metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1R,4S)-(+)-3-Benzoyl-1,7,7-tri­methyl­bi­cyclo­[2.2.1]heptan-2-olato-κ2O2,O3](η4-norbornadiene)rhodium(I)

aLaboratoire de Chimie de Coordination, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 2 July 2010; accepted 6 July 2010; online 10 July 2010)

In the title complex mol­ecule, [Rh(C17H19O2)(C7H8)], the rhodium(I) metal centre is coordinated by the O atoms of a benzoyl­camphorate anion and the C=C bonds of the norbornadiene mol­ecule into a slightly distorted square-planar coordination geometry. The six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the phenyl ring.

Related literature

For the synthesis and properties of rhodium complexes in enanti­oselective transformations, see: Noyori (1994[Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: John Wiley & Sons.]); Breuzard et al. (2000[Breuzard, J. A. J., Tomassino, M. L., Touchard, F., Lemaine, M. & Bonnet, M. C. (2000). J. Mol. Catal. 156, 223-232.]); Bernard et al. (2001[Bernard, M., Delbecq, F., Fache, F., Sautet, P. & Lemaire, M. (2001). Eur. J. Org. Chem. pp. 1589-1596.]). For the chemistry and applications of camphor-derived compounds, see: Togni (1990[Togni, A. (1990). Organometallics, 9, 3106-3213.]); Togni et al. (1993[Togni, A., Rist, G. & Schweiger, A. (1993). J. Am. Chem. Soc. 115, 1908-1915.]); Guo & Sadler (1999[Guo, Z. & Sadler, P. J. (1999). Angew. Chem. Int. Ed. 38, 1512-1531.]). For the synthesis, structure and applications of transition metal complexes in catalytic asymmetric reactions, see: Naili et al. (2000[Naili, S., Suisse, I., Mortreux, A., Agbossou, F., Ait Ali, M. & Karim, A. (2000). Tetrahedron Lett. 41, 2867-2870.]); Ait Ali, Allaoud et al. (2000[Ait Ali, M., Allaoud, S., Karim, A., Meliet, C. & Mortreux, A. (2000). Tetrahedron Asymmetry, 11, 1367-1374.]); Fdil et al. (2002[Fdil, N., Ait Itto, M. Y., Ait Ali, M., Karim, A. & Daran, J. C. (2002). Tetrahedron Lett., 43, 8769-8771.]). For related structures, see: Spannenberg et al. (2002[Spannenberg, A., Fdil, N., El Firdoussi, L. & Karim, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 549-550.]); Ait Ali, El Firdoussi et al. (2000[Ait Ali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000). Acta Cryst. C56, 1088-1089.]); Ait Ali et al. (2001[Ait Ali, M., Ait Itto, Y., Hasnaoui, A., Riahi, A., Karim, A. & Daran, J.-C. (2001). J. Organomet. Chem. 619, 265-270.], 2006[Ait Ali, M., Karim, A., Castanet, Y., Mortreux, A. & Mentré, O. (2006). Acta Cryst. E62, m3160-m3162.]); El Firdoussi et al. (2007[El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2007). Z. Kristallogr. New Cryst. Struct. 222, 195-196.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C17H19O2)(C7H8)]

  • Mr = 450.37

  • Orthorhombic, P 21 21 21

  • a = 6.4755 (11) Å

  • b = 8.2817 (13) Å

  • c = 38.320 (6) Å

  • V = 2055.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 295 K

  • 0.33 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.937

  • 21718 measured reflections

  • 3990 independent reflections

  • 3953 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.074

  • S = 1.27

  • 3990 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.11 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1643 Friedel pairs

  • Flack parameter: 0.03 (4)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Rhodium complexes are widely used in organic chemistry due to their ability to mediate numerous transformations of organic molecules, often in catalytic mode. In particular, rhodium complexes of chiral ligands have shown to perform highly enantioselective transformations (Noyori, 1994; Breuzard et al., 2000; Bernard et al., 2001). Camphor-derived 1,3-diketonato ligands are a potentially attractive class of ligands in organometallic development, because these compounds are readily synthesized and easily varied (Togni, 1990; Togni et al., 1993). Moreover, some of their transition metal complexes can be used as therapeutic drugs (Guo & Sadler, 1999). As a contribution to our research programs aimed at the preparation of transition metal complexes (Spannenberg et al., 2002; Ait Ali, El Firdoussi et al., 2000; Ait Ali et al., 2001, 2006; El Firdoussi et al., 2007) and their application in catalytic asymmetric reactions (Naili et al., 2000; Ait Ali, Allaoud et al., 2000; Fdil et al., 2002), we report here the synthesis and crystal structure of the title compound.

In the mononuclear title complex molecule (Fig. 1), the rhodium(I) metal atom assumes a slightly tetrahedrally distorted square-planar coordination geometry provided by the O atoms of the chelating benzoylcamphorato anion and the centroids of the CC double bonds of the norbornadiene molecule (maximum displacement 0.078 (5) Å for the centroid of the C18C19 bonds). The RhO2C3 six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the C12–C17 phenyl ring. The C–O (O1–C2 = 1.265 (5) Å; O2–C11 = 1.298 (5) Å) and C–C (C2–C3 = 1.427 (6) Å; C3–C11 = 1.402 (5) Å) bond lengths pattern within the metallacycle indicates a high degree of π-delocalization. The Rh–O bond lengths (2.047 (3) and 2.059 (2) Å) are not significantly different from those observed in the closely related compound (cycloocta-1,5-diene)[(1R)-(+)-3-benzoyl-camphoryl]rhodium(I) (2.047 (3) and 2.059 (2) Å; Spannenberg et al., 2002). The Rh–C (mean value 2.113 (4) Å) and the donor CC double bonds distances (mean value 1.388 (7) Å) involving the norbornadiene molecule are in agreement with the range of values observed in 286 related structures (mean values: Rh–C, 2.164 Å; CC, 1.384 Å; Cambridge Structural Database; Version 5.31, November 2009; Allen, 2002). The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.

Related literature top

For the synthesis and properties of rhodium complexes in enantioselective transformations, see: Noyori (1994); Breuzard et al. (2000); Bernard et al. (2001). For the chemistry and applications of camphor-derived compounds, see: Togni (1990); Togni et al. (1993); Guo & Sadler (1999). For the synthesis, structure and applications of transition metal complexes in catalytic asymmetric reactions, see: Naili et al. (2000); Ait Ali, Allaoud et al. (2000); Fdil et al. (2002). For related structures, see: Spannenberg et al. (2002); Ait Ali, El Firdoussi et al. (2000); Ait Ali et al. (2001, 2006); El Firdoussi et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A solution of [Rh(norbornadiene)Cl]2 (0.18 mmol, 100 mg) in THF (10 ml) was added to a suspension of (1R)-(+)-3-benzoylcamphor (0.32 mmol, 83.4 mg) and Na2CO3 (0.94 mmol, 100 mg) in THF (10 ml). The mixture was stirred for 3 h at room temperature, then it was evaporated to dryness under reduced pressure. The residue was extracted with CH2Cl2 (3 × 10 ml), and the recovered filtrate was evaporated to dryness to give an orange solid (yield 86%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a diethyl ether solution.

Refinement top

All H atoms were placed at calculated positions and refined using the riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The absolute configuration was assigned on the basis of the known absolute configuration of the starting material and confirmed by anomalous scattering effects.

Structure description top

Rhodium complexes are widely used in organic chemistry due to their ability to mediate numerous transformations of organic molecules, often in catalytic mode. In particular, rhodium complexes of chiral ligands have shown to perform highly enantioselective transformations (Noyori, 1994; Breuzard et al., 2000; Bernard et al., 2001). Camphor-derived 1,3-diketonato ligands are a potentially attractive class of ligands in organometallic development, because these compounds are readily synthesized and easily varied (Togni, 1990; Togni et al., 1993). Moreover, some of their transition metal complexes can be used as therapeutic drugs (Guo & Sadler, 1999). As a contribution to our research programs aimed at the preparation of transition metal complexes (Spannenberg et al., 2002; Ait Ali, El Firdoussi et al., 2000; Ait Ali et al., 2001, 2006; El Firdoussi et al., 2007) and their application in catalytic asymmetric reactions (Naili et al., 2000; Ait Ali, Allaoud et al., 2000; Fdil et al., 2002), we report here the synthesis and crystal structure of the title compound.

In the mononuclear title complex molecule (Fig. 1), the rhodium(I) metal atom assumes a slightly tetrahedrally distorted square-planar coordination geometry provided by the O atoms of the chelating benzoylcamphorato anion and the centroids of the CC double bonds of the norbornadiene molecule (maximum displacement 0.078 (5) Å for the centroid of the C18C19 bonds). The RhO2C3 six-membered chelate ring is essentially planar (r.m.s. deviation = 0.0378 Å) and forms a dihedral angle of 31.67 (11)° with the C12–C17 phenyl ring. The C–O (O1–C2 = 1.265 (5) Å; O2–C11 = 1.298 (5) Å) and C–C (C2–C3 = 1.427 (6) Å; C3–C11 = 1.402 (5) Å) bond lengths pattern within the metallacycle indicates a high degree of π-delocalization. The Rh–O bond lengths (2.047 (3) and 2.059 (2) Å) are not significantly different from those observed in the closely related compound (cycloocta-1,5-diene)[(1R)-(+)-3-benzoyl-camphoryl]rhodium(I) (2.047 (3) and 2.059 (2) Å; Spannenberg et al., 2002). The Rh–C (mean value 2.113 (4) Å) and the donor CC double bonds distances (mean value 1.388 (7) Å) involving the norbornadiene molecule are in agreement with the range of values observed in 286 related structures (mean values: Rh–C, 2.164 Å; CC, 1.384 Å; Cambridge Structural Database; Version 5.31, November 2009; Allen, 2002). The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.

For the synthesis and properties of rhodium complexes in enantioselective transformations, see: Noyori (1994); Breuzard et al. (2000); Bernard et al. (2001). For the chemistry and applications of camphor-derived compounds, see: Togni (1990); Togni et al. (1993); Guo & Sadler (1999). For the synthesis, structure and applications of transition metal complexes in catalytic asymmetric reactions, see: Naili et al. (2000); Ait Ali, Allaoud et al. (2000); Fdil et al. (2002). For related structures, see: Spannenberg et al. (2002); Ait Ali, El Firdoussi et al. (2000); Ait Ali et al. (2001, 2006); El Firdoussi et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed approximately along the a axis.
[(1R,4S)-(+)-3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan- 2-olato-κ2O2,O3](η4-norbornadiene)rhodium(I) top
Crystal data top
[Rh(C17H19O2)(C7H8)]F(000) = 928
Mr = 450.37Dx = 1.456 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 772 reflections
a = 6.4755 (11) Åθ = 5.2–24.8°
b = 8.2817 (13) ŵ = 0.85 mm1
c = 38.320 (6) ÅT = 295 K
V = 2055.0 (6) Å3Block, orange
Z = 40.33 × 0.16 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3990 independent reflections
Radiation source: fine-focus sealed tube3953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 26.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 77
Tmin = 0.855, Tmax = 0.937k = 1010
21718 measured reflectionsl = 4747
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.017P)2 + 2.5414P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
3990 reflectionsΔρmax = 0.59 e Å3
244 parametersΔρmin = 1.11 e Å3
0 restraintsAbsolute structure: Flack (1983), 1643 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
[Rh(C17H19O2)(C7H8)]V = 2055.0 (6) Å3
Mr = 450.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4755 (11) ŵ = 0.85 mm1
b = 8.2817 (13) ÅT = 295 K
c = 38.320 (6) Å0.33 × 0.16 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3953 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.937Rint = 0.040
21718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.59 e Å3
S = 1.27Δρmin = 1.11 e Å3
3990 reflectionsAbsolute structure: Flack (1983), 1643 Friedel pairs
244 parametersAbsolute structure parameter: 0.03 (4)
0 restraints
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.56683 (5)0.36256 (3)0.081995 (8)0.03291 (9)
O10.3616 (4)0.1728 (3)0.08213 (8)0.0400 (6)
O20.5107 (4)0.4086 (3)0.13360 (7)0.0398 (7)
C10.1414 (6)0.0255 (5)0.11061 (11)0.0368 (9)
C20.2775 (6)0.1238 (5)0.11000 (10)0.0344 (8)
C30.2779 (6)0.1910 (5)0.14431 (10)0.0318 (8)
C40.1389 (6)0.0796 (5)0.16545 (11)0.0355 (9)
H40.15900.08470.19080.043*
C50.0856 (7)0.1121 (6)0.15294 (11)0.0471 (10)
H5A0.18530.05540.16730.056*
H5B0.11710.22660.15320.056*
C60.0825 (8)0.0446 (6)0.11516 (12)0.0460 (10)
H6A0.10880.12960.09830.055*
H6B0.18550.03940.11230.055*
C70.1856 (7)0.0886 (5)0.14854 (12)0.0380 (9)
C80.0410 (9)0.2252 (5)0.16093 (13)0.0531 (12)
H8A0.10000.19410.15710.080*
H8B0.06280.24450.18540.080*
H8C0.07030.32190.14800.080*
C90.4082 (7)0.1450 (6)0.15381 (13)0.0512 (10)
H9A0.50130.06210.14610.077*
H9B0.43170.24150.14050.077*
