metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(N,N′-di­ethyl­thio­urea-κS)mercury(II)

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 7 July 2010; accepted 19 July 2010; online 24 July 2010)

There are two mol­ecules in the asymmetric unit of the title compound, [HgCl2(C5H12N2S)2]. In both mol­ecules, the N,N′-diethyl­thio­urea ligands exhibit a cis,trans geometry around their C—N amide bonds. The shapes of the mol­ecules are, to a large extent, determined by intra­molecular N—H⋯Cl hydrogen bonds formed by the N—H groups from the cis amide groups. In one mol­ecule, these groups are involved in three-center hydrogen bonds involving both chloride ligands, whereas in the other mol­ecule only one Cl ligand takes part in intra­molecular hydrogen bonding. The coordination around the Hg atom is distorted tetra­hedral with an S2Cl2 donor set. Inter­molecular hydrogen bonds between N—H groups from the trans amide units of the thio­amide ligands and the chloride ligands connect the mol­ecules into a polymeric chain extending along the c axis. One of the ethyl groups of the N,N′-diethyl­thio­urea ligands is disordered over two positions in one of the mol­ecules, with an occupancy of 0.654 (17) for the major component.

Related literature

For the complexation of various thio­nes with d10 metal ions, see: Isab et al. (2002[Isab, A. A., Ahmad, S. & Arab, M. (2002). Polyhedron, 21, 1267-1271.]); Ahmad et al. (2009[Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.]); Hanif et al. (2007[Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.]); Mufakkar et al. (2009[Mufakkar, M., Tahir, M. N., Ahmad, S., Shaheen, M. A. & Waheed, A. (2009). Acta Cryst. E65, m892-m893.]). For a related structure, see: Stalhandske et al. (1997[Stalhandske, C. M. V., Persson, I., Sandstrom, M. & Aberg, M. (1997). Inorg. Chem. 36, 4945-4953.]): For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C5H12N2S)2]

  • Mr = 535.94

  • Monoclinic, P 21 /c

  • a = 7.9713 (2) Å

  • b = 17.2321 (5) Å

  • c = 27.5143 (7) Å

  • β = 94.870 (1)°

  • V = 3765.78 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.68 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.180, Tmax = 0.205

  • 28191 measured reflections

  • 6825 independent reflections

  • 4529 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.067

  • S = 1.02

  • 6825 reflections

  • 353 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—Cl1 2.6220 (17)
Hg1—Cl2 2.5767 (16)
Hg1—S1 2.4335 (15)
Hg1—S2 2.4323 (17)
Hg2—Cl4 2.5487 (16)
Hg2—S3 2.4415 (18)
Hg2—S4 2.4534 (14)
Hg2—Cl3 2.6046 (16)
Cl1—Hg1—Cl2 91.78 (5)
Cl1—Hg1—S1 107.27 (5)
Cl1—Hg1—S2 106.50 (6)
Cl2—Hg1—S1 109.97 (5)
Cl2—Hg1—S2 105.65 (6)
S1—Hg1—S2 129.25 (5)
Cl4—Hg2—S3 110.47 (6)
Cl4—Hg2—S4 110.81 (5)
S3—Hg2—S4 123.74 (6)
Cl3—Hg2—S4 100.69 (5)
Cl3—Hg2—Cl4 98.04 (7)
Cl3—Hg2—S3 109.51 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3 0.86 2.43 3.205 (5) 150
N2—H2⋯Cl1 0.86 2.56 3.406 (5) 169
N3—H3⋯Cl3i 0.86 2.47 3.239 (5) 149
N4—H4⋯Cl1 0.86 2.63 3.442 (6) 159
N4—H4⋯Cl2 0.86 2.96 3.440 (6) 117
N6—H6⋯Cl4 0.86 2.44 3.299 (5) 174
N7—H7⋯Cl4 0.86 2.49 3.340 (5) 173
N8—H8⋯Cl2 0.86 2.58 3.390 (5) 158
C14—H14B⋯Cl2ii 0.97 2.82 3.699 (6) 151
C17—H17A⋯Cl2 0.97 2.77 3.448 (6) 127
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have been investigating the complexation of various thiones with d10 metal ions in order to assess their modes of binding and to explore the related structural and spectral properties (Isab et al., 2002; Ahmad et al., 2009; Hanif et al., 2007; Mufakkar et al., 2009). Mercury(II) is a typical soft Lewis acid and shows a specific affinity to sulfur donors such as thiones. Crystal structures of several mercury(II) complexes of thiones reveal that mercury(II) coordinates with thiones through sulfur atom in a tetrahedral or pseudoterahedral environment (Ahmad et al. 2009). In continuation of our efforts to study the coordination behavior of thiones towards d10 metal ions, we report herein the structure and synthesis of the title compound (I, Fig. 1)..

The crystal structure of (II) i.e., dichloro-bis(N,N-dimethylthioformamide)-mercury(ii) (Stalhandske et al., 1997) has been published which have similar coordination around the mercury atom.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In both molecules, the coordination around mercury atom is distorted tetrahedral with two S and two Cl atoms. In one molecule, the thiocyanide groups of two diethylthiourea are oriented at a dihedral angle of 23.94 (14)°, whereas in the other its value is 31.74 (16)°. In Hg1 containing molecule, the Hg—Cl and Hg—S bond distances have values of [2.5767 (16), 2.6220 (17) Å] and [2.4323 (17), 2.4335 (15) Å], respectively. In Hg2 containing molecule, the Hg—Cl and Hg—S bond distances have values of [2.5487 (16), 2.6046 (17) Å] and [2.4415 (18), 2.4534 (14) Å], respectively. In first molecule, the bond angles around Hg1 have a range of 91.78 (5)–129.25 (5)°. In the second molecule, the bond angles around Hg2 have a range of 98.04 (7)–123.74 (6)°. This shows that there is wide difference between two molecules. The important bond distances and bond angles are given in Table 1. In both molecules intramolecular H-bondings of N—H···Cl type complete two S(6) ring (Bernstein et al., 1995) motifs (Table 2, Fig. 1). The molecules are stabilized in the form of infinite one dimensional polymeric chains extending along the crystallographic c axis due to intermolecular H-bondings of C—H···Cl and N—H···Cl types (Fig. 2).

Related literature top

For the complexation of various thiones with d10 metal ions, see: Isab et al. (2002); Ahmad et al. (2009); Hanif et al. (2007); Mufakkar et al. (2009). For a related structure, see: Stalhandske et al. (1997): For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To mercury(II) chloride (0.27 g, 1.0 mmol) in 10 ml of methanol was added two equivalents of N,N'-diethylthiourea in 15 ml of methanol. On mixing a clear solution was obtained that was stirred for 30 minutes. The colorless solution was filtered and the filtrate was kept at room temperature for crystallization. A white crystalline product was obtained that was washed with methanol and dried.

Refinement top

The ethyl group with the atoms C7 and C8 is disordered over two positions denoted as a and b. Four restraints were imposed on the bond lengths of this group. The displacement parameters of the C7a and C7b as well as C8a and C8b were constrained to be equal. The occupancy factor of the major position refined at 0.654 (17).

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.96–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

We have been investigating the complexation of various thiones with d10 metal ions in order to assess their modes of binding and to explore the related structural and spectral properties (Isab et al., 2002; Ahmad et al., 2009; Hanif et al., 2007; Mufakkar et al., 2009). Mercury(II) is a typical soft Lewis acid and shows a specific affinity to sulfur donors such as thiones. Crystal structures of several mercury(II) complexes of thiones reveal that mercury(II) coordinates with thiones through sulfur atom in a tetrahedral or pseudoterahedral environment (Ahmad et al. 2009). In continuation of our efforts to study the coordination behavior of thiones towards d10 metal ions, we report herein the structure and synthesis of the title compound (I, Fig. 1)..

The crystal structure of (II) i.e., dichloro-bis(N,N-dimethylthioformamide)-mercury(ii) (Stalhandske et al., 1997) has been published which have similar coordination around the mercury atom.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In both molecules, the coordination around mercury atom is distorted tetrahedral with two S and two Cl atoms. In one molecule, the thiocyanide groups of two diethylthiourea are oriented at a dihedral angle of 23.94 (14)°, whereas in the other its value is 31.74 (16)°. In Hg1 containing molecule, the Hg—Cl and Hg—S bond distances have values of [2.5767 (16), 2.6220 (17) Å] and [2.4323 (17), 2.4335 (15) Å], respectively. In Hg2 containing molecule, the Hg—Cl and Hg—S bond distances have values of [2.5487 (16), 2.6046 (17) Å] and [2.4415 (18), 2.4534 (14) Å], respectively. In first molecule, the bond angles around Hg1 have a range of 91.78 (5)–129.25 (5)°. In the second molecule, the bond angles around Hg2 have a range of 98.04 (7)–123.74 (6)°. This shows that there is wide difference between two molecules. The important bond distances and bond angles are given in Table 1. In both molecules intramolecular H-bondings of N—H···Cl type complete two S(6) ring (Bernstein et al., 1995) motifs (Table 2, Fig. 1). The molecules are stabilized in the form of infinite one dimensional polymeric chains extending along the crystallographic c axis due to intermolecular H-bondings of C—H···Cl and N—H···Cl types (Fig. 2).

For the complexation of various thiones with d10 metal ions, see: Isab et al. (2002); Ahmad et al. (2009); Hanif et al. (2007); Mufakkar et al. (2009). For a related structure, see: Stalhandske et al. (1997): For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines show intramolecular H-bondings. Only one position of the disordered ethyl group, the atoms C7a and C8a, is shown.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows one dimensional polymeric chain via hydrogen bonds extending along c axis.
Dichloridobis(N,N'-diethylthiourea-κS)mercury(II) top
Crystal data top
[HgCl2(C5H12N2S)2]F(000) = 2064
Mr = 535.94Dx = 1.891 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4529 reflections
a = 7.9713 (2) Åθ = 2.4–25.3°
b = 17.2321 (5) ŵ = 8.68 mm1
c = 27.5143 (7) ÅT = 296 K
β = 94.870 (1)°Prism, white
V = 3765.78 (17) Å30.24 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6825 independent reflections
Radiation source: fine-focus sealed tube4529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.2 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2020
Tmin = 0.180, Tmax = 0.205l = 3232
28191 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.7178P]
where P = (Fo2 + 2Fc2)/3
6825 reflections(Δ/σ)max = 0.002
353 parametersΔρmax = 0.64 e Å3
4 restraintsΔρmin = 0.63 e Å3
Crystal data top
[HgCl2(C5H12N2S)2]V = 3765.78 (17) Å3
Mr = 535.94Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.9713 (2) ŵ = 8.68 mm1
b = 17.2321 (5) ÅT = 296 K
c = 27.5143 (7) Å0.24 × 0.18 × 0.16 mm
β = 94.870 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6825 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4529 reflections with I > 2σ(I)
Tmin = 0.180, Tmax = 0.205Rint = 0.048
28191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.02Δρmax = 0.64 e Å3
6825 reflectionsΔρmin = 0.63 e Å3
353 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.95842 (3)0.35919 (1)0.12435 (1)0.0519 (1)
Cl11.1843 (2)0.24871 (10)0.13636 (6)0.0606 (6)
Cl20.7153 (2)0.26145 (9)0.12825 (6)0.0603 (6)
S10.9833 (2)0.43857 (9)0.19776 (5)0.0556 (6)
S20.9520 (3)0.39899 (10)0.03940 (6)0.0709 (7)
N10.9163 (6)0.3970 (3)0.28644 (16)0.0491 (19)
N21.0045 (6)0.2985 (3)0.23990 (16)0.0508 (19)
N30.8804 (8)0.3178 (3)0.04002 (18)0.074 (3)
N40.9391 (8)0.2450 (3)0.02721 (18)0.075 (3)
C10.9653 (7)0.3727 (3)0.24497 (19)0.041 (2)
C20.8766 (8)0.4765 (3)0.2998 (2)0.060 (3)
C31.0017 (10)0.5085 (4)0.3362 (3)0.101 (4)
C40.9988 (9)0.2405 (3)0.2782 (2)0.058 (3)
C51.0433 (10)0.1618 (3)0.2587 (3)0.075 (3)
C60.9220 (8)0.3130 (4)0.0071 (2)0.053 (3)
C7A0.8161 (19)0.3860 (9)0.0696 (5)0.091 (4)0.654 (17)
C8A0.9587 (19)0.4054 (8)0.0977 (6)0.091 (4)0.654 (17)
C90.9076 (10)0.1702 (4)0.0044 (2)0.079 (3)
C100.9186 (12)0.1079 (5)0.0400 (3)0.117 (5)
C8B0.887 (4)0.3928 (17)0.1187 (8)0.091 (4)0.346 (17)
C7B0.898 (5)0.3925 (13)0.0644 (8)0.091 (4)0.346 (17)
Hg20.45408 (4)0.33101 (1)0.37662 (1)0.0591 (1)
Cl30.7802 (2)0.31660 (11)0.38049 (6)0.0708 (7)
Cl40.3786 (3)0.18733 (9)0.37183 (6)0.0722 (7)
S30.3744 (3)0.38683 (10)0.45291 (6)0.0766 (8)
S40.3975 (2)0.39347 (9)0.29678 (5)0.0522 (6)
N50.4167 (8)0.3390 (3)0.54307 (18)0.074 (2)
N60.4005 (6)0.2416 (3)0.48716 (17)0.0579 (19)
N70.4886 (6)0.2545 (3)0.26517 (16)0.0531 (19)
N80.4977 (6)0.3543 (2)0.21149 (16)0.0458 (19)
C110.4011 (8)0.3162 (3)0.4975 (2)0.051 (3)
C120.4251 (11)0.4203 (4)0.5592 (3)0.089 (4)
C130.4601 (10)0.4266 (4)0.6119 (2)0.096 (4)
C140.4213 (9)0.1796 (3)0.5235 (2)0.065 (3)
C150.4173 (9)0.1021 (4)0.5003 (2)0.076 (3)
C160.4676 (7)0.3284 (3)0.25482 (19)0.041 (2)
C170.5442 (8)0.1961 (3)0.2317 (2)0.056 (3)
C180.5610 (10)0.1179 (3)0.2559 (2)0.079 (3)
C190.4814 (9)0.4352 (3)0.1962 (2)0.059 (3)
C200.4733 (9)0.4443 (4)0.1426 (2)0.071 (3)
H21.035310.283660.212170.0606*
H10.906210.362230.308410.0589*
H30.891780.275700.056190.0882*
H3A1.109600.509840.323170.1513*
H3B1.008350.476400.364880.1513*
H3C0.969500.560100.344620.1513*
H40.973210.244350.057710.0893*
H2A0.766900.477440.312580.0724*
H2B0.870900.508830.270840.0724*
H5A1.144760.165870.242450.1127*
H5B0.953280.143950.236090.1127*
H5C1.060010.125720.285260.1127*
H7A0.717290.372370.090910.1097*0.654 (17)
H7B0.788550.428850.048830.1097*0.654 (17)
H8A0.974470.364750.120770.1372*0.654 (17)
H8B1.058730.410790.076000.1372*0.654 (17)
H8C0.936100.453310.114850.1372*0.654 (17)
H9A0.989160.161280.019250.0947*
H9B0.796360.170160.012870.0947*
H10A0.849510.120160.065880.1761*
H10B1.033380.101990.053100.1761*
H10C0.880150.060450.024570.1761*
H4A0.886790.238830.289490.0693*
H4B1.077780.254150.305630.0693*
H7C1.005730.414600.052620.1097*0.346 (17)
H7D0.811280.426980.054230.1097*0.346 (17)
H8D0.802690.356620.131100.1372*0.346 (17)
H8E0.994270.377950.129460.1372*0.346 (17)
H8F0.858480.443870.130490.1372*0.346 (17)
H50.422510.303640.565230.0885*
H60.386990.228420.456930.0697*
H70.467930.239400.293840.0635*
H80.529330.321290.190690.0549*
H12A0.512770.446860.543300.1066*
H12B0.318940.445660.549470.1066*
H13A0.574050.410950.620970.1445*
H13B0.384400.393640.627780.1445*
H13C0.444820.479420.621780.1445*
H14A0.331990.182950.545220.0781*
H14B0.527810.186270.542810.0781*
H15A0.504050.098930.478220.1138*
H15B0.309530.094120.482620.1138*
H15C0.435550.062900.524970.1138*
H17A0.651940.211390.220750.0672*
H17B0.463630.192820.203270.0672*
H18A0.454330.102590.266560.1176*
H18B0.643000.120740.283480.1176*
H18C0.596520.080390.233070.1176*
H19A0.576660.464300.210900.0708*
H19B0.380080.456760.208030.0708*
H20A0.387070.411090.127660.1062*
H20B0.579890.430450.131280.1062*
H20C0.447720.497290.134190.1062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0686 (2)0.0563 (2)0.0315 (1)0.0025 (1)0.0075 (1)0.0046 (1)
Cl10.0633 (11)0.0720 (12)0.0466 (10)0.0176 (8)0.0054 (8)0.0071 (8)
Cl20.0650 (11)0.0670 (11)0.0510 (10)0.0129 (8)0.0175 (9)0.0077 (8)
S10.0969 (13)0.0385 (9)0.0325 (9)0.0040 (9)0.0125 (9)0.0008 (7)
S20.1290 (16)0.0492 (11)0.0345 (10)0.0123 (11)0.0072 (10)0.0021 (8)
N10.080 (4)0.035 (3)0.034 (3)0.001 (3)0.015 (3)0.000 (2)
N20.085 (4)0.034 (3)0.034 (3)0.000 (3)0.008 (3)0.003 (2)
N30.143 (6)0.049 (4)0.028 (3)0.002 (3)0.001 (3)0.002 (3)
N40.146 (6)0.048 (4)0.028 (3)0.000 (4)0.001 (3)0.001 (3)
C10.061 (4)0.034 (4)0.029 (3)0.000 (3)0.004 (3)0.005 (3)
C20.101 (5)0.037 (4)0.045 (4)0.005 (4)0.020 (4)0.003 (3)
C30.145 (8)0.057 (5)0.095 (6)0.014 (5)0.022 (6)0.038 (5)
C40.093 (5)0.032 (4)0.049 (4)0.001 (3)0.009 (4)0.005 (3)
C50.117 (6)0.033 (4)0.079 (5)0.011 (4)0.025 (5)0.002 (4)
C60.070 (4)0.059 (5)0.032 (4)0.003 (3)0.009 (3)0.006 (3)
C7A0.144 (11)0.085 (5)0.042 (5)0.015 (6)0.009 (6)0.008 (5)
C8A0.144 (11)0.085 (5)0.042 (5)0.015 (6)0.009 (6)0.008 (5)
C90.137 (7)0.053 (5)0.046 (4)0.007 (4)0.001 (4)0.006 (4)
C100.185 (10)0.066 (6)0.100 (7)0.004 (6)0.006 (7)0.003 (5)
C8B0.144 (11)0.085 (5)0.042 (5)0.015 (6)0.009 (6)0.008 (5)
C7B0.144 (11)0.085 (5)0.042 (5)0.015 (6)0.009 (6)0.008 (5)
Hg20.0898 (2)0.0551 (2)0.0336 (2)0.0059 (1)0.0125 (1)0.0014 (1)
Cl30.0791 (12)0.0897 (14)0.0445 (10)0.0056 (10)0.0111 (9)0.0232 (9)
Cl40.1183 (15)0.0552 (11)0.0435 (10)0.0246 (10)0.0089 (10)0.0010 (8)
S30.1470 (18)0.0465 (10)0.0404 (10)0.0170 (11)0.0327 (11)0.0069 (8)
S40.0836 (12)0.0399 (9)0.0336 (9)0.0102 (8)0.0088 (8)0.0016 (7)
N50.156 (6)0.031 (3)0.035 (3)0.010 (3)0.011 (4)0.000 (2)
N60.100 (4)0.040 (3)0.035 (3)0.001 (3)0.013 (3)0.002 (3)
N70.096 (4)0.035 (3)0.029 (3)0.009 (3)0.010 (3)0.005 (2)
N80.078 (4)0.028 (3)0.032 (3)0.001 (2)0.009 (3)0.001 (2)
C110.080 (5)0.041 (4)0.035 (4)0.006 (3)0.017 (3)0.001 (3)
C120.163 (8)0.045 (5)0.060 (5)0.018 (5)0.017 (5)0.005 (4)
C130.172 (8)0.060 (5)0.059 (5)0.015 (5)0.022 (5)0.019 (4)
C140.106 (6)0.043 (4)0.046 (4)0.003 (4)0.009 (4)0.003 (3)
C150.118 (6)0.048 (5)0.063 (5)0.010 (4)0.022 (4)0.005 (4)
C160.054 (4)0.038 (4)0.029 (3)0.002 (3)0.001 (3)0.000 (3)
C170.083 (5)0.039 (4)0.047 (4)0.010 (3)0.010 (3)0.004 (3)
C180.129 (6)0.039 (4)0.072 (5)0.011 (4)0.030 (5)0.003 (4)
C190.092 (5)0.035 (4)0.051 (4)0.008 (3)0.010 (4)0.006 (3)
C200.101 (5)0.058 (5)0.055 (5)0.015 (4)0.014 (4)0.025 (4)
Geometric parameters (Å, º) top
Hg1—Cl12.6220 (17)C3—H3C0.9600
Hg1—Cl22.5767 (16)C4—H4B0.9700
Hg1—S12.4335 (15)C4—H4A0.9700
Hg1—S22.4323 (17)C5—H5C0.9600
Hg2—Cl42.5487 (16)C5—H5B0.9600
Hg2—S32.4415 (18)C5—H5A0.9600
Hg2—S42.4534 (14)C7A—H7A0.9700
Hg2—Cl32.6046 (16)C7A—H7B0.9700
S1—C11.740 (5)C7B—H7D0.9700
S2—C61.734 (7)C7B—H7C0.9700
S3—C111.728 (6)C8A—H8B0.9600
S4—C161.736 (5)C8A—H8C0.9600
N1—C21.460 (7)C8A—H8A0.9600
N1—C11.306 (7)C8B—H8E0.9600
N2—C11.326 (7)C8B—H8F0.9600
N2—C41.456 (7)C8B—H8D0.9600
N3—C61.313 (7)C9—H9B0.9700
N3—C7A1.495 (16)C9—H9A0.9700
N3—C7B1.46 (2)C10—H10B0.9600
N4—C61.298 (8)C10—H10C0.9600
N4—C91.446 (8)C10—H10A0.9600
N1—H10.8600C12—C131.457 (10)
N2—H20.8600C14—C151.479 (8)
N3—H30.8600C17—C181.504 (7)
N4—H40.8600C19—C201.479 (8)
N5—C121.469 (9)C12—H12A0.9700
N5—C111.310 (7)C12—H12B0.9700
N6—C141.463 (7)C13—H13A0.9600
N6—C111.317 (7)C13—H13B0.9600
N7—C161.313 (7)C13—H13C0.9600
N7—C171.458 (7)C14—H14A0.9700
N8—C191.459 (6)C14—H14B0.9700
N8—C161.314 (7)C15—H15A0.9600
N5—H50.8600C15—H15B0.9600
N6—H60.8600C15—H15C0.9600
N7—H70.8600C17—H17A0.9700
N8—H80.8600C17—H17B0.9700
C2—C31.460 (10)C18—H18A0.9600
C4—C51.512 (8)C18—H18B0.9600
C7A—C8A1.47 (2)C18—H18C0.9600
C7B—C8B1.49 (3)C19—H19A0.9700
C9—C101.451 (11)C19—H19B0.9700
C2—H2A0.9700C20—H20A0.9600
C2—H2B0.9700C20—H20B0.9600
C3—H3B0.9600C20—H20C0.9600
C3—H3A0.9600
Hg1···H22.7700H4···H10A2.3700
Hg1···H20B3.2800H4···H10B2.5000
Hg1···H42.7100H4···Cl22.9600
Hg1···H8Ci3.3500H4···Cl12.6300
Hg1···H8Fi3.6900H4A···H17A2.5900
Hg1···H20Aii3.5300H4A···Cl33.0200
Hg2···H62.9100H4A···N12.7400
Hg2···H72.7800H4A···H12.1900
Hg2···H4Biii3.6800H4B···Cl4ii3.1100
Hg2···H13Civ3.3600H4B···N12.8100
Cl1···N43.442 (6)H4B···Hg2ii3.6800
Cl1···N23.406 (5)H4B···H12.3200
Cl2···C173.448 (6)H5···C142.4300
Cl2···N43.440 (6)H5···H13B2.3600
Cl2···N83.390 (5)H5···Cl2v3.0000
Cl3···C9v3.481 (6)H5···H14B2.2900
Cl3···N13.205 (5)H5···H14A2.2500
Cl3···N3v3.239 (5)H5···Cl1xii2.9800
Cl4···N73.340 (5)H5A···H22.3300
Cl4···N63.299 (5)H5B···H22.5900
Cl1···H13Bvi2.9500H5C···C8Bv3.1000
Cl1···H22.5600H5C···H8Ev2.4500
Cl1···H42.6300H6···Hg22.9100
Cl1···H17Bii2.9300H6···Cl42.4400
Cl1···H5vi2.9800H6···H15A2.4700
Cl1···H14Avi3.0900H6···H15B2.5100
Cl2···H20B3.1100H7···Cl42.4900
Cl2···H17A2.7700H7···H18A2.4700
Cl2···H42.9600H7···H18B2.5100
Cl2···H14Bvii2.8200H7···Hg22.7800
Cl2···H82.5800H7A···Cl4vii2.9900
Cl2···H5vii3.0000H7B···H15Avii2.4900
Cl3···H9Bv2.9300H7B···S22.7100
Cl3···H8Dv3.0100H7C···H15Bvi2.5400
Cl3···H12.4300H7C···S22.6200
Cl3···H4A3.0200H7D···S22.7600
Cl3···H9Av3.1200H8···H17B2.3100
Cl3···H3v2.4700H8···H17A2.2600
Cl4···H72.4900H8···H20B2.5500
Cl4···H7Av2.9900H8···C172.4300
Cl4···H4Biii3.1100H8···Cl22.5800
Cl4···H62.4400H8···H20A2.5200
S4···C1iii3.633 (6)H8A···H32.4800
S1···H2B2.5700H8B···H15Bvi2.4600
S1···H8Ci3.0600H8C···S1i3.0600
S1···H19Bii3.1700H8C···Hg1i3.3500
S1···H8Fi3.0800H8D···Cl3vii3.0100
S2···H7B2.7100H8D···H32.5400
S2···H7C2.6200H8E···H5Cvii2.4500
S2···H7D2.7600H8F···S1i3.0800
S3···H12A2.8300H8F···Hg1i3.6900
S3···H12B2.9100H9A···N32.8800
S3···H12Aiv3.0000H9A···H32.3200
S4···H19B2.6700H9A···Cl3vii3.1200
S4···H3Aiii3.1800H9B···Cl3vii2.9300
S4···H19A3.1100H9B···N32.7500
N1···Cl33.205 (5)H9B···H32.3400
N2···Cl13.406 (5)H10A···H42.3700
N3···Cl3vii3.239 (5)H10B···H42.5000
N4···Cl13.442 (6)H10B···H12Bvi2.4300
N4···Cl23.440 (6)H12A···S32.8300
N6···Cl43.299 (5)H12A···S3iv3.0000
N7···Cl43.340 (5)H12B···S32.9100
N8···Cl23.390 (5)H12B···H10Bxii2.4300
N1···H4B2.8100H13B···H52.3600
N1···H4A2.7400H13B···Cl1xii2.9500
N3···H9B2.7500H13B···H17Bv2.5900
N3···H9A2.8800H13C···Hg2iv3.3600
N5···H14B2.7800H14A···N52.7700
N5···H14A2.7700H14A···H52.2500
N8···H17B2.8000H14A···Cl1xii3.0900
N8···H17A2.7500H14B···N52.7800
C1···S4ii3.633 (6)H14B···H52.2900
C9···Cl3vii3.481 (6)H14B···Cl2v2.8200
C17···Cl23.448 (6)H15A···H62.4700
C5···H2Bviii2.8600H15A···C7Av2.9200
C7A···H15Avii2.9200H15A···H7Bv2.4900
C8B···H5Cvii3.1000H15B···H62.5100
C9···H32.4600H15B···H8Bxii2.4600
C14···H52.4300H15B···H7Cxii2.5400
C17···H82.4300H17A···Cl22.7700
C18···H19Bix2.9700H17A···N82.7500
C18···H19Aix3.0400H17A···H4A2.5900
C19···H18Ax3.0900H17A···H82.2600
H1···H3B2.5900H17B···Cl1iii2.9300
H1···H4A2.1900H17B···N82.8000
H1···Cl32.4300H17B···H82.3100
H1···C42.4000H17B···H13Bvii2.5900
H1···H4B2.3200H18A···H72.4700
H2···Cl12.5600H18A···C19ix3.0900
H2···H5A2.3300H18A···H19Aix2.4800
H2···H5B2.5900H18B···H72.5100
H2···Hg12.7700H19A···S43.1100
H2B···C5xi2.8600H19A···C18x3.0400
H2B···S12.5700H19A···H18Ax2.4800
H3···H9A2.3200H19B···S1iii3.1700
H3···C92.4600H19B···S42.6700
H3···H8D2.5400H19B···C18x2.9700
H3···H8A2.4800H20A···Hg1iii3.5300
H3···H9B2.3400H20A···H82.5200
H3···Cl3vii2.4700H20B···Hg13.2800
H3A···S4ii3.1800H20B···Cl23.1100
H3B···H12.5900H20B···H82.5500
H4···Hg12.7100
Cl1—Hg1—Cl291.78 (5)N3—C7B—H7D108.00
Cl1—Hg1—S1107.27 (5)C8B—C7B—H7C108.00
Cl1—Hg1—S2106.50 (6)H7C—C7B—H7D107.00
Cl2—Hg1—S1109.97 (5)C8B—C7B—H7D108.00
Cl2—Hg1—S2105.65 (6)H8A—C8A—H8B109.00
S1—Hg1—S2129.25 (5)C7A—C8A—H8C109.00
Cl4—Hg2—S3110.47 (6)C7A—C8A—H8A109.00
Cl4—Hg2—S4110.81 (5)C7A—C8A—H8B110.00
S3—Hg2—S4123.74 (6)H8A—C8A—H8C109.00
Cl3—Hg2—S4100.69 (5)H8B—C8A—H8C110.00
Cl3—Hg2—Cl498.04 (7)H8E—C8B—H8F109.00
Cl3—Hg2—S3109.51 (7)C7B—C8B—H8F110.00
Hg1—S1—C1104.29 (18)C7B—C8B—H8E109.00
Hg1—S2—C6104.0 (2)C7B—C8B—H8D110.00
Hg2—S3—C11107.9 (2)H8D—C8B—H8E109.00
Hg2—S4—C16105.49 (19)H8D—C8B—H8F110.00
C1—N1—C2127.5 (5)N4—C9—H9A109.00
C1—N2—C4124.3 (5)C10—C9—H9A109.00
C6—N3—C7A129.3 (7)C10—C9—H9B109.00
C6—N3—C7B118.8 (11)H9A—C9—H9B108.00
C6—N4—C9127.7 (5)N4—C9—H9B109.00
C2—N1—H1116.00C9—C10—H10C109.00
C1—N1—H1116.00C9—C10—H10B109.00
C4—N2—H2118.00C9—C10—H10A109.00
C1—N2—H2118.00H10B—C10—H10C110.00
C6—N3—H3115.00H10A—C10—H10B109.00
C7B—N3—H3119.00H10A—C10—H10C110.00
C7A—N3—H3115.00S3—C11—N5117.7 (4)
C6—N4—H4116.00S3—C11—N6122.4 (4)
C9—N4—H4116.00N5—C11—N6119.9 (5)
C11—N5—C12125.0 (5)N5—C12—C13111.8 (6)
C11—N6—C14124.6 (5)N6—C14—C15111.6 (5)
C16—N7—C17124.9 (5)S4—C16—N7121.7 (4)
C16—N8—C19124.6 (4)S4—C16—N8118.6 (4)
C11—N5—H5117.00N7—C16—N8119.8 (5)
C12—N5—H5118.00N7—C17—C18111.1 (5)
C11—N6—H6118.00N8—C19—C20112.6 (5)
C14—N6—H6118.00N5—C12—H12A109.00
C17—N7—H7118.00N5—C12—H12B109.00
C16—N7—H7118.00C13—C12—H12A109.00
C19—N8—H8118.00C13—C12—H12B109.00
C16—N8—H8118.00H12A—C12—H12B108.00
N1—C1—N2119.4 (5)C12—C13—H13A110.00
S1—C1—N2121.0 (4)C12—C13—H13B110.00
S1—C1—N1119.5 (4)C12—C13—H13C110.00
N1—C2—C3112.2 (5)H13A—C13—H13B109.00
N2—C4—C5109.7 (5)H13A—C13—H13C109.00
N3—C6—N4119.1 (6)H13B—C13—H13C109.00
S2—C6—N3117.7 (5)N6—C14—H14A109.00
S2—C6—N4123.2 (4)N6—C14—H14B109.00
N3—C7A—C8A102.8 (11)C15—C14—H14A109.00
N3—C7B—C8B117.6 (19)C15—C14—H14B109.00
N4—C9—C10111.6 (5)H14A—C14—H14B108.00
H2A—C2—H2B108.00C14—C15—H15A110.00
C3—C2—H2B109.00C14—C15—H15B109.00
N1—C2—H2A109.00C14—C15—H15C109.00
N1—C2—H2B109.00H15A—C15—H15B109.00
C3—C2—H2A109.00H15A—C15—H15C109.00
H3A—C3—H3B109.00H15B—C15—H15C109.00
C2—C3—H3C110.00N7—C17—H17A109.00
C2—C3—H3B109.00N7—C17—H17B109.00
C2—C3—H3A110.00C18—C17—H17A109.00
H3B—C3—H3C109.00C18—C17—H17B109.00
H3A—C3—H3C110.00H17A—C17—H17B108.00
N2—C4—H4A110.00C17—C18—H18A109.00
C5—C4—H4A110.00C17—C18—H18B109.00
C5—C4—H4B110.00C17—C18—H18C109.00
N2—C4—H4B110.00H18A—C18—H18B110.00
H4A—C4—H4B108.00H18A—C18—H18C109.00
H5B—C5—H5C109.00H18B—C18—H18C109.00
H5A—C5—H5C110.00N8—C19—H19A109.00
C4—C5—H5A109.00N8—C19—H19B109.00
H5A—C5—H5B110.00C20—C19—H19A109.00
C4—C5—H5C109.00C20—C19—H19B109.00
C4—C5—H5B109.00H19A—C19—H19B108.00
N3—C7A—H7A111.00C19—C20—H20A109.00
N3—C7A—H7B111.00C19—C20—H20B109.00
C8A—C7A—H7A111.00C19—C20—H20C109.00
C8A—C7A—H7B111.00H20A—C20—H20B110.00
H7A—C7A—H7B109.00H20A—C20—H20C110.00
N3—C7B—H7C108.00H20B—C20—H20C110.00
Cl1—Hg1—S1—C154.2 (2)C1—N1—C2—C3110.2 (7)
Cl2—Hg1—S1—C144.3 (2)C4—N2—C1—S1177.6 (5)
S2—Hg1—S1—C1176.2 (2)C1—N2—C4—C5177.3 (6)
Cl1—Hg1—S2—C652.9 (2)C4—N2—C1—N10.7 (9)
Cl2—Hg1—S2—C643.8 (2)C6—N3—C7A—C8A109.6 (11)
S1—Hg1—S2—C6177.2 (2)C7A—N3—C6—N4164.7 (9)
S4—Hg2—S3—C11168.7 (2)C7A—N3—C6—S215.5 (12)
Cl3—Hg2—S3—C1173.1 (2)C9—N4—C6—S2176.0 (6)
Cl4—Hg2—S3—C1133.8 (3)C9—N4—C6—N34.2 (11)
S3—Hg2—S4—C16176.8 (2)C6—N4—C9—C10172.1 (7)
Cl3—Hg2—S4—C1660.9 (2)C12—N5—C11—S34.5 (10)
Cl4—Hg2—S4—C1642.0 (2)C12—N5—C11—N6177.7 (7)
Hg1—S1—C1—N1156.7 (4)C11—N5—C12—C13174.0 (7)
Hg1—S1—C1—N225.0 (5)C14—N6—C11—S3179.5 (5)
Hg1—S2—C6—N3166.9 (5)C14—N6—C11—N51.9 (10)
Hg1—S2—C6—N413.3 (6)C11—N6—C14—C15179.2 (6)
Hg2—S3—C11—N5159.2 (5)C17—N7—C16—S4178.9 (4)
Hg2—S3—C11—N623.1 (6)C17—N7—C16—N80.1 (9)
Hg2—S4—C16—N720.1 (5)C16—N7—C17—C18177.9 (6)
Hg2—S4—C16—N8160.9 (4)C19—N8—C16—S42.0 (8)
C2—N1—C1—S11.8 (8)C19—N8—C16—N7179.0 (5)
C2—N1—C1—N2176.5 (5)C16—N8—C19—C20163.0 (6)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z1/2; (vii) x, y+1/2, z1/2; (viii) x+2, y1/2, z+1/2; (ix) x+1, y1/2, z+1/2; (x) x+1, y+1/2, z+1/2; (xi) x+2, y+1/2, z+1/2; (xii) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.862.433.205 (5)150
N2—H2···Cl10.862.563.406 (5)169
N3—H3···Cl3vii0.862.473.239 (5)149
N4—H4···Cl10.862.633.442 (6)159
N4—H4···Cl20.862.963.440 (6)117
N6—H6···Cl40.862.443.299 (5)174
N7—H7···Cl40.862.493.340 (5)173
N8—H8···Cl20.862.583.390 (5)158
C14—H14B···Cl2v0.972.823.699 (6)151
C17—H17A···Cl20.972.773.448 (6)127
Symmetry codes: (v) x, y+1/2, z+1/2; (vii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C5H12N2S)2]
Mr535.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.9713 (2), 17.2321 (5), 27.5143 (7)
β (°) 94.870 (1)
V3)3765.78 (17)
Z8
Radiation typeMo Kα
µ (mm1)8.68
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.180, 0.205
No. of measured, independent and
observed [I > 2σ(I)] reflections
28191, 6825, 4529
Rint0.048
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.067, 1.02
No. of reflections6825
No. of parameters353
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.63

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Hg1—Cl12.6220 (17)Hg2—Cl42.5487 (16)
Hg1—Cl22.5767 (16)Hg2—S32.4415 (18)
Hg1—S12.4335 (15)Hg2—S42.4534 (14)
Hg1—S22.4323 (17)Hg2—Cl32.6046 (16)
Cl1—Hg1—Cl291.78 (5)Cl4—Hg2—S3110.47 (6)
Cl1—Hg1—S1107.27 (5)Cl4—Hg2—S4110.81 (5)
Cl1—Hg1—S2106.50 (6)S3—Hg2—S4123.74 (6)
Cl2—Hg1—S1109.97 (5)Cl3—Hg2—S4100.69 (5)
Cl2—Hg1—S2105.65 (6)Cl3—Hg2—Cl498.04 (7)
S1—Hg1—S2129.25 (5)Cl3—Hg2—S3109.51 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.862.433.205 (5)150
N2—H2···Cl10.862.563.406 (5)169
N3—H3···Cl3i0.862.473.239 (5)149
N4—H4···Cl10.862.633.442 (6)159
N4—H4···Cl20.862.963.440 (6)117
N6—H6···Cl40.862.443.299 (5)174
N7—H7···Cl40.862.493.340 (5)173
N8—H8···Cl20.862.583.390 (5)158
C14—H14B···Cl2ii0.972.823.699 (6)151
C17—H17A···Cl20.972.773.448 (6)127
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAhmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIsab, A. A., Ahmad, S. & Arab, M. (2002). Polyhedron, 21, 1267–1271.  Web of Science CrossRef CAS Google Scholar
First citationMufakkar, M., Tahir, M. N., Ahmad, S., Shaheen, M. A. & Waheed, A. (2009). Acta Cryst. E65, m892–m893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStalhandske, C. M. V., Persson, I., Sandstrom, M. & Aberg, M. (1997). Inorg. Chem. 36, 4945–4953.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds