metal-organic compounds
[(1R,4S)-(+)-3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-olato-κ2O2,O3](η4-norbornadiene)rhodium(I)
aLaboratoire de Chimie de Coordination, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it
In the title complex molecule, [Rh(C17H19O2)(C7H8)], the rhodium(I) metal centre is coordinated by the O atoms of a benzoylcamphorate anion and the C=C bonds of the norbornadiene molecule into a slightly distorted square-planar coordination geometry. The six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the phenyl ring.
Related literature
For the synthesis and properties of rhodium complexes in enantioselective transformations, see: Noyori (1994); Breuzard et al. (2000); Bernard et al. (2001). For the chemistry and applications of camphor-derived compounds, see: Togni (1990); Togni et al. (1993); Guo & Sadler (1999). For the synthesis, structure and applications of transition metal complexes in catalytic asymmetric reactions, see: Naili et al. (2000); Ait Ali, Allaoud et al. (2000); Fdil et al. (2002). For related structures, see: Spannenberg et al. (2002); Ait Ali, El Firdoussi et al. (2000); Ait Ali et al. (2001, 2006); El Firdoussi et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S160053681002667X/gk2290sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681002667X/gk2290Isup2.hkl
A solution of [Rh(norbornadiene)Cl]2 (0.18 mmol, 100 mg) in THF (10 ml) was added to a suspension of (1R)-(+)-3-benzoylcamphor (0.32 mmol, 83.4 mg) and Na2CO3 (0.94 mmol, 100 mg) in THF (10 ml). The mixture was stirred for 3 h at room temperature, then it was evaporated to dryness under reduced pressure. The residue was extracted with CH2Cl2 (3 × 10 ml), and the recovered filtrate was evaporated to dryness to give an orange solid (yield 86%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a diethyl ether solution.
All H atoms were placed at calculated positions and refined using the riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The
was assigned on the basis of the known of the starting material and confirmed by effects.Rhodium complexes are widely used in organic chemistry due to their ability to mediate numerous transformations of organic molecules, often in catalytic mode. In particular, rhodium complexes of chiral ligands have shown to perform highly enantioselective transformations (Noyori, 1994; Breuzard et al., 2000; Bernard et al., 2001). Camphor-derived 1,3-diketonato ligands are a potentially attractive class of ligands in organometallic development, because these compounds are readily synthesized and easily varied (Togni, 1990; Togni et al., 1993). Moreover, some of their transition metal complexes can be used as therapeutic drugs (Guo & Sadler, 1999). As a contribution to our research programs aimed at the preparation of transition metal complexes (Spannenberg et al., 2002; Ait Ali, El Firdoussi et al., 2000; Ait Ali et al., 2001, 2006; El Firdoussi et al., 2007) and their application in catalytic asymmetric reactions (Naili et al., 2000; Ait Ali, Allaoud et al., 2000; Fdil et al., 2002), we report here the synthesis and
of the title compound.In the mononuclear title complex molecule (Fig. 1), the rhodium(I) metal atom assumes a slightly tetrahedrally distorted square-planar coordination geometry provided by the O atoms of the chelating benzoylcamphorato anion and the centroids of the C═C double bonds of the norbornadiene molecule (maximum displacement 0.078 (5) Å for the centroid of the C18═C19 bonds). The RhO2C3 six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the C12–C17 phenyl ring. The C–O (O1–C2 = 1.265 (5) Å; O2–C11 = 1.298 (5) Å) and C–C (C2–C3 = 1.427 (6) Å; C3–C11 = 1.402 (5) Å) bond lengths pattern within the metallacycle indicates a high degree of π-delocalization. The Rh–O bond lengths (2.047 (3) and 2.059 (2) Å) are not significantly different from those observed in the closely related compound (cycloocta-1,5-diene)[(1R)-(+)-3-benzoyl-camphoryl]rhodium(I) (2.047 (3) and 2.059 (2) Å; Spannenberg et al., 2002). The Rh–C (mean value 2.113 (4) Å) and the donor C═C double bonds distances (mean value 1.388 (7) Å) involving the norbornadiene molecule are in agreement with the range of values observed in 286 related structures (mean values: Rh–C, 2.164 Å; C═C, 1.384 Å; Cambridge Structural Database; Version 5.31, November 2009; Allen, 2002). The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.
For the synthesis and properties of rhodium complexes in enantioselective transformations, see: Noyori (1994); Breuzard et al. (2000); Bernard et al. (2001). For the chemistry and applications of camphor-derived compounds, see: Togni (1990); Togni et al. (1993); Guo & Sadler (1999). For the synthesis, structure and applications of transition metal complexes in catalytic asymmetric reactions, see: Naili et al. (2000); Ait Ali, Allaoud et al. (2000); Fdil et al. (2002). For related structures, see: Spannenberg et al. (2002); Ait Ali, El Firdoussi et al. (2000); Ait Ali et al. (2001, 2006); El Firdoussi et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).[Rh(C17H19O2)(C7H8)] | F(000) = 928 |
Mr = 450.37 | Dx = 1.456 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 772 reflections |
a = 6.4755 (11) Å | θ = 5.2–24.8° |
b = 8.2817 (13) Å | µ = 0.85 mm−1 |
c = 38.320 (6) Å | T = 295 K |
V = 2055.0 (6) Å3 | Block, orange |
Z = 4 | 0.33 × 0.16 × 0.10 mm |
Bruker SMART 1000 CCD diffractometer | 3990 independent reflections |
Radiation source: fine-focus sealed tube | 3953 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 26.0°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −7→7 |
Tmin = 0.855, Tmax = 0.937 | k = −10→10 |
21718 measured reflections | l = −47→47 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.017P)2 + 2.5414P] where P = (Fo2 + 2Fc2)/3 |
S = 1.27 | (Δ/σ)max = 0.001 |
3990 reflections | Δρmax = 0.59 e Å−3 |
244 parameters | Δρmin = −1.11 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1643 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (4) |
[Rh(C17H19O2)(C7H8)] | V = 2055.0 (6) Å3 |
Mr = 450.37 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.4755 (11) Å | µ = 0.85 mm−1 |
b = 8.2817 (13) Å | T = 295 K |
c = 38.320 (6) Å | 0.33 × 0.16 × 0.10 mm |
Bruker SMART 1000 CCD diffractometer | 3990 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3953 reflections with I > 2σ(I) |
Tmin = 0.855, Tmax = 0.937 | Rint = 0.040 |
21718 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.074 | Δρmax = 0.59 e Å−3 |
S = 1.27 | Δρmin = −1.11 e Å−3 |
3990 reflections | Absolute structure: Flack (1983), 1643 Friedel pairs |
244 parameters | Absolute structure parameter: 0.03 (4) |
0 restraints |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.56683 (5) | 0.36256 (3) | 0.081995 (8) | 0.03291 (9) | |
O1 | 0.3616 (4) | 0.1728 (3) | 0.08213 (8) | 0.0400 (6) | |
O2 | 0.5107 (4) | 0.4086 (3) | 0.13360 (7) | 0.0398 (7) | |
C1 | 0.1414 (6) | −0.0255 (5) | 0.11061 (11) | 0.0368 (9) | |
C2 | 0.2775 (6) | 0.1238 (5) | 0.11000 (10) | 0.0344 (8) | |
C3 | 0.2779 (6) | 0.1910 (5) | 0.14431 (10) | 0.0318 (8) | |
C4 | 0.1389 (6) | 0.0796 (5) | 0.16545 (11) | 0.0355 (9) | |
H4 | 0.1590 | 0.0847 | 0.1908 | 0.043* | |
C5 | −0.0856 (7) | 0.1121 (6) | 0.15294 (11) | 0.0471 (10) | |
H5A | −0.1853 | 0.0554 | 0.1673 | 0.056* | |
H5B | −0.1171 | 0.2266 | 0.1532 | 0.056* | |
C6 | −0.0825 (8) | 0.0446 (6) | 0.11516 (12) | 0.0460 (10) | |
H6A | −0.1088 | 0.1296 | 0.0983 | 0.055* | |
H6B | −0.1855 | −0.0394 | 0.1123 | 0.055* | |
C7 | 0.1856 (7) | −0.0886 (5) | 0.14854 (12) | 0.0380 (9) | |
C8 | 0.0410 (9) | −0.2252 (5) | 0.16093 (13) | 0.0531 (12) | |
H8A | −0.1000 | −0.1941 | 0.1571 | 0.080* | |
H8B | 0.0628 | −0.2445 | 0.1854 | 0.080* | |
H8C | 0.0703 | −0.3219 | 0.1480 | 0.080* | |
C9 | 0.4082 (7) | −0.1450 (6) | 0.15381 (13) | 0.0512 (10) | |
H9A | 0.5013 | −0.0621 | 0.1461 | 0.077* | |
H9B | 0.4317 | −0.2415 | 0.1405 | 0.077* | |
H9C | 0.4315 | −0.1667 | 0.1781 | 0.077* | |
C10 | 0.1716 (7) | −0.1380 (6) | 0.07994 (14) | 0.0571 (12) | |
H10A | 0.0806 | −0.2289 | 0.0822 | 0.086* | |
H10B | 0.3121 | −0.1749 | 0.0795 | 0.086* | |
H10C | 0.1413 | −0.0815 | 0.0587 | 0.086* | |
C11 | 0.3863 (6) | 0.3304 (4) | 0.15408 (10) | 0.0327 (9) | |
C12 | 0.3729 (7) | 0.4015 (5) | 0.19004 (11) | 0.0394 (10) | |
C13 | 0.5477 (10) | 0.4824 (5) | 0.20309 (12) | 0.0527 (12) | |
H13 | 0.6684 | 0.4859 | 0.1900 | 0.063* | |
C14 | 0.5404 (13) | 0.5571 (7) | 0.23555 (14) | 0.0759 (19) | |
H14 | 0.6574 | 0.6083 | 0.2442 | 0.091* | |
C15 | 0.3625 (13) | 0.5558 (8) | 0.25484 (16) | 0.086 (2) | |
H15 | 0.3576 | 0.6085 | 0.2763 | 0.103* | |
C16 | 0.1911 (12) | 0.4765 (7) | 0.24245 (15) | 0.0758 (19) | |
H16 | 0.0718 | 0.4738 | 0.2559 | 0.091* | |
C17 | 0.1928 (9) | 0.3994 (6) | 0.20983 (12) | 0.0535 (12) | |
H17 | 0.0751 | 0.3476 | 0.2016 | 0.064* | |
C18 | 0.5765 (9) | 0.4075 (6) | 0.02782 (11) | 0.0517 (11) | |
H18 | 0.4397 | 0.3876 | 0.0218 | 0.062* | |
C19 | 0.7252 (7) | 0.2940 (5) | 0.03643 (11) | 0.0413 (10) | |
H19 | 0.7076 | 0.1827 | 0.0375 | 0.050* | |
C20 | 0.9252 (8) | 0.3882 (5) | 0.04392 (11) | 0.0466 (10) | |
H20 | 1.0552 | 0.3276 | 0.0436 | 0.056* | |
C21 | 0.8629 (7) | 0.4696 (5) | 0.07839 (13) | 0.0441 (10) | |
H21 | 0.9148 | 0.4467 | 0.1005 | 0.053* | |
C22 | 0.7137 (8) | 0.5842 (5) | 0.07018 (13) | 0.0526 (13) | |
H22 | 0.6459 | 0.6529 | 0.0856 | 0.063* | |
C23 | 0.6835 (9) | 0.5738 (6) | 0.03026 (13) | 0.0570 (13) | |
H23 | 0.6157 | 0.6652 | 0.0187 | 0.068* | |
C24 | 0.9039 (10) | 0.5307 (6) | 0.01829 (13) | 0.0604 (14) | |
H24A | 1.0027 | 0.6163 | 0.0227 | 0.072* | |
H24B | 0.9101 | 0.4974 | −0.0060 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.03562 (15) | 0.03097 (13) | 0.03214 (14) | −0.00890 (14) | 0.00359 (13) | −0.00053 (14) |
O1 | 0.0433 (15) | 0.0385 (15) | 0.0383 (14) | −0.0161 (11) | 0.0057 (13) | −0.0017 (14) |
O2 | 0.0494 (18) | 0.0328 (15) | 0.0372 (15) | −0.0137 (12) | 0.0057 (12) | −0.0036 (11) |
C1 | 0.031 (2) | 0.036 (2) | 0.043 (2) | −0.0109 (17) | 0.0029 (17) | −0.0011 (18) |
C2 | 0.0289 (18) | 0.031 (2) | 0.043 (2) | −0.0044 (18) | 0.0009 (15) | 0.0034 (19) |
C3 | 0.031 (2) | 0.0294 (19) | 0.035 (2) | −0.0016 (15) | 0.0032 (16) | 0.0002 (16) |
C4 | 0.035 (2) | 0.037 (2) | 0.035 (2) | −0.0034 (16) | 0.0016 (16) | 0.0032 (17) |
C5 | 0.034 (2) | 0.050 (3) | 0.057 (3) | −0.002 (2) | 0.007 (2) | 0.002 (2) |
C6 | 0.033 (2) | 0.052 (3) | 0.053 (3) | −0.008 (2) | −0.002 (2) | 0.008 (2) |
C7 | 0.035 (2) | 0.029 (2) | 0.050 (2) | −0.0058 (17) | 0.0006 (18) | 0.0041 (17) |
C8 | 0.055 (3) | 0.041 (2) | 0.064 (3) | −0.014 (2) | 0.005 (3) | 0.013 (2) |
C9 | 0.044 (3) | 0.040 (2) | 0.069 (3) | 0.004 (3) | −0.003 (2) | 0.000 (2) |
C10 | 0.059 (3) | 0.052 (2) | 0.060 (3) | −0.026 (2) | 0.010 (2) | −0.019 (3) |
C11 | 0.039 (2) | 0.0233 (19) | 0.036 (2) | 0.0011 (15) | 0.0036 (16) | 0.0002 (15) |
C12 | 0.057 (3) | 0.027 (2) | 0.035 (2) | 0.0042 (17) | 0.0007 (18) | 0.0028 (16) |
C13 | 0.076 (4) | 0.041 (2) | 0.041 (2) | −0.006 (3) | −0.006 (3) | −0.0033 (18) |
C14 | 0.117 (6) | 0.061 (3) | 0.049 (3) | −0.015 (4) | −0.019 (4) | −0.013 (3) |
C15 | 0.149 (7) | 0.062 (4) | 0.047 (3) | −0.001 (4) | 0.009 (4) | −0.025 (3) |
C16 | 0.122 (6) | 0.060 (3) | 0.046 (3) | 0.019 (4) | 0.031 (3) | −0.001 (3) |
C17 | 0.075 (3) | 0.044 (3) | 0.042 (2) | 0.006 (2) | 0.014 (2) | −0.002 (2) |
C18 | 0.047 (2) | 0.072 (3) | 0.037 (2) | −0.014 (3) | −0.003 (2) | 0.007 (2) |
C19 | 0.053 (3) | 0.039 (2) | 0.031 (2) | −0.011 (2) | 0.0085 (19) | −0.0046 (18) |
C20 | 0.040 (2) | 0.048 (2) | 0.052 (2) | −0.006 (2) | 0.008 (2) | 0.0018 (19) |
C21 | 0.046 (2) | 0.045 (2) | 0.040 (2) | −0.0219 (18) | 0.000 (2) | 0.000 (2) |
C22 | 0.064 (3) | 0.033 (2) | 0.061 (3) | −0.013 (2) | 0.021 (2) | 0.002 (2) |
C23 | 0.068 (3) | 0.049 (3) | 0.054 (3) | 0.001 (3) | 0.005 (3) | 0.025 (2) |
C24 | 0.070 (4) | 0.061 (3) | 0.050 (3) | −0.020 (3) | 0.015 (3) | 0.009 (2) |
Rh1—O2 | 2.047 (3) | C10—H10A | 0.9600 |
Rh1—O1 | 2.059 (2) | C10—H10B | 0.9600 |
Rh1—C19 | 2.103 (4) | C10—H10C | 0.9600 |
Rh1—C18 | 2.110 (4) | C11—C12 | 1.501 (5) |
Rh1—C22 | 2.116 (4) | C12—C17 | 1.391 (7) |
Rh1—C21 | 2.116 (4) | C12—C13 | 1.407 (7) |
O1—C2 | 1.265 (5) | C13—C14 | 1.390 (7) |
O2—C11 | 1.298 (5) | C13—H13 | 0.9300 |
C1—C10 | 1.512 (6) | C14—C15 | 1.369 (10) |
C1—C2 | 1.519 (5) | C14—H14 | 0.9300 |
C1—C7 | 1.571 (6) | C15—C16 | 1.374 (10) |
C1—C6 | 1.572 (6) | C15—H15 | 0.9300 |
C2—C3 | 1.427 (6) | C16—C17 | 1.403 (7) |
C3—C11 | 1.402 (5) | C16—H16 | 0.9300 |
C3—C4 | 1.522 (5) | C17—H17 | 0.9300 |
C4—C5 | 1.554 (6) | C18—C19 | 1.386 (7) |
C4—C7 | 1.566 (6) | C18—C23 | 1.545 (7) |
C4—H4 | 0.9800 | C18—H18 | 0.9300 |
C5—C6 | 1.552 (6) | C19—C20 | 1.539 (6) |
C5—H5A | 0.9700 | C19—H19 | 0.9300 |
C5—H5B | 0.9700 | C20—C21 | 1.537 (6) |
C6—H6A | 0.9700 | C20—C24 | 1.541 (6) |
C6—H6B | 0.9700 | C20—H20 | 0.9800 |
C7—C9 | 1.529 (6) | C21—C22 | 1.390 (7) |
C7—C8 | 1.543 (6) | C21—H21 | 0.9300 |
C8—H8A | 0.9600 | C22—C23 | 1.544 (7) |
C8—H8B | 0.9600 | C22—H22 | 0.9300 |
C8—H8C | 0.9600 | C23—C24 | 1.541 (8) |
C9—H9A | 0.9600 | C23—H23 | 0.9800 |
C9—H9B | 0.9600 | C24—H24A | 0.9700 |
C9—H9C | 0.9600 | C24—H24B | 0.9700 |
O2—Rh1—O1 | 91.44 (11) | H10A—C10—H10B | 109.5 |
O2—Rh1—C19 | 159.91 (16) | C1—C10—H10C | 109.5 |
O1—Rh1—C19 | 96.36 (14) | H10A—C10—H10C | 109.5 |
O2—Rh1—C18 | 157.38 (16) | H10B—C10—H10C | 109.5 |
O1—Rh1—C18 | 98.99 (17) | O2—C11—C3 | 124.1 (4) |
C19—Rh1—C18 | 38.40 (19) | O2—C11—C12 | 113.3 (3) |
O2—Rh1—C22 | 97.18 (16) | C3—C11—C12 | 122.6 (3) |
O1—Rh1—C22 | 162.36 (18) | C17—C12—C13 | 119.1 (4) |
C19—Rh1—C22 | 80.64 (18) | C17—C12—C11 | 123.0 (4) |
C18—Rh1—C22 | 67.9 (2) | C13—C12—C11 | 117.8 (4) |
O2—Rh1—C21 | 98.38 (15) | C14—C13—C12 | 120.2 (6) |
O1—Rh1—C21 | 154.79 (15) | C14—C13—H13 | 119.9 |
C19—Rh1—C21 | 67.50 (18) | C12—C13—H13 | 119.9 |
C18—Rh1—C21 | 80.5 (2) | C15—C14—C13 | 120.5 (6) |
C22—Rh1—C21 | 38.35 (19) | C15—C14—H14 | 119.7 |
C2—O1—Rh1 | 121.6 (3) | C13—C14—H14 | 119.7 |
C11—O2—Rh1 | 127.0 (2) | C14—C15—C16 | 119.8 (5) |
C10—C1—C2 | 114.5 (3) | C14—C15—H15 | 120.1 |
C10—C1—C7 | 119.4 (4) | C16—C15—H15 | 120.1 |
C2—C1—C7 | 100.3 (3) | C15—C16—C17 | 121.3 (6) |
C10—C1—C6 | 115.7 (4) | C15—C16—H16 | 119.4 |
C2—C1—C6 | 103.7 (3) | C17—C16—H16 | 119.4 |
C7—C1—C6 | 100.9 (3) | C12—C17—C16 | 119.1 (6) |
O1—C2—C3 | 130.7 (4) | C12—C17—H17 | 120.5 |
O1—C2—C1 | 121.6 (4) | C16—C17—H17 | 120.5 |
C3—C2—C1 | 107.7 (3) | C19—C18—C23 | 106.2 (4) |
C11—C3—C2 | 124.6 (4) | C19—C18—Rh1 | 70.5 (2) |
C11—C3—C4 | 130.8 (4) | C23—C18—Rh1 | 96.4 (3) |
C2—C3—C4 | 104.6 (3) | C19—C18—H18 | 126.9 |
C3—C4—C5 | 106.5 (3) | C23—C18—H18 | 126.9 |
C3—C4—C7 | 101.8 (3) | Rh1—C18—H18 | 100.7 |
C5—C4—C7 | 102.0 (3) | C18—C19—C20 | 106.6 (4) |
C3—C4—H4 | 115.0 | C18—C19—Rh1 | 71.1 (3) |
C5—C4—H4 | 115.0 | C20—C19—Rh1 | 96.8 (3) |
C7—C4—H4 | 115.0 | C18—C19—H19 | 126.7 |
C6—C5—C4 | 102.3 (4) | C20—C19—H19 | 126.7 |
C6—C5—H5A | 111.3 | Rh1—C19—H19 | 99.9 |
C4—C5—H5A | 111.3 | C21—C20—C19 | 99.3 (3) |
C6—C5—H5B | 111.3 | C21—C20—C24 | 100.9 (4) |
C4—C5—H5B | 111.3 | C19—C20—C24 | 101.2 (4) |
H5A—C5—H5B | 109.2 | C21—C20—H20 | 117.5 |
C5—C6—C1 | 104.4 (4) | C19—C20—H20 | 117.5 |
C5—C6—H6A | 110.9 | C24—C20—H20 | 117.5 |
C1—C6—H6A | 110.9 | C22—C21—C20 | 106.7 (4) |
C5—C6—H6B | 110.9 | C22—C21—Rh1 | 70.8 (2) |
C1—C6—H6B | 110.9 | C20—C21—Rh1 | 96.3 (3) |
H6A—C6—H6B | 108.9 | C22—C21—H21 | 126.7 |
C9—C7—C8 | 107.9 (4) | C20—C21—H21 | 126.7 |
C9—C7—C4 | 113.5 (4) | Rh1—C21—H21 | 100.5 |
C8—C7—C4 | 114.1 (4) | C21—C22—C23 | 105.9 (4) |
C9—C7—C1 | 113.3 (4) | C21—C22—Rh1 | 70.8 (2) |
C8—C7—C1 | 114.7 (4) | C23—C22—Rh1 | 96.1 (3) |
C4—C7—C1 | 93.0 (3) | C21—C22—H22 | 127.0 |
C7—C8—H8A | 109.5 | C23—C22—H22 | 127.0 |
C7—C8—H8B | 109.5 | Rh1—C22—H22 | 100.6 |
H8A—C8—H8B | 109.5 | C24—C23—C22 | 101.0 (4) |
C7—C8—H8C | 109.5 | C24—C23—C18 | 101.0 (4) |
H8A—C8—H8C | 109.5 | C22—C23—C18 | 99.6 (3) |
H8B—C8—H8C | 109.5 | C24—C23—H23 | 117.4 |
C7—C9—H9A | 109.5 | C22—C23—H23 | 117.4 |
C7—C9—H9B | 109.5 | C18—C23—H23 | 117.4 |
H9A—C9—H9B | 109.5 | C23—C24—C20 | 94.1 (4) |
C7—C9—H9C | 109.5 | C23—C24—H24A | 112.9 |
H9A—C9—H9C | 109.5 | C20—C24—H24A | 112.9 |
H9B—C9—H9C | 109.5 | C23—C24—H24B | 112.9 |
C1—C10—H10A | 109.5 | C20—C24—H24B | 112.9 |
C1—C10—H10B | 109.5 | H24A—C24—H24B | 110.3 |
Experimental details
Crystal data | |
Chemical formula | [Rh(C17H19O2)(C7H8)] |
Mr | 450.37 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 6.4755 (11), 8.2817 (13), 38.320 (6) |
V (Å3) | 2055.0 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.33 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.855, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21718, 3990, 3953 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.074, 1.27 |
No. of reflections | 3990 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −1.11 |
Absolute structure | Flack (1983), 1643 Friedel pairs |
Absolute structure parameter | 0.03 (4) |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).
Acknowledgements
Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.
References
Ait Ali, M., Ait Itto, Y., Hasnaoui, A., Riahi, A., Karim, A. & Daran, J.-C. (2001). J. Organomet. Chem. 619, 265–270. CAS Google Scholar
Ait Ali, M., Allaoud, S., Karim, A., Meliet, C. & Mortreux, A. (2000). Tetrahedron Asymmetry, 11, 1367–1374. CAS Google Scholar
Ait Ali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000). Acta Cryst. C56, 1088–1089. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ait Ali, M., Karim, A., Castanet, Y., Mortreux, A. & Mentré, O. (2006). Acta Cryst. E62, m3160–m3162. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernard, M., Delbecq, F., Fache, F., Sautet, P. & Lemaire, M. (2001). Eur. J. Org. Chem. pp. 1589–1596. CrossRef Google Scholar
Breuzard, J. A. J., Tomassino, M. L., Touchard, F., Lemaine, M. & Bonnet, M. C. (2000). J. Mol. Catal. 156, 223–232. Web of Science CrossRef CAS Google Scholar
Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2007). Z. Kristallogr. New Cryst. Struct. 222, 195–196. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fdil, N., Ait Itto, M. Y., Ait Ali, M., Karim, A. & Daran, J. C. (2002). Tetrahedron Lett., 43, 8769–8771. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Guo, Z. & Sadler, P. J. (1999). Angew. Chem. Int. Ed. 38, 1512–1531. CrossRef CAS Google Scholar
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. Google Scholar
Naili, S., Suisse, I., Mortreux, A., Agbossou, F., Ait Ali, M. & Karim, A. (2000). Tetrahedron Lett. 41, 2867–2870. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: John Wiley & Sons. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spannenberg, A., Fdil, N., El Firdoussi, L. & Karim, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 549–550. CAS Google Scholar
Togni, A. (1990). Organometallics, 9, 3106–3213. CrossRef CAS Web of Science Google Scholar
Togni, A., Rist, G. & Schweiger, A. (1993). J. Am. Chem. Soc. 115, 1908–1915. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rhodium complexes are widely used in organic chemistry due to their ability to mediate numerous transformations of organic molecules, often in catalytic mode. In particular, rhodium complexes of chiral ligands have shown to perform highly enantioselective transformations (Noyori, 1994; Breuzard et al., 2000; Bernard et al., 2001). Camphor-derived 1,3-diketonato ligands are a potentially attractive class of ligands in organometallic development, because these compounds are readily synthesized and easily varied (Togni, 1990; Togni et al., 1993). Moreover, some of their transition metal complexes can be used as therapeutic drugs (Guo & Sadler, 1999). As a contribution to our research programs aimed at the preparation of transition metal complexes (Spannenberg et al., 2002; Ait Ali, El Firdoussi et al., 2000; Ait Ali et al., 2001, 2006; El Firdoussi et al., 2007) and their application in catalytic asymmetric reactions (Naili et al., 2000; Ait Ali, Allaoud et al., 2000; Fdil et al., 2002), we report here the synthesis and crystal structure of the title compound.
In the mononuclear title complex molecule (Fig. 1), the rhodium(I) metal atom assumes a slightly tetrahedrally distorted square-planar coordination geometry provided by the O atoms of the chelating benzoylcamphorato anion and the centroids of the C═C double bonds of the norbornadiene molecule (maximum displacement 0.078 (5) Å for the centroid of the C18═C19 bonds). The RhO2C3 six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the C12–C17 phenyl ring. The C–O (O1–C2 = 1.265 (5) Å; O2–C11 = 1.298 (5) Å) and C–C (C2–C3 = 1.427 (6) Å; C3–C11 = 1.402 (5) Å) bond lengths pattern within the metallacycle indicates a high degree of π-delocalization. The Rh–O bond lengths (2.047 (3) and 2.059 (2) Å) are not significantly different from those observed in the closely related compound (cycloocta-1,5-diene)[(1R)-(+)-3-benzoyl-camphoryl]rhodium(I) (2.047 (3) and 2.059 (2) Å; Spannenberg et al., 2002). The Rh–C (mean value 2.113 (4) Å) and the donor C═C double bonds distances (mean value 1.388 (7) Å) involving the norbornadiene molecule are in agreement with the range of values observed in 286 related structures (mean values: Rh–C, 2.164 Å; C═C, 1.384 Å; Cambridge Structural Database; Version 5.31, November 2009; Allen, 2002). The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.