H9C0.43150.16670.17810.077*
C100.1716 (7)0.1380 (6)0.07994 (14)0.0571 (12)
H10A0.08060.22890.08220.086*
H10B0.31210.17490.07950.086*
H10C0.14130.08150.05870.086*
C110.3863 (6)0.3304 (4)0.15408 (10)0.0327 (9)
C120.3729 (7)0.4015 (5)0.19004 (11)0.0394 (10)
C130.5477 (10)0.4824 (5)0.20309 (12)0.0527 (12)
H130.66840.48590.19000.063*
C140.5404 (13)0.5571 (7)0.23555 (14)0.0759 (19)
H140.65740.60830.24420.091*
C150.3625 (13)0.5558 (8)0.25484 (16)0.086 (2)
H150.35760.60850.27630.103*
C160.1911 (12)0.4765 (7)0.24245 (15)0.0758 (19)
H160.07180.47380.25590.091*
C170.1928 (9)0.3994 (6)0.20983 (12)0.0535 (12)
H170.07510.34760.20160.064*
C180.5765 (9)0.4075 (6)0.02782 (11)0.0517 (11)
H180.43970.38760.02180.062*
C190.7252 (7)0.2940 (5)0.03643 (11)0.0413 (10)
H190.70760.18270.03750.050*
C200.9252 (8)0.3882 (5)0.04392 (11)0.0466 (10)
H201.05520.32760.04360.056*
C210.8629 (7)0.4696 (5)0.07839 (13)0.0441 (10)
H210.91480.44670.10050.053*
C220.7137 (8)0.5842 (5)0.07018 (13)0.0526 (13)
H220.64590.65290.08560.063*
C230.6835 (9)0.5738 (6)0.03026 (13)0.0570 (13)
H230.61570.66520.01870.068*
C240.9039 (10)0.5307 (6)0.01829 (13)0.0604 (14)
H24A1.00270.61630.02270.072*
H24B0.91010.49740.00600.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.03562 (15)0.03097 (13)0.03214 (14)0.00890 (14)0.00359 (13)0.00053 (14)
O10.0433 (15)0.0385 (15)0.0383 (14)0.0161 (11)0.0057 (13)0.0017 (14)
O20.0494 (18)0.0328 (15)0.0372 (15)0.0137 (12)0.0057 (12)0.0036 (11)
C10.031 (2)0.036 (2)0.043 (2)0.0109 (17)0.0029 (17)0.0011 (18)
C20.0289 (18)0.031 (2)0.043 (2)0.0044 (18)0.0009 (15)0.0034 (19)
C30.031 (2)0.0294 (19)0.035 (2)0.0016 (15)0.0032 (16)0.0002 (16)
C40.035 (2)0.037 (2)0.035 (2)0.0034 (16)0.0016 (16)0.0032 (17)
C50.034 (2)0.050 (3)0.057 (3)0.002 (2)0.007 (2)0.002 (2)
C60.033 (2)0.052 (3)0.053 (3)0.008 (2)0.002 (2)0.008 (2)
C70.035 (2)0.029 (2)0.050 (2)0.0058 (17)0.0006 (18)0.0041 (17)
C80.055 (3)0.041 (2)0.064 (3)0.014 (2)0.005 (3)0.013 (2)
C90.044 (3)0.040 (2)0.069 (3)0.004 (3)0.003 (2)0.000 (2)
C100.059 (3)0.052 (2)0.060 (3)0.026 (2)0.010 (2)0.019 (3)
C110.039 (2)0.0233 (19)0.036 (2)0.0011 (15)0.0036 (16)0.0002 (15)
C120.057 (3)0.027 (2)0.035 (2)0.0042 (17)0.0007 (18)0.0028 (16)
C130.076 (4)0.041 (2)0.041 (2)0.006 (3)0.006 (3)0.0033 (18)
C140.117 (6)0.061 (3)0.049 (3)0.015 (4)0.019 (4)0.013 (3)
C150.149 (7)0.062 (4)0.047 (3)0.001 (4)0.009 (4)0.025 (3)
C160.122 (6)0.060 (3)0.046 (3)0.019 (4)0.031 (3)0.001 (3)
C170.075 (3)0.044 (3)0.042 (2)0.006 (2)0.014 (2)0.002 (2)
C180.047 (2)0.072 (3)0.037 (2)0.014 (3)0.003 (2)0.007 (2)
C190.053 (3)0.039 (2)0.031 (2)0.011 (2)0.0085 (19)0.0046 (18)
C200.040 (2)0.048 (2)0.052 (2)0.006 (2)0.008 (2)0.0018 (19)
C210.046 (2)0.045 (2)0.040 (2)0.0219 (18)0.000 (2)0.000 (2)
C220.064 (3)0.033 (2)0.061 (3)0.013 (2)0.021 (2)0.002 (2)
C230.068 (3)0.049 (3)0.054 (3)0.001 (3)0.005 (3)0.025 (2)
C240.070 (4)0.061 (3)0.050 (3)0.020 (3)0.015 (3)0.009 (2)
Geometric parameters (Å, º) top
Rh1—O22.047 (3)C10—H10A0.9600
Rh1—O12.059 (2)C10—H10B0.9600
Rh1—C192.103 (4)C10—H10C0.9600
Rh1—C182.110 (4)C11—C121.501 (5)
Rh1—C222.116 (4)C12—C171.391 (7)
Rh1—C212.116 (4)C12—C131.407 (7)
O1—C21.265 (5)C13—C141.390 (7)
O2—C111.298 (5)C13—H130.9300
C1—C101.512 (6)C14—C151.369 (10)
C1—C21.519 (5)C14—H140.9300
C1—C71.571 (6)C15—C161.374 (10)
C1—C61.572 (6)C15—H150.9300
C2—C31.427 (6)C16—C171.403 (7)
C3—C111.402 (5)C16—H160.9300
C3—C41.522 (5)C17—H170.9300
C4—C51.554 (6)C18—C191.386 (7)
C4—C71.566 (6)C18—C231.545 (7)
C4—H40.9800C18—H180.9300
C5—C61.552 (6)C19—C201.539 (6)
C5—H5A0.9700C19—H190.9300
C5—H5B0.9700C20—C211.537 (6)
C6—H6A0.9700C20—C241.541 (6)
C6—H6B0.9700C20—H200.9800
C7—C91.529 (6)C21—C221.390 (7)
C7—C81.543 (6)C21—H210.9300
C8—H8A0.9600C22—C231.544 (7)
C8—H8B0.9600C22—H220.9300
C8—H8C0.9600C23—C241.541 (8)
C9—H9A0.9600C23—H230.9800
C9—H9B0.9600C24—H24A0.9700
C9—H9C0.9600C24—H24B0.9700
O2—Rh1—O191.44 (11)H10A—C10—H10B109.5
O2—Rh1—C19159.91 (16)C1—C10—H10C109.5
O1—Rh1—C1996.36 (14)H10A—C10—H10C109.5
O2—Rh1—C18157.38 (16)H10B—C10—H10C109.5
O1—Rh1—C1898.99 (17)O2—C11—C3124.1 (4)
C19—Rh1—C1838.40 (19)O2—C11—C12113.3 (3)
O2—Rh1—C2297.18 (16)C3—C11—C12122.6 (3)
O1—Rh1—C22162.36 (18)C17—C12—C13119.1 (4)
C19—Rh1—C2280.64 (18)C17—C12—C11123.0 (4)
C18—Rh1—C2267.9 (2)C13—C12—C11117.8 (4)
O2—Rh1—C2198.38 (15)C14—C13—C12120.2 (6)
O1—Rh1—C21154.79 (15)C14—C13—H13119.9
C19—Rh1—C2167.50 (18)C12—C13—H13119.9
C18—Rh1—C2180.5 (2)C15—C14—C13120.5 (6)
C22—Rh1—C2138.35 (19)C15—C14—H14119.7
C2—O1—Rh1121.6 (3)C13—C14—H14119.7
C11—O2—Rh1127.0 (2)C14—C15—C16119.8 (5)
C10—C1—C2114.5 (3)C14—C15—H15120.1
C10—C1—C7119.4 (4)C16—C15—H15120.1
C2—C1—C7100.3 (3)C15—C16—C17121.3 (6)
C10—C1—C6115.7 (4)C15—C16—H16119.4
C2—C1—C6103.7 (3)C17—C16—H16119.4
C7—C1—C6100.9 (3)C12—C17—C16119.1 (6)
O1—C2—C3130.7 (4)C12—C17—H17120.5
O1—C2—C1121.6 (4)C16—C17—H17120.5
C3—C2—C1107.7 (3)C19—C18—C23106.2 (4)
C11—C3—C2124.6 (4)C19—C18—Rh170.5 (2)
C11—C3—C4130.8 (4)C23—C18—Rh196.4 (3)
C2—C3—C4104.6 (3)C19—C18—H18126.9
C3—C4—C5106.5 (3)C23—C18—H18126.9
C3—C4—C7101.8 (3)Rh1—C18—H18100.7
C5—C4—C7102.0 (3)C18—C19—C20106.6 (4)
C3—C4—H4115.0C18—C19—Rh171.1 (3)
C5—C4—H4115.0C20—C19—Rh196.8 (3)
C7—C4—H4115.0C18—C19—H19126.7
C6—C5—C4102.3 (4)C20—C19—H19126.7
C6—C5—H5A111.3Rh1—C19—H1999.9
C4—C5—H5A111.3C21—C20—C1999.3 (3)
C6—C5—H5B111.3C21—C20—C24100.9 (4)
C4—C5—H5B111.3C19—C20—C24101.2 (4)
H5A—C5—H5B109.2C21—C20—H20117.5
C5—C6—C1104.4 (4)C19—C20—H20117.5
C5—C6—H6A110.9C24—C20—H20117.5
C1—C6—H6A110.9C22—C21—C20106.7 (4)
C5—C6—H6B110.9C22—C21—Rh170.8 (2)
C1—C6—H6B110.9C20—C21—Rh196.3 (3)
H6A—C6—H6B108.9C22—C21—H21126.7
C9—C7—C8107.9 (4)C20—C21—H21126.7
C9—C7—C4113.5 (4)Rh1—C21—H21100.5
C8—C7—C4114.1 (4)C21—C22—C23105.9 (4)
C9—C7—C1113.3 (4)C21—C22—Rh170.8 (2)
C8—C7—C1114.7 (4)C23—C22—Rh196.1 (3)
C4—C7—C193.0 (3)C21—C22—H22127.0
C7—C8—H8A109.5C23—C22—H22127.0
C7—C8—H8B109.5Rh1—C22—H22100.6
H8A—C8—H8B109.5C24—C23—C22101.0 (4)
C7—C8—H8C109.5C24—C23—C18101.0 (4)
H8A—C8—H8C109.5C22—C23—C1899.6 (3)
H8B—C8—H8C109.5C24—C23—H23117.4
C7—C9—H9A109.5C22—C23—H23117.4
C7—C9—H9B109.5C18—C23—H23117.4
H9A—C9—H9B109.5C23—C24—C2094.1 (4)
C7—C9—H9C109.5C23—C24—H24A112.9
H9A—C9—H9C109.5C20—C24—H24A112.9
H9B—C9—H9C109.5C23—C24—H24B112.9
C1—C10—H10A109.5C20—C24—H24B112.9
C1—C10—H10B109.5H24A—C24—H24B110.3

Experimental details

Crystal data
Chemical formula[Rh(C17H19O2)(C7H8)]
Mr450.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.4755 (11), 8.2817 (13), 38.320 (6)
V3)2055.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.33 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.855, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
21718, 3990, 3953
Rint0.040
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.074, 1.27
No. of reflections3990
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 1.11
Absolute structureFlack (1983), 1643 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

 

Acknowledgements

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationAit Ali, M., Ait Itto, Y., Hasnaoui, A., Riahi, A., Karim, A. & Daran, J.-C. (2001). J. Organomet. Chem. 619, 265–270.  CAS Google Scholar
First citationAit Ali, M., Allaoud, S., Karim, A., Meliet, C. & Mortreux, A. (2000). Tetrahedron Asymmetry, 11, 1367–1374.  CAS Google Scholar
First citationAit Ali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000). Acta Cryst. C56, 1088–1089.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAit Ali, M., Karim, A., Castanet, Y., Mortreux, A. & Mentré, O. (2006). Acta Cryst. E62, m3160–m3162.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernard, M., Delbecq, F., Fache, F., Sautet, P. & Lemaire, M. (2001). Eur. J. Org. Chem. pp. 1589–1596.  CrossRef Google Scholar
First citationBreuzard, J. A. J., Tomassino, M. L., Touchard, F., Lemaine, M. & Bonnet, M. C. (2000). J. Mol. Catal. 156, 223–232.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2007). Z. Kristallogr. New Cryst. Struct. 222, 195–196.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFdil, N., Ait Itto, M. Y., Ait Ali, M., Karim, A. & Daran, J. C. (2002). Tetrahedron Lett., 43, 8769–8771.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, Z. & Sadler, P. J. (1999). Angew. Chem. Int. Ed. 38, 1512–1531.  CrossRef CAS Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationNaili, S., Suisse, I., Mortreux, A., Agbossou, F., Ait Ali, M. & Karim, A. (2000). Tetrahedron Lett. 41, 2867–2870.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNoyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: John Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpannenberg, A., Fdil, N., El Firdoussi, L. & Karim, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 549–550.  CAS Google Scholar
First citationTogni, A. (1990). Organometallics, 9, 3106–3213.  CrossRef CAS Web of Science Google Scholar
First citationTogni, A., Rist, G. & Schweiger, A. (1993). J. Am. Chem. Soc. 115, 1908–1915.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds