (5)O8—C14—C12118.23 (15)
O4Wii—Ni3—O3W88.78 (5)O7—C14—C12116.06 (15)
O4W—Ni3—O3W91.22 (5)Ni2—O1W—H1104.4
O5W—Ni3—O3Wii89.49 (5)Ni2—O1W—H2114.8
O5Wii—Ni3—O3Wii90.51 (5)H1—O1W—H2100.1
O4Wii—Ni3—O3Wii91.22 (5)Ni2—O2W—H3117.9
O4W—Ni3—O3Wii88.78 (5)Ni2—O2W—H4114.6
O3W—Ni3—O3Wii180.0H3—O2W—H4102.0
C6—O1—Ni1113.90 (11)Ni3—O3W—H5119.0
C7—O3—Ni1114.02 (10)Ni3—O3W—H6118.1
C13—O5—Ni1113.80 (11)H5—O3W—H6114.8
C13—O6—Ni2125.07 (11)Ni3—O4W—H7117.7
C14—O7—Ni1114.14 (11)Ni3—O4W—H8126.6
C5—N1—C1121.44 (15)H7—O4W—H898.6
C5—N1—Ni1119.45 (11)Ni3—O5W—H9123.0
C1—N1—Ni1119.08 (11)Ni3—O5W—H10121.7
C8—N2—C12121.66 (14)H9—O5W—H10109.2
C8—N2—Ni1118.94 (11)H11—O6W—H12110.4
C12—N2—Ni1119.38 (11)H13—O7W—H14113.4
N1—C1—C2121.41 (16)H15—O8W—H16101.3
N1—C1—C6112.60 (14)H17—O9W—H18106.2
C2—C1—C6125.99 (16)
N1—Ni1—O1—C67.59 (12)C2—C3—C4—C50.4 (3)
N2—Ni1—O1—C6174.17 (12)C1—N1—C5—C40.2 (3)
O5—Ni1—O1—C6106.44 (12)Ni1—N1—C5—C4178.12 (13)
O3—Ni1—O1—C610.1 (2)C1—N1—C5—C7179.19 (14)
O7—Ni1—O1—C696.78 (12)Ni1—N1—C5—C71.30 (19)
N1—Ni1—O3—C77.77 (12)C3—C4—C5—N10.5 (3)
N2—Ni1—O3—C7170.42 (12)C3—C4—C5—C7179.86 (16)
O1—Ni1—O3—C75.3 (2)Ni1—O1—C6—O2170.33 (14)
O5—Ni1—O3—C793.77 (12)Ni1—O1—C6—C19.82 (19)
O7—Ni1—O3—C7109.96 (12)N1—C1—C6—O2173.09 (15)
N1—Ni1—O5—C13179.05 (11)C2—C1—C6—O27.7 (3)
N2—Ni1—O5—C132.43 (11)N1—C1—C6—O17.0 (2)
O1—Ni1—O5—C13101.49 (11)C2—C1—C6—O1172.18 (17)
O3—Ni1—O5—C13102.36 (11)Ni1—O3—C7—O4169.34 (14)
O7—Ni1—O5—C131.74 (19)Ni1—O3—C7—C59.26 (18)
O2W—Ni2—O6—C1356.66 (13)N1—C5—C7—O4173.03 (15)
O2Wi—Ni2—O6—C13123.34 (13)C4—C5—C7—O46.4 (3)
O1Wi—Ni2—O6—C13144.42 (13)N1—C5—C7—O35.7 (2)
O1W—Ni2—O6—C1335.58 (13)C4—C5—C7—O3174.92 (17)
N1—Ni1—O7—C14177.23 (11)C12—N2—C8—C90.6 (2)
N2—Ni1—O7—C141.32 (11)Ni1—N2—C8—C9178.02 (13)
O1—Ni1—O7—C1499.80 (12)C12—N2—C8—C13178.15 (14)
O5—Ni1—O7—C145.49 (19)Ni1—N2—C8—C133.20 (18)
O3—Ni1—O7—C14103.30 (11)N2—C8—C9—C100.4 (3)
O1—Ni1—N1—C5174.37 (14)C13—C8—C9—C10178.99 (16)
O5—Ni1—N1—C578.23 (13)C8—C9—C10—C111.0 (3)
O3—Ni1—N1—C54.59 (12)C9—C10—C11—C120.6 (3)
O7—Ni1—N1—C5100.65 (13)C8—N2—C12—C111.0 (2)
O1—Ni1—N1—C13.57 (12)Ni1—N2—C12—C11177.63 (12)
O5—Ni1—N1—C199.72 (13)C8—N2—C12—C14178.50 (14)
O3—Ni1—N1—C1177.47 (13)Ni1—N2—C12—C142.85 (18)
O7—Ni1—N1—C181.40 (13)C10—C11—C12—N20.4 (3)
O1—Ni1—N2—C895.39 (12)C10—C11—C12—C14179.07 (16)
O5—Ni1—N2—C80.69 (12)Ni2—O6—C13—O514.8 (2)
O3—Ni1—N2—C882.83 (12)Ni2—O6—C13—C8163.58 (11)
O7—Ni1—N2—C8178.97 (13)Ni1—O5—C13—O6173.65 (13)
O1—Ni1—N2—C1283.29 (13)Ni1—O5—C13—C84.74 (18)
O5—Ni1—N2—C12179.38 (13)N2—C8—C13—O6173.22 (14)
O3—Ni1—N2—C1298.49 (13)C9—C8—C13—O65.5 (3)
O7—Ni1—N2—C122.34 (12)N2—C8—C13—O55.3 (2)
C5—N1—C1—C21.1 (3)C9—C8—C13—O5175.96 (16)
Ni1—N1—C1—C2179.00 (13)Ni1—O7—C14—O8178.91 (14)
C5—N1—C1—C6178.18 (15)Ni1—O7—C14—C120.24 (18)
Ni1—N1—C1—C60.27 (19)N2—C12—C14—O8177.18 (15)
N1—C1—C2—C31.2 (3)C11—C12—C14—O82.3 (3)
