metal-organic compounds
catena-Poly[[[bis(thiocyanato-κN)zinc(II)]-μ-1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene] 0.28-hydrate]
aDepartment of Physics Education, Changchun Normal University, 667 Changji Highway (North), Erdao District, Jilin Province 130032, People's Republic of China
*Correspondence e-mail: shi19781980@yahoo.cn
The title one-dimensional coordination polymer, {[Zn(NCS)2(C24H20N6)2]·0.28H2O}n, was obtained by the reaction of Zn(OAc)2·2H2O, KSCN and 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene (hereafter L). The ZnII ion shows a distorted octahedral coordination geometry and is coordinated by two N atoms from two SCN− anions and four N atoms from two organic ligands. The L ligands act as bridging bis-chelating ligands with cis coordination modes at the ZnII ion. One-dimensional coordination polymers are arranged into layers by π–π stacking interactions between the imidazole rings of adjacent chains, with an interplanar distance of 3.46 (1) Å and centroid–centroid distances of 3.8775 (16) Å. One of the thiocyanate ligands is disordered over two positions with an occupancy factor of 0.564 (3) for the major component. The partially occupied water molecule forms an O—H⋯S hydrogen bond with the disordered thiocyanate group.
Related literature
For backgroud to the topologies, supramolecular structures and applications of metal-organic frameworks (MOFs), see: Dybtsev et al. (2004); Evans & Lin (2002); Moulton & Zaworotko (2001). For coordination modes of organic ligands, see: Janiak (2003). For similar structures, see: Dai et al. (2002); Luan et al. (2006). For the synthesis of 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene, see: Li et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810027571/gk2287sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810027571/gk2287Isup2.hkl
A mixture of Zn(OAc)2. 2H2O (1 mmol), L (1 mmol) (Li et al. 2008), KSCN (0.10 g, 2 mmol) and H2O (8 ml) was sealed in a 18 ml Teflon- lined stainless steel container which was heated to 120 °C for 50 h, and cooled to room temperature. Colorless polyhedron crystals were collected in 85% yield.
The disordered SCN- anion was refined with S and C atoms split over two sites, with the sum of the occupancy factors equal to 1.00. In this anion restraints were imposed on the anion geometry (DFIX instructions of SHELXL-97) and anisotropic displacement parameter of C and S atoms (ISOR instruction). The occupancy factor of the water molecule was initially refined but it was fixed in the final
cycles. Positions of H atoms from water molecules were calculated assuming interactions with the anion S atoms and these atoms were refined as riding with O-H = 0.85 Å and Uiso=1.5Ueq (O). All H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and 0.97 Å, and Uiso=1.2Ueq (C).In recent years, there is an increasing interest in metal-organic frameworks (MOFs) for the versatile architectures and intriguing topologies as well as their wide potential applications (Dybtsev et al. 2004; Evans & Lin, 2002). A universal strategy for the construction of MOFs is dependent primarily on the appropriate choice of inorganic building blocks and different organic ligands. Among them, N-donor organic ligands are important because of their divers coordination modes to metal ions resulting in different structures (Janiak, 2003) and the ability to form of weak interactions to assemble supramolecular structures (Moulton & Zaworotko, 2001). In this case, 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene (hereafter L) is selected as organic ligand and reacted with Zn(OAc)2.2H2O and KSCN to obtain the title compound.
In the title compound, there is one kind of L ligand, ZnII ion and two kinds of SCN- anions in the π–π stacking interactions between imidazole rings from adjacent chains, with the plane to plane distance of 3.46 (1) Å and the centroid-centroid distances of 3.87 (8) Å. (Fig. 3).
(Fig. 1). Each ZnII ion is coordinated by two nitrogen atoms from two SCN- anions and four aromatic N atoms from two different L molecules with normal Zn—N distances (Dai et al. 2002; Luan et al. 2006), showing a distorted octahedral coordination geometry. Each L molecule is acting as a bridging bis-bidentate ligand coordinated to two ZnII ions to form polymeric one-dimensional chain (Fig. 2). Moreover, a two-dimensional supramolecular layer is finally formed by linking these chains through theFor backgroud to the topologies, supramolecular structures and applications of metal-organic frameworks (MOFs), see: Dybtsev et al. (2004); Evans & Lin (2002); Moulton & Zaworotko (2001). For coordination modes of organic ligands, see: Janiak (2003). For similar structures, see: Dai et al. (2002); Luan et al. (2006). For the synthesis of 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene, see: Li et al. (2008).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(NCS)2(C24H20N6)2]·0.28H2O | F(000) = 1187 |
Mr = 579.03 | Dx = 1.443 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 2199 reflections |
a = 7.8780 (4) Å | θ = 1.6–26.4° |
b = 13.1770 (7) Å | µ = 1.11 mm−1 |
c = 25.9620 (14) Å | T = 293 K |
β = 98.462 (1)° | Block, colorless |
V = 2665.7 (2) Å3 | 0.26 × 0.22 × 0.21 mm |
Z = 4 |
Bruker APEX CCD area-detector diffractometer | 4707 independent reflections |
Radiation source: fine-focus sealed tube | 3127 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.750, Tmax = 0.792 | k = −13→15 |
13328 measured reflections | l = −28→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0472P)2 + 0.0052P] where P = (Fo2 + 2Fc2)/3 |
4707 reflections | (Δ/σ)max = 0.001 |
362 parameters | Δρmax = 0.38 e Å−3 |
30 restraints | Δρmin = −0.33 e Å−3 |
[Zn(NCS)2(C24H20N6)2]·0.28H2O | V = 2665.7 (2) Å3 |
Mr = 579.03 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8780 (4) Å | µ = 1.11 mm−1 |
b = 13.1770 (7) Å | T = 293 K |
c = 25.9620 (14) Å | 0.26 × 0.22 × 0.21 mm |
β = 98.462 (1)° |
Bruker APEX CCD area-detector diffractometer | 4707 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3127 reflections with I > 2σ(I) |
Tmin = 0.750, Tmax = 0.792 | Rint = 0.036 |
13328 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 30 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.38 e Å−3 |
4707 reflections | Δρmin = −0.33 e Å−3 |
362 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.1405 (4) | 0.0988 (2) | 0.23131 (12) | 0.0627 (9) | |
H1 | 0.0560 | 0.0583 | 0.2128 | 0.075* | |
C2 | 0.1380 (4) | 0.1355 (2) | 0.27956 (12) | 0.0628 (9) | |
H2 | 0.0527 | 0.1253 | 0.3003 | 0.075* | |
C3 | 0.3735 (4) | 0.1861 (2) | 0.25115 (10) | 0.0498 (7) | |
C4 | 0.5346 (4) | 0.2347 (2) | 0.24331 (11) | 0.0488 (7) | |
C5 | 0.6518 (4) | 0.2810 (2) | 0.28088 (12) | 0.0652 (9) | |
H5 | 0.6360 | 0.2801 | 0.3157 | 0.078* | |
C6 | 0.7924 (5) | 0.3283 (3) | 0.26590 (14) | 0.0787 (10) | |
H6 | 0.8719 | 0.3607 | 0.2905 | 0.094* | |
C7 | 0.8146 (4) | 0.3274 (3) | 0.21460 (15) | 0.0797 (11) | |
H7 | 0.9059 | 0.3615 | 0.2034 | 0.096* | |
C8 | 0.6981 (4) | 0.2748 (3) | 0.18015 (13) | 0.0715 (10) | |
H8 | 0.7162 | 0.2710 | 0.1456 | 0.086* | |
C9 | 0.3326 (4) | 0.2402 (2) | 0.34290 (10) | 0.0562 (8) | |
H9A | 0.2287 | 0.2595 | 0.3564 | 0.067* | |
H9B | 0.3960 | 0.3018 | 0.3382 | 0.067* | |
C10 | 0.4402 (4) | 0.1734 (2) | 0.38252 (10) | 0.0493 (7) | |
C11 | 0.4785 (4) | 0.0736 (2) | 0.37134 (12) | 0.0633 (9) | |
H11 | 0.4402 | 0.0475 | 0.3384 | 0.076* | |
C12 | 0.4998 (3) | 0.2120 (2) | 0.43188 (10) | 0.0464 (7) | |
C13 | 0.5948 (4) | 0.1497 (2) | 0.46849 (11) | 0.0574 (8) | |
H13 | 0.6355 | 0.1751 | 0.5014 | 0.069* | |
C14 | 0.6294 (4) | 0.0511 (3) | 0.45663 (13) | 0.0699 (9) | |
H14 | 0.6921 | 0.0100 | 0.4816 | 0.084* | |
C15 | 0.5719 (4) | 0.0128 (3) | 0.40811 (14) | 0.0747 (10) | |
H15 | 0.5961 | −0.0539 | 0.4001 | 0.090* | |
C16 | 0.4598 (4) | 0.3198 (2) | 0.44434 (10) | 0.0514 (7) | |
H16A | 0.5126 | 0.3644 | 0.4215 | 0.062* | |
H16B | 0.3366 | 0.3297 | 0.4368 | 0.062* | |
C17 | 0.6633 (4) | 0.4061 (2) | 0.51368 (11) | 0.0594 (8) | |
H17 | 0.7419 | 0.4278 | 0.4926 | 0.071* | |
C18 | 0.6701 (4) | 0.4240 (2) | 0.56517 (12) | 0.0610 (8) | |
H18 | 0.7552 | 0.4611 | 0.5857 | 0.073* | |
C19 | 0.4434 (4) | 0.3341 (2) | 0.54193 (10) | 0.0460 (7) | |
C20 | 0.2902 (4) | 0.2752 (2) | 0.54843 (10) | 0.0480 (7) | |
C21 | 0.1991 (4) | 0.2117 (2) | 0.51218 (11) | 0.0554 (8) | |
H21 | 0.2308 | 0.2040 | 0.4793 | 0.066* | |
C22 | 0.0594 (4) | 0.1596 (3) | 0.52576 (13) | 0.0691 (9) | |
H22 | −0.0047 | 0.1173 | 0.5017 | 0.083* | |
C23 | 0.0159 (4) | 0.1703 (3) | 0.57424 (14) | 0.0728 (10) | |
H23 | −0.0774 | 0.1357 | 0.5839 | 0.087* | |
C24 | 0.1140 (4) | 0.2337 (3) | 0.60837 (13) | 0.0715 (10) | |
H24 | 0.0857 | 0.2404 | 0.6417 | 0.086* | |
N1 | 0.5617 (3) | 0.22928 (18) | 0.19344 (9) | 0.0557 (6) | |
N2 | 0.2857 (3) | 0.19105 (18) | 0.29238 (8) | 0.0531 (6) | |
N3 | 0.2880 (3) | 0.13082 (18) | 0.21386 (9) | 0.0556 (6) | |
N4 | 0.5181 (3) | 0.34985 (17) | 0.49856 (8) | 0.0490 (6) | |
N5 | 0.5331 (3) | 0.37948 (18) | 0.58233 (9) | 0.0525 (6) | |
N6 | 0.2472 (3) | 0.28627 (19) | 0.59660 (9) | 0.0566 (7) | |
N7 | 0.6024 (4) | 0.0045 (2) | 0.18550 (12) | 0.0833 (9) | |
C25 | 0.6692 (4) | −0.0180 (2) | 0.22631 (14) | 0.0603 (8) | |
S2 | 0.75961 (13) | −0.04934 (9) | 0.28408 (4) | 0.0927 (3) | |
N8 | 0.2453 (4) | −0.0111 (2) | 0.11975 (10) | 0.0852 (10) | |
C26 | 0.1381 (15) | −0.0639 (10) | 0.1031 (6) | 0.052 (3) | 0.56 (3) |
S1 | 0.0107 (12) | −0.1515 (10) | 0.0796 (4) | 0.1109 (18) | 0.56 (3) |
C26' | 0.1698 (19) | −0.0857 (8) | 0.1087 (8) | 0.042 (3) | 0.44 (3) |
S1' | 0.0605 (18) | −0.1874 (10) | 0.0912 (4) | 0.091 (3) | 0.44 (3) |
Zn1 | 0.41177 (5) | 0.10351 (3) | 0.149130 (12) | 0.05821 (16) | |
O1W | −0.0298 (16) | 0.1050 (10) | 0.3898 (4) | 0.154 (5) | 0.28 |
H1W | −0.1226 | 0.0745 | 0.3782 | 0.231* | 0.28 |
H2W | −0.0408 | 0.1642 | 0.3768 | 0.231* | 0.28 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.070 (2) | 0.072 (2) | 0.0484 (19) | −0.0175 (18) | 0.0148 (17) | −0.0006 (16) |
C2 | 0.063 (2) | 0.080 (2) | 0.050 (2) | −0.0060 (18) | 0.0228 (17) | 0.0030 (16) |
C3 | 0.0625 (19) | 0.0526 (18) | 0.0363 (16) | −0.0014 (15) | 0.0143 (15) | −0.0020 (13) |
C4 | 0.0609 (19) | 0.0455 (17) | 0.0416 (17) | 0.0010 (15) | 0.0127 (15) | −0.0043 (13) |
C5 | 0.072 (2) | 0.069 (2) | 0.055 (2) | −0.0104 (19) | 0.0133 (18) | −0.0107 (17) |
C6 | 0.076 (2) | 0.085 (3) | 0.075 (3) | −0.014 (2) | 0.010 (2) | −0.024 (2) |
C7 | 0.072 (2) | 0.087 (3) | 0.087 (3) | −0.027 (2) | 0.034 (2) | −0.018 (2) |
C8 | 0.081 (2) | 0.077 (2) | 0.064 (2) | −0.015 (2) | 0.037 (2) | −0.0131 (18) |
C9 | 0.077 (2) | 0.0581 (19) | 0.0361 (16) | 0.0103 (17) | 0.0170 (15) | −0.0024 (14) |
C10 | 0.0592 (18) | 0.0525 (19) | 0.0394 (17) | 0.0047 (15) | 0.0185 (14) | 0.0039 (13) |
C11 | 0.083 (2) | 0.056 (2) | 0.0514 (19) | 0.0117 (18) | 0.0113 (17) | −0.0073 (15) |
C12 | 0.0553 (17) | 0.0495 (18) | 0.0379 (16) | 0.0036 (14) | 0.0185 (14) | 0.0064 (13) |
C13 | 0.069 (2) | 0.058 (2) | 0.0458 (18) | 0.0074 (17) | 0.0093 (16) | 0.0041 (15) |
C14 | 0.078 (2) | 0.062 (2) | 0.068 (2) | 0.0175 (19) | 0.0052 (19) | 0.0107 (18) |
C15 | 0.094 (3) | 0.054 (2) | 0.077 (2) | 0.023 (2) | 0.013 (2) | −0.0041 (19) |
C16 | 0.073 (2) | 0.0531 (18) | 0.0303 (15) | −0.0011 (16) | 0.0139 (14) | 0.0033 (13) |
C17 | 0.075 (2) | 0.061 (2) | 0.0472 (19) | −0.0101 (17) | 0.0248 (17) | −0.0008 (15) |
C18 | 0.078 (2) | 0.059 (2) | 0.0481 (19) | −0.0122 (17) | 0.0143 (17) | −0.0020 (15) |
C19 | 0.0625 (19) | 0.0425 (17) | 0.0356 (16) | 0.0050 (15) | 0.0156 (15) | 0.0051 (13) |
C20 | 0.0558 (18) | 0.0485 (17) | 0.0406 (17) | 0.0087 (15) | 0.0102 (14) | 0.0085 (13) |
C21 | 0.0595 (19) | 0.063 (2) | 0.0448 (18) | 0.0008 (17) | 0.0104 (15) | 0.0038 (15) |
C22 | 0.059 (2) | 0.078 (2) | 0.069 (2) | −0.0022 (19) | 0.0041 (18) | −0.0009 (19) |
C23 | 0.063 (2) | 0.089 (3) | 0.071 (2) | −0.008 (2) | 0.0235 (19) | 0.009 (2) |
C24 | 0.074 (2) | 0.088 (3) | 0.057 (2) | −0.002 (2) | 0.0279 (19) | 0.0067 (19) |
N1 | 0.0656 (16) | 0.0576 (16) | 0.0482 (15) | −0.0092 (13) | 0.0228 (13) | −0.0068 (12) |
N2 | 0.0680 (17) | 0.0611 (16) | 0.0325 (13) | 0.0014 (14) | 0.0155 (12) | −0.0008 (11) |
N3 | 0.0691 (16) | 0.0614 (16) | 0.0382 (14) | −0.0151 (14) | 0.0142 (13) | −0.0044 (12) |
N4 | 0.0662 (16) | 0.0491 (14) | 0.0336 (13) | −0.0013 (13) | 0.0140 (12) | 0.0002 (11) |
N5 | 0.0698 (16) | 0.0537 (15) | 0.0357 (14) | −0.0045 (13) | 0.0136 (13) | 0.0005 (11) |
N6 | 0.0664 (17) | 0.0643 (17) | 0.0419 (14) | 0.0053 (14) | 0.0180 (13) | 0.0081 (12) |
N7 | 0.124 (3) | 0.0640 (19) | 0.0637 (19) | 0.0083 (18) | 0.0209 (18) | 0.0063 (16) |
C25 | 0.067 (2) | 0.0435 (18) | 0.075 (2) | 0.0036 (16) | 0.0286 (19) | −0.0005 (17) |
S2 | 0.0803 (7) | 0.1023 (8) | 0.0907 (8) | 0.0078 (6) | −0.0037 (6) | 0.0145 (6) |
N8 | 0.125 (3) | 0.077 (2) | 0.0556 (19) | −0.029 (2) | 0.0210 (18) | −0.0141 (15) |
C26 | 0.049 (5) | 0.060 (5) | 0.046 (5) | 0.014 (4) | 0.006 (4) | 0.001 (4) |
S1 | 0.065 (2) | 0.129 (4) | 0.137 (3) | −0.031 (3) | 0.007 (2) | −0.033 (3) |
C26' | 0.038 (5) | 0.053 (5) | 0.034 (5) | 0.020 (5) | 0.006 (4) | 0.001 (4) |
S1' | 0.072 (3) | 0.113 (4) | 0.089 (3) | −0.031 (3) | 0.019 (2) | −0.043 (2) |
Zn1 | 0.0859 (3) | 0.0552 (2) | 0.0370 (2) | −0.00799 (19) | 0.02056 (19) | −0.00498 (16) |
O1W | 0.159 (11) | 0.198 (14) | 0.117 (10) | −0.065 (9) | 0.058 (8) | −0.028 (8) |
C1—C2 | 1.346 (4) | C16—H16A | 0.9700 |
C1—N3 | 1.374 (4) | C16—H16B | 0.9700 |
C1—H1 | 0.9300 | C17—C18 | 1.351 (4) |
C2—N2 | 1.373 (4) | C17—N4 | 1.371 (4) |
C2—H2 | 0.9300 | C17—H17 | 0.9300 |
C3—N3 | 1.315 (3) | C18—N5 | 1.360 (4) |
C3—N2 | 1.359 (3) | C18—H18 | 0.9300 |
C3—C4 | 1.463 (4) | C19—N5 | 1.319 (3) |
C4—N1 | 1.345 (3) | C19—N4 | 1.361 (3) |
C4—C5 | 1.382 (4) | C19—C20 | 1.465 (4) |
C5—C6 | 1.376 (4) | C20—N6 | 1.351 (3) |
C5—H5 | 0.9300 | C20—C21 | 1.379 (4) |
C6—C7 | 1.369 (4) | C21—C22 | 1.386 (4) |
C6—H6 | 0.9300 | C21—H21 | 0.9300 |
C7—C8 | 1.372 (4) | C22—C23 | 1.360 (4) |
C7—H7 | 0.9300 | C22—H22 | 0.9300 |
C8—N1 | 1.321 (4) | C23—C24 | 1.371 (4) |
C8—H8 | 0.9300 | C23—H23 | 0.9300 |
C9—N2 | 1.461 (3) | C24—N6 | 1.330 (4) |
C9—C10 | 1.515 (4) | C24—H24 | 0.9300 |
C9—H9A | 0.9700 | N1—Zn1 | 2.250 (2) |
C9—H9B | 0.9700 | N3—Zn1 | 2.095 (2) |
C10—C11 | 1.390 (4) | N5—Zn1i | 2.112 (2) |
C10—C12 | 1.394 (4) | N6—Zn1i | 2.265 (2) |
C11—C15 | 1.374 (4) | N7—C25 | 1.151 (4) |
C11—H11 | 0.9300 | N7—Zn1 | 2.105 (3) |
C12—C13 | 1.389 (4) | C25—S2 | 1.616 (4) |
C12—C16 | 1.501 (4) | N8—C26 | 1.130 (4) |
C13—C14 | 1.371 (4) | N8—Zn1 | 2.071 (3) |
C13—H13 | 0.9300 | C26—S1 | 1.591 (4) |
C14—C15 | 1.371 (4) | C26'—S1' | 1.621 (4) |
C14—H14 | 0.9300 | O1W—H1W | 0.8500 |
C15—H15 | 0.9300 | O1W—H2W | 0.8500 |
C16—N4 | 1.469 (3) | ||
C2—C1—N3 | 109.0 (3) | C17—C18—H18 | 125.3 |
C2—C1—H1 | 125.5 | N5—C18—H18 | 125.3 |
N3—C1—H1 | 125.5 | N5—C19—N4 | 110.0 (2) |
C1—C2—N2 | 106.8 (3) | N5—C19—C20 | 120.2 (2) |
C1—C2—H2 | 126.6 | N4—C19—C20 | 129.8 (3) |
N2—C2—H2 | 126.6 | N6—C20—C21 | 121.4 (3) |
N3—C3—N2 | 110.0 (3) | N6—C20—C19 | 111.8 (2) |
N3—C3—C4 | 120.1 (2) | C21—C20—C19 | 126.7 (3) |
N2—C3—C4 | 129.9 (3) | C20—C21—C22 | 118.7 (3) |
N1—C4—C5 | 121.3 (3) | C20—C21—H21 | 120.7 |
N1—C4—C3 | 112.0 (2) | C22—C21—H21 | 120.7 |
C5—C4—C3 | 126.8 (3) | C23—C22—C21 | 120.1 (3) |
C6—C5—C4 | 118.8 (3) | C23—C22—H22 | 119.9 |
C6—C5—H5 | 120.6 | C21—C22—H22 | 119.9 |
C4—C5—H5 | 120.6 | C22—C23—C24 | 117.8 (3) |
C7—C6—C5 | 119.7 (3) | C22—C23—H23 | 121.1 |
C7—C6—H6 | 120.2 | C24—C23—H23 | 121.1 |
C5—C6—H6 | 120.2 | N6—C24—C23 | 123.9 (3) |
C6—C7—C8 | 118.0 (3) | N6—C24—H24 | 118.0 |
C6—C7—H7 | 121.0 | C23—C24—H24 | 118.0 |
C8—C7—H7 | 121.0 | C8—N1—C4 | 118.5 (3) |
N1—C8—C7 | 123.5 (3) | C8—N1—Zn1 | 126.0 (2) |
N1—C8—H8 | 118.3 | C4—N1—Zn1 | 112.71 (18) |
C7—C8—H8 | 118.3 | C3—N2—C2 | 107.1 (2) |
N2—C9—C10 | 113.2 (2) | C3—N2—C9 | 129.6 (3) |
N2—C9—H9A | 108.9 | C2—N2—C9 | 123.2 (2) |
C10—C9—H9A | 108.9 | C3—N3—C1 | 107.1 (2) |
N2—C9—H9B | 108.9 | C3—N3—Zn1 | 115.93 (19) |
C10—C9—H9B | 108.9 | C1—N3—Zn1 | 136.7 (2) |
H9A—C9—H9B | 107.7 | C19—N4—C17 | 106.9 (2) |
C11—C10—C12 | 118.9 (3) | C19—N4—C16 | 129.7 (2) |
C11—C10—C9 | 121.7 (3) | C17—N4—C16 | 123.4 (2) |
C12—C10—C9 | 119.4 (3) | C19—N5—C18 | 107.1 (2) |
C15—C11—C10 | 121.1 (3) | C19—N5—Zn1i | 116.53 (19) |
C15—C11—H11 | 119.4 | C18—N5—Zn1i | 134.4 (2) |
C10—C11—H11 | 119.4 | C24—N6—C20 | 118.0 (3) |
C13—C12—C10 | 119.3 (3) | C24—N6—Zn1i | 126.6 (2) |
C13—C12—C16 | 121.4 (3) | C20—N6—Zn1i | 115.3 (2) |
C10—C12—C16 | 119.3 (2) | C25—N7—Zn1 | 140.6 (3) |
C14—C13—C12 | 120.7 (3) | N7—C25—S2 | 178.9 (3) |
C14—C13—H13 | 119.6 | C26—N8—Zn1 | 170.9 (9) |
C12—C13—H13 | 119.6 | N8—C26—S1 | 170.8 (12) |
C15—C14—C13 | 120.4 (3) | N8—Zn1—N3 | 94.38 (10) |
C15—C14—H14 | 119.8 | N8—Zn1—N7 | 94.87 (13) |
C13—C14—H14 | 119.8 | N3—Zn1—N7 | 97.60 (11) |
C14—C15—C11 | 119.7 (3) | N8—Zn1—N5ii | 96.53 (10) |
C14—C15—H15 | 120.2 | N3—Zn1—N5ii | 163.98 (9) |
C11—C15—H15 | 120.2 | N7—Zn1—N5ii | 93.14 (11) |
N4—C16—C12 | 114.5 (2) | N8—Zn1—N1 | 168.99 (10) |
N4—C16—H16A | 108.6 | N3—Zn1—N1 | 74.61 (9) |
C12—C16—H16A | 108.6 | N7—Zn1—N1 | 86.62 (11) |
N4—C16—H16B | 108.6 | N5ii—Zn1—N1 | 94.28 (9) |
C12—C16—H16B | 108.6 | N8—Zn1—N6ii | 88.30 (11) |
H16A—C16—H16B | 107.6 | N3—Zn1—N6ii | 94.60 (9) |
C18—C17—N4 | 106.7 (3) | N7—Zn1—N6ii | 167.12 (10) |
C18—C17—H17 | 126.6 | N5ii—Zn1—N6ii | 74.07 (9) |
N4—C17—H17 | 126.6 | N1—Zn1—N6ii | 92.65 (9) |
C17—C18—N5 | 109.3 (3) | H1W—O1W—H2W | 105.1 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···S1iii | 0.85 | 2.68 | 3.30 (2) | 132 |
Symmetry code: (iii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(NCS)2(C24H20N6)2]·0.28H2O |
Mr | 579.03 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.8780 (4), 13.1770 (7), 25.9620 (14) |
β (°) | 98.462 (1) |
V (Å3) | 2665.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.11 |
Crystal size (mm) | 0.26 × 0.22 × 0.21 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.750, 0.792 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13328, 4707, 3127 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.102, 1.04 |
No. of reflections | 4707 |
No. of parameters | 362 |
No. of restraints | 30 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.33 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···S1i | 0.85 | 2.68 | 3.30 (2) | 132 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
Acknowledgements
We greatly acknowledge the financial support of this work by the Department of Education of Jilin Province.
References
Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Hu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, R.-Q. (2002). Inorg. Chem. 41, 1391–1396. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33. Web of Science CrossRef PubMed CAS Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Janiak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Li, S.-L., Lan, Y.-Q., Ma, J.-F., Fu, Y.-M., Yang, J., Ping, G.-J., Liu, J. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 1610–1616. Web of Science CSD CrossRef CAS Google Scholar
Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281–6289. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, there is an increasing interest in metal-organic frameworks (MOFs) for the versatile architectures and intriguing topologies as well as their wide potential applications (Dybtsev et al. 2004; Evans & Lin, 2002). A universal strategy for the construction of MOFs is dependent primarily on the appropriate choice of inorganic building blocks and different organic ligands. Among them, N-donor organic ligands are important because of their divers coordination modes to metal ions resulting in different structures (Janiak, 2003) and the ability to form of weak interactions to assemble supramolecular structures (Moulton & Zaworotko, 2001). In this case, 1,2-bis{[2-(2-pyridyl)-1H-imidazol-1-yl]methyl}benzene (hereafter L) is selected as organic ligand and reacted with Zn(OAc)2.2H2O and KSCN to obtain the title compound.
In the title compound, there is one kind of L ligand, ZnII ion and two kinds of SCN- anions in the unit cell (Fig. 1). Each ZnII ion is coordinated by two nitrogen atoms from two SCN- anions and four aromatic N atoms from two different L molecules with normal Zn—N distances (Dai et al. 2002; Luan et al. 2006), showing a distorted octahedral coordination geometry. Each L molecule is acting as a bridging bis-bidentate ligand coordinated to two ZnII ions to form polymeric one-dimensional chain (Fig. 2). Moreover, a two-dimensional supramolecular layer is finally formed by linking these chains through the π–π stacking interactions between imidazole rings from adjacent chains, with the plane to plane distance of 3.46 (1) Å and the centroid-centroid distances of 3.87 (8) Å. (Fig. 3).