C6—C1—C2—C3178.01 (17)N2—C12—C14—O71.6 (2)
C1—C2—C3—C40.4 (3)C11—C12—C14—O7178.94 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O50.852.122.852 (2)143
O1W—H2···O6Wiii0.851.922.756 (2)169
O2W—H3···O4iii0.851.952.787 (2)166
O2W—H4···O6Wiv0.851.872.724 (2)178
O3W—H5···O70.852.052.891 (2)173
O3W—H6···O9Wiii0.851.942.789 (2)180
O4W—H7···O2v0.851.972.767 (2)155
O4W—H8···O9W0.851.942.782 (2)175
O5W—H9···O80.851.842.690 (2)175
O5W—H10···O7Wvi0.851.882.722 (2)170
O6W—H11···O40.851.852.670 (2)162
O6W—H12···O8Wvii0.851.932.777 (2)172
O7W—H13···O80.851.862.707 (2)173
O7W—H14···O1vi0.851.942.760 (2)163
O8W—H15···O1Wvii0.852.433.106 (2)137
O8W—H16···O30.851.952.787 (2)166
O9W—H17···O7Wii0.851.882.705 (2)164
O9W—H18···O2viii0.851.982.779 (2)156
C2—H2A···O3Wiii0.952.373.266 (2)157
C9—H9A···O8Wix0.952.383.183 (2)143
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y, z1; (vi) x, y+1/2, z1/2; (vii) x, y+1, z; (viii) x, y+3/2, z1/2; (ix) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6][Ni3(C7H3NO4)4(H2O)4]·8H2O
Mr1219.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)20.4561 (5), 12.7587 (3), 8.8582 (2)
β (°) 96.942 (1)
V3)2294.98 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.35 × 0.13 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.760, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
27378, 6068, 4899
Rint0.062
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.00
No. of reflections6068
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.62

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O50.852.1242.852 (2)143
O1W—H2···O6Wi0.851.9182.756 (2)169
O2W—H3···O4i0.851.9542.787 (2)166
O2W—H4···O6Wii0.851.8742.724 (2)178
O3W—H5···O70.852.0452.891 (2)173
O3W—H6···O9Wi0.851.9392.789 (2)180
O4W—H7···O2iii0.851.9722.767 (2)155
O4W—H8···O9W0.851.9352.782 (2)175
O5W—H9···O80.851.8422.690 (2)175
O5W—H10···O7Wiv0.851.8812.722 (2)170
O6W—H11···O40.851.8492.670 (2)162
O6W—H12···O8Wv0.851.9342.777 (2)172
O7W—H13···O80.851.8622.707 (2)173
O7W—H14···O1iv0.851.9372.760 (2)163
O8W—H15···O1Wv0.852.4333.106 (2)137
O8W—H16···O30.851.9542.787 (2)166
O9W—H17···O7Wvi0.851.8772.705 (2)164
O9W—H18···O2vii0.851.9802.779 (2)156
C2—H2A···O3Wi0.952.3703.266 (2)157
C9—H9A···O8Wviii0.952.3803.183 (2)143
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y+1/2, z1/2; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x, y+3/2, z1/2; (viii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Islamic Azad University, Qom Branch, for financial support of this work.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇolak, A. T., Akduman, D., Yeşilel, O. Z. & Büyükgüngör, O. (2008). Transition Met. Chem. 34 861–868.  Google Scholar
First citationMoghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631 160–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds