organic compounds
4-[(1-Hydroxy-2-naphthyl)methyleneamino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one
aDepartment of Chemistry, Teachers College of Qingdao University, Qingdao, Shandong 266071, People's Republic of China
*Correspondence e-mail: qliang59@163.com
The title antipyrine derivative, C22H19N3O2, was synthesized by the reaction of 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one and 1-hydroxynaphthalene-2-carbaldehyde in methanol solution. As expected, the compound adopts a trans configuration about the central C=N bond. The N atom is involved in an intramolecular O—H⋯N bond which stabilizes the molecular configuration. In the adjacent molecules stack with no short contacts.
Related literature
For background to the applications of antipyrine derivatives, see: Bashkatova et al. (2005); Bansal et al. (2007); Bondock et al. (2008); Capel et al. (1978); Coolen et al. (1999); Collado et al. (2000); Cunha et al. (2005); Evstropov et al. (1992); Khanduja et al. (1984); Madiha et al. (2007); Plesch et al. (1987); Radzikowska et al. (1995); Rehim et al. (2001); Turan-Zitouni et al. (2001); Yadav et al. (2003). For some typical structures of antipyrine derivatives, see: Liang et al. (2002); Li & Zhang (2004, 2005); Sun, Xie et al. (2006); Sun, Zhang, Jin et al. (2006); Sun, Zhang, Wang et al. (2006); Sun, Hao, Wei et al. (2009); Wen et al. (2005); You et al. (2004, 2006); Zhang & Li et al. (2005). For related structures involving see: Ali et al. (2002); Bashkatova et al. (2005); Coolen et al. (1999); Collado et al. (2000); Cukurovali et al. (2002); Farag et al. (2009); Rehim et al. (2001); Sun, Hao, Yu et al. (2009); Tarafder et al. (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810026450/gw2081sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810026450/gw2081Isup2.hkl
All the chemicals were obtained from commercial sources and used without purification. 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydropyrazole-3-one (0.5 mmol, 101.6 mg) and an equimolar quantity of 1-hydroxynaphthalene- 2-carbaldehyde (0.5 mmol, 86.1 mg) were dissolved in methanol (100 ml). The mixture was stirred for 1 h at room temperature to give a clear yellow solution. The resulting solution was kept in air for 8 d after which time yellow plane-shaped crystals of (I) were formed at the bottom of the vessel on slow evaporation of the methanol. (yield 95.2%). Analysis calculated for (C18H16ClN3O2): C 73.93, H 5.36, N 11.76%; found: C 73.55, H 5.42, N 11.73%.
All H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93 or 0.96 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O) for phenolic H atom, Uiso(H) = 1.2 for aromatic H atoms or Uiso(H) = 1.5Ueq(C) for methyl H atoms.
Since antipyrine was first synthesized by Knorr in 1883, the antipyrine and its derivatives exhibit a wide range of biologcial or chemical activities and applications (Capel et al., 1978; Radzikowska et al., 1995; Khanduja et al., 1984; Bondock et al., 2008; Cunha et al., 2005; Plesch et al., 1987; Madiha et al., 2007; Evstropov et al., 1992; Turan-Zitouni et al., 2001; Bansal et al., 2007; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Yadav et al., 2003). A few crystal structures of antipyrine derivatives have been investigated (Liang et al., 2002; Li & Zhang, 2004, 2005; Zhang & Li, 2005; You, et al., 2004, 2006; Wen, 2005; Sun, Zhang, Jin et al., 2006, Sun, Zhang, Wang et al., 2006; Sun, Xie et al., 2006 ; Sun, Hao, Wei et al. 2009).
condensed by and have demonstrated significant biological, chemical or optical activites, and new examples are being tested for their antitumor, antimicrobial, antiviral, antioxidant, optical and photovoltaic activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Sun, Hao, Yu et al., 2009; Farag et al., 2009). As an extension of these works on the structural characterization of antipyrine derivatives, a new Schiff base compound, (I), is reported here.As illustrated in Fig. 1, the compound (I) is a neutral 4-((1-hydroxynaphthalen-2-yl)methyleneamino)-1,2-dihydro-1,5-dimethyl- 2-phenylpyrazol-3-one molecule. Selected geometric parameters are listed in Table 1. The N2-N1-C1-C2 and C7-N1-C1-C6 torsion angles are 147.2 (2) and 115.1 (2) °, respectively. Atom O1 deviates from the pyrazoline mean plane by 0.140 (2) Å, whereas atom C10 and C11 deviate from it, on the opposite side, by 0.087 (2) and 0.614 (2) Å, respectively. The dihedral angle between the N1/N2/C7/C8/C9 pyrazoline ring and the C1-C6 benzene ring planes is 50.4 (3) °. The C12═N3 bond length of 1.290 (3) Å confirms to the value for a double bond. As a result of conjugation through the imino double bond, the C12-N3-C8-C9 and C12-N3-C8-C7 torsion angles are 172.8 (2) and -2.5 (3) ° respectively, the pyrazoline and C13-C22 naphthalene rings are nearly coplannar [mean deviation from the overall combined mean plane is 0.084 (3) Å]; the dihedral angle between the pyrazoline ring and C13-C22 naphthalene ring is 11.5 (3) °. As expected, the molecular structure of the Shiff base adopts a trans coonfigurations about the central C12═N3 bond as the other similar antipyrine derivatives that have been reported.
In the
the molecules stack along the a axis with no short contacts except the O—H···N intramolecular hydrogen (Table 2 and Fig. 2).For background to the applications of antipyrine derivatives, see: Bashkatova et al. (2005); Bansal et al. (2007); Bondock et al. (2008); Capel et al. (1978); Coolen et al. (1999); Collado et al. (2000); Cunha et al. (2005); Evstropov et al. (1992); Khanduja et al. (1984); Madiha et al. (2007); Plesch et al. (1987); Radzikowska et al. (1995); Rehim et al. (2001); Turan-Zitouni et al. (2001); Yadav et al. (2003). For some typical structures of antipyrine derivatives, see: Liang et al. (2002); Li & Zhang (2004, 2005); Sun, Xie et al. (2006); Sun, Zhang, Jin et al. (2006); Sun, Zhang, Wang et al. (2006); Sun, Hao, Wei et al. (2009); Wen et al. (2005); You et al. (2004, 2006); Zhang & Li et al. (2005). For related structures involving
see: Ali et al. (2002); Bashkatova et al. (2005); Coolen et al. (1999); Collado et al. (2000); Cukurovali et al. (2002); Farag et al. (2009); Rehim et al. (2001); Sun, Hao, Yu et al. (2009); Tarafder et al. (2002).Data collection: SMART (Bruker, 2002); cell
SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C22H19N3O2 | F(000) = 752 |
Mr = 357.40 | Dx = 1.315 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1592 reflections |
a = 8.0636 (7) Å | θ = 2.5–25.1° |
b = 7.4407 (6) Å | µ = 0.09 mm−1 |
c = 30.169 (3) Å | T = 295 K |
β = 94.329 (2)° | Plane, yellow |
V = 1804.9 (3) Å3 | 0.23 × 0.10 × 0.02 mm |
Z = 4 |
Bruker APEX area-detector diffractometer | 3942 independent reflections |
Radiation source: fine-focus sealed tube | 2403 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
φ and ω scans | θmax = 27.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.981, Tmax = 0.998 | k = −9→9 |
14746 measured reflections | l = −37→38 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.2473P] where P = (Fo2 + 2Fc2)/3 |
3942 reflections | (Δ/σ)max < 0.001 |
252 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C22H19N3O2 | V = 1804.9 (3) Å3 |
Mr = 357.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.0636 (7) Å | µ = 0.09 mm−1 |
b = 7.4407 (6) Å | T = 295 K |
c = 30.169 (3) Å | 0.23 × 0.10 × 0.02 mm |
β = 94.329 (2)° |
Bruker APEX area-detector diffractometer | 3942 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2403 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.998 | Rint = 0.050 |
14746 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.14 e Å−3 |
3942 reflections | Δρmin = −0.17 e Å−3 |
252 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.5537 (2) | 0.63818 (19) | 0.63468 (5) | 0.0518 (4) | |
O2 | 0.2652 (2) | 0.2809 (2) | 0.48208 (5) | 0.0529 (5) | |
H2 | 0.3246 | 0.2763 | 0.5053 | 0.079* | |
N1 | 0.6496 (2) | 0.3617 (2) | 0.66126 (6) | 0.0430 (5) | |
N2 | 0.6208 (2) | 0.1816 (2) | 0.64902 (6) | 0.0440 (5) | |
N3 | 0.4118 (2) | 0.3947 (2) | 0.55528 (6) | 0.0391 (4) | |
C1 | 0.6836 (3) | 0.4067 (3) | 0.70681 (7) | 0.0416 (5) | |
C2 | 0.7888 (3) | 0.5480 (3) | 0.71763 (8) | 0.0546 (6) | |
H2A | 0.8380 | 0.6109 | 0.6954 | 0.066* | |
C3 | 0.8210 (3) | 0.5961 (4) | 0.76159 (9) | 0.0662 (8) | |
H3 | 0.8910 | 0.6926 | 0.7690 | 0.079* | |
C4 | 0.7503 (4) | 0.5023 (4) | 0.79433 (9) | 0.0699 (8) | |
H4 | 0.7726 | 0.5351 | 0.8239 | 0.084* | |
C5 | 0.6471 (4) | 0.3607 (4) | 0.78370 (8) | 0.0633 (7) | |
H5 | 0.6007 | 0.2963 | 0.8061 | 0.076* | |
C6 | 0.6115 (3) | 0.3130 (3) | 0.73982 (8) | 0.0526 (6) | |
H6 | 0.5393 | 0.2182 | 0.7325 | 0.063* | |
C7 | 0.5673 (3) | 0.4746 (3) | 0.62969 (7) | 0.0383 (5) | |
C8 | 0.5054 (3) | 0.3554 (3) | 0.59459 (7) | 0.0366 (5) | |
C9 | 0.5442 (3) | 0.1841 (3) | 0.60707 (7) | 0.0408 (5) | |
C10 | 0.513 (2) | 0.016 (3) | 0.5821 (7) | 0.0599 (11) | 0.68 (4) |
H10A | 0.4444 | 0.0406 | 0.5554 | 0.090* | 0.68 (4) |
H10B | 0.4572 | −0.0679 | 0.6001 | 0.090* | 0.68 (4) |
H10C | 0.6168 | −0.0343 | 0.5746 | 0.090* | 0.68 (4) |
C10' | 0.501 (5) | 0.018 (7) | 0.5804 (16) | 0.0599 (11) | 0.32 (4) |
H10D | 0.3824 | 0.0105 | 0.5746 | 0.090* | 0.32 (4) |
H10E | 0.5402 | −0.0861 | 0.5969 | 0.090* | 0.32 (4) |
H10F | 0.5525 | 0.0231 | 0.5528 | 0.090* | 0.32 (4) |
C11 | 0.7486 (3) | 0.0508 (3) | 0.66333 (8) | 0.0575 (7) | |
H11A | 0.7126 | −0.0673 | 0.6541 | 0.086* | |
H11B | 0.7672 | 0.0539 | 0.6951 | 0.086* | |
H11C | 0.8501 | 0.0797 | 0.6502 | 0.086* | |
C12 | 0.3597 (3) | 0.5544 (3) | 0.54508 (7) | 0.0412 (5) | |
H12 | 0.3903 | 0.6499 | 0.5638 | 0.049* | |
C13 | 0.2085 (3) | 0.4488 (3) | 0.47564 (7) | 0.0404 (5) | |
C14 | 0.2546 (3) | 0.5875 (3) | 0.50496 (7) | 0.0382 (5) | |
C15 | 0.1916 (3) | 0.7620 (3) | 0.49565 (8) | 0.0496 (6) | |
H15 | 0.2230 | 0.8555 | 0.5150 | 0.059* | |
C16 | 0.0877 (3) | 0.7968 (3) | 0.45970 (8) | 0.0562 (7) | |
H16 | 0.0489 | 0.9132 | 0.4546 | 0.067* | |
C17 | 0.0366 (3) | 0.6577 (3) | 0.42957 (7) | 0.0497 (6) | |
C18 | 0.0988 (3) | 0.4819 (3) | 0.43735 (7) | 0.0444 (6) | |
C19 | 0.0465 (3) | 0.3427 (4) | 0.40779 (8) | 0.0570 (7) | |
H19 | 0.0867 | 0.2266 | 0.4126 | 0.068* | |
C20 | −0.0626 (4) | 0.3776 (5) | 0.37217 (9) | 0.0740 (9) | |
H20 | −0.0968 | 0.2849 | 0.3529 | 0.089* | |
C21 | −0.1237 (3) | 0.5509 (5) | 0.36419 (9) | 0.0755 (9) | |
H21 | −0.1976 | 0.5730 | 0.3396 | 0.091* | |
C22 | −0.0758 (3) | 0.6875 (4) | 0.39216 (8) | 0.0660 (8) | |
H22 | −0.1178 | 0.8024 | 0.3866 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0777 (12) | 0.0296 (9) | 0.0462 (10) | 0.0008 (8) | −0.0081 (8) | −0.0028 (7) |
O2 | 0.0680 (12) | 0.0423 (10) | 0.0465 (10) | 0.0065 (8) | −0.0091 (8) | −0.0060 (8) |
N1 | 0.0618 (12) | 0.0285 (10) | 0.0368 (10) | −0.0024 (9) | −0.0082 (9) | −0.0010 (8) |
N2 | 0.0610 (13) | 0.0258 (10) | 0.0432 (11) | 0.0017 (9) | −0.0086 (9) | 0.0001 (8) |
N3 | 0.0464 (11) | 0.0342 (10) | 0.0362 (10) | 0.0010 (8) | 0.0006 (8) | −0.0002 (8) |
C1 | 0.0508 (14) | 0.0365 (12) | 0.0359 (12) | 0.0005 (10) | −0.0071 (10) | 0.0004 (10) |
C2 | 0.0617 (16) | 0.0486 (15) | 0.0519 (15) | −0.0066 (12) | −0.0064 (13) | −0.0003 (12) |
C3 | 0.0732 (19) | 0.0597 (18) | 0.0620 (18) | −0.0080 (15) | −0.0195 (15) | −0.0113 (15) |
C4 | 0.095 (2) | 0.071 (2) | 0.0398 (15) | 0.0118 (17) | −0.0171 (15) | −0.0065 (14) |
C5 | 0.088 (2) | 0.0609 (17) | 0.0401 (15) | 0.0049 (16) | 0.0006 (14) | 0.0079 (13) |
C6 | 0.0630 (16) | 0.0472 (15) | 0.0461 (15) | −0.0066 (12) | −0.0055 (12) | 0.0051 (11) |
C7 | 0.0456 (13) | 0.0316 (12) | 0.0372 (12) | −0.0003 (10) | −0.0001 (10) | 0.0023 (9) |
C8 | 0.0416 (12) | 0.0305 (11) | 0.0372 (12) | −0.0015 (10) | −0.0014 (10) | −0.0018 (9) |
C9 | 0.0476 (13) | 0.0349 (12) | 0.0395 (13) | −0.0029 (10) | 0.0003 (10) | −0.0028 (9) |
C10 | 0.091 (3) | 0.0295 (14) | 0.057 (2) | 0.000 (2) | −0.013 (3) | −0.0056 (15) |
C10' | 0.091 (3) | 0.0295 (14) | 0.057 (2) | 0.000 (2) | −0.013 (3) | −0.0056 (15) |
C11 | 0.0692 (17) | 0.0410 (14) | 0.0601 (16) | 0.0112 (12) | −0.0110 (13) | 0.0041 (12) |
C12 | 0.0460 (13) | 0.0374 (13) | 0.0401 (13) | −0.0028 (10) | 0.0019 (10) | −0.0029 (10) |
C13 | 0.0434 (13) | 0.0402 (13) | 0.0379 (12) | −0.0006 (10) | 0.0048 (10) | 0.0023 (10) |
C14 | 0.0410 (12) | 0.0358 (12) | 0.0377 (12) | −0.0015 (10) | 0.0031 (10) | 0.0029 (9) |
C15 | 0.0563 (15) | 0.0399 (13) | 0.0519 (15) | 0.0023 (11) | −0.0003 (12) | 0.0023 (11) |
C16 | 0.0575 (16) | 0.0499 (15) | 0.0604 (17) | 0.0077 (13) | 0.0001 (13) | 0.0140 (13) |
C17 | 0.0417 (14) | 0.0658 (17) | 0.0417 (14) | 0.0009 (12) | 0.0027 (11) | 0.0149 (12) |
C18 | 0.0413 (13) | 0.0564 (15) | 0.0357 (12) | −0.0070 (11) | 0.0043 (10) | 0.0045 (11) |
C19 | 0.0570 (16) | 0.0698 (18) | 0.0435 (14) | −0.0126 (13) | −0.0011 (12) | −0.0044 (13) |
C20 | 0.0669 (19) | 0.105 (3) | 0.0485 (17) | −0.0213 (18) | −0.0042 (14) | −0.0058 (17) |
C21 | 0.0522 (17) | 0.131 (3) | 0.0420 (16) | −0.0102 (19) | −0.0091 (13) | 0.0173 (18) |
C22 | 0.0512 (16) | 0.093 (2) | 0.0533 (17) | 0.0027 (15) | −0.0003 (13) | 0.0269 (16) |
O1—C7 | 1.232 (2) | C10—H10C | 0.9600 |
O2—C13 | 1.340 (2) | C10'—H10D | 0.9600 |
O2—H2 | 0.8200 | C10'—H10E | 0.9600 |
N1—C7 | 1.399 (3) | C10'—H10F | 0.9600 |
N1—N2 | 1.405 (2) | C11—H11A | 0.9600 |
N1—C1 | 1.421 (3) | C11—H11B | 0.9600 |
N2—C9 | 1.366 (3) | C11—H11C | 0.9600 |
N2—C11 | 1.459 (3) | C12—C14 | 1.445 (3) |
N3—C12 | 1.290 (3) | C12—H12 | 0.9300 |
N3—C8 | 1.388 (3) | C13—C14 | 1.391 (3) |
C1—C2 | 1.375 (3) | C13—C18 | 1.422 (3) |
C1—C6 | 1.380 (3) | C14—C15 | 1.415 (3) |
C2—C3 | 1.379 (3) | C15—C16 | 1.345 (3) |
C2—H2A | 0.9300 | C15—H15 | 0.9300 |
C3—C4 | 1.369 (4) | C16—C17 | 1.418 (3) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.365 (4) | C17—C22 | 1.411 (3) |
C4—H4 | 0.9300 | C17—C18 | 1.414 (3) |
C5—C6 | 1.380 (3) | C18—C19 | 1.410 (3) |
C5—H5 | 0.9300 | C19—C20 | 1.362 (3) |
C6—H6 | 0.9300 | C19—H19 | 0.9300 |
C7—C8 | 1.441 (3) | C20—C21 | 1.395 (4) |
C8—C9 | 1.359 (3) | C20—H20 | 0.9300 |
C9—C10 | 1.47 (3) | C21—C22 | 1.358 (4) |
C9—C10' | 1.50 (6) | C21—H21 | 0.9300 |
C10—H10A | 0.9600 | C22—H22 | 0.9300 |
C10—H10B | 0.9600 | ||
C13—O2—H2 | 109.5 | H10D—C10'—H10E | 109.5 |
C7—N1—N2 | 109.49 (16) | C9—C10'—H10F | 109.5 |
C7—N1—C1 | 124.31 (17) | H10D—C10'—H10F | 109.5 |
N2—N1—C1 | 119.69 (16) | H10E—C10'—H10F | 109.5 |
C9—N2—N1 | 106.54 (16) | N2—C11—H11A | 109.5 |
C9—N2—C11 | 122.92 (18) | N2—C11—H11B | 109.5 |
N1—N2—C11 | 117.36 (18) | H11A—C11—H11B | 109.5 |
C12—N3—C8 | 123.00 (18) | N2—C11—H11C | 109.5 |
C2—C1—C6 | 120.1 (2) | H11A—C11—H11C | 109.5 |
C2—C1—N1 | 118.7 (2) | H11B—C11—H11C | 109.5 |
C6—C1—N1 | 121.2 (2) | N3—C12—C14 | 121.1 (2) |
C1—C2—C3 | 119.7 (2) | N3—C12—H12 | 119.4 |
C1—C2—H2A | 120.2 | C14—C12—H12 | 119.4 |
C3—C2—H2A | 120.2 | O2—C13—C14 | 121.88 (19) |
C4—C3—C2 | 120.2 (3) | O2—C13—C18 | 117.6 (2) |
C4—C3—H3 | 119.9 | C14—C13—C18 | 120.5 (2) |
C2—C3—H3 | 119.9 | C13—C14—C15 | 118.7 (2) |
C5—C4—C3 | 120.2 (2) | C13—C14—C12 | 121.15 (19) |
C5—C4—H4 | 119.9 | C15—C14—C12 | 120.1 (2) |
C3—C4—H4 | 119.9 | C16—C15—C14 | 122.0 (2) |
C4—C5—C6 | 120.2 (3) | C16—C15—H15 | 119.0 |
C4—C5—H5 | 119.9 | C14—C15—H15 | 119.0 |
C6—C5—H5 | 119.9 | C15—C16—C17 | 120.7 (2) |
C5—C6—C1 | 119.6 (2) | C15—C16—H16 | 119.7 |
C5—C6—H6 | 120.2 | C17—C16—H16 | 119.7 |
C1—C6—H6 | 120.2 | C22—C17—C18 | 118.5 (2) |
O1—C7—N1 | 123.52 (19) | C22—C17—C16 | 122.4 (2) |
O1—C7—C8 | 131.94 (19) | C18—C17—C16 | 119.1 (2) |
N1—C7—C8 | 104.51 (17) | C19—C18—C17 | 119.3 (2) |
C9—C8—N3 | 122.23 (19) | C19—C18—C13 | 121.6 (2) |
C9—C8—C7 | 108.31 (19) | C17—C18—C13 | 119.1 (2) |
N3—C8—C7 | 129.33 (18) | C20—C19—C18 | 120.2 (3) |
C8—C9—N2 | 110.37 (18) | C20—C19—H19 | 119.9 |
C8—C9—C10 | 128.9 (9) | C18—C19—H19 | 119.9 |
N2—C9—C10 | 120.7 (9) | C19—C20—C21 | 120.8 (3) |
C8—C9—C10' | 125.8 (18) | C19—C20—H20 | 119.6 |
N2—C9—C10' | 123.7 (18) | C21—C20—H20 | 119.6 |
C10—C9—C10' | 4 (2) | C22—C21—C20 | 120.3 (3) |
C9—C10—H10A | 109.5 | C22—C21—H21 | 119.9 |
C9—C10—H10B | 109.5 | C20—C21—H21 | 119.9 |
C9—C10—H10C | 109.5 | C21—C22—C17 | 121.0 (3) |
C9—C10'—H10D | 109.5 | C21—C22—H22 | 119.5 |
C9—C10'—H10E | 109.5 | C17—C22—H22 | 119.5 |
C7—N1—N2—C9 | 9.2 (2) | C11—N2—C9—C8 | −147.1 (2) |
C1—N1—N2—C9 | 162.14 (19) | N1—N2—C9—C10 | 173.1 (9) |
C7—N1—N2—C11 | 151.62 (19) | C11—N2—C9—C10 | 33.4 (9) |
C1—N1—N2—C11 | −55.5 (3) | N1—N2—C9—C10' | 176.1 (18) |
C7—N1—C1—C2 | −64.1 (3) | C11—N2—C9—C10' | 36.4 (18) |
N2—N1—C1—C2 | 147.2 (2) | C8—N3—C12—C14 | −176.44 (19) |
C7—N1—C1—C6 | 115.0 (2) | O2—C13—C14—C15 | 179.1 (2) |
N2—N1—C1—C6 | −33.6 (3) | C18—C13—C14—C15 | −0.7 (3) |
C6—C1—C2—C3 | −0.4 (4) | O2—C13—C14—C12 | −3.1 (3) |
N1—C1—C2—C3 | 178.8 (2) | C18—C13—C14—C12 | 177.09 (19) |
C1—C2—C3—C4 | 0.8 (4) | N3—C12—C14—C13 | −1.2 (3) |
C2—C3—C4—C5 | −0.1 (4) | N3—C12—C14—C15 | 176.6 (2) |
C3—C4—C5—C6 | −1.0 (4) | C13—C14—C15—C16 | 0.7 (3) |
C4—C5—C6—C1 | 1.4 (4) | C12—C14—C15—C16 | −177.1 (2) |
C2—C1—C6—C5 | −0.7 (4) | C14—C15—C16—C17 | 0.2 (4) |
N1—C1—C6—C5 | −179.9 (2) | C15—C16—C17—C22 | 178.2 (2) |
N2—N1—C7—O1 | 170.7 (2) | C15—C16—C17—C18 | −1.1 (3) |
C1—N1—C7—O1 | 19.4 (3) | C22—C17—C18—C19 | −0.2 (3) |
N2—N1—C7—C8 | −7.4 (2) | C16—C17—C18—C19 | 179.1 (2) |
C1—N1—C7—C8 | −158.8 (2) | C22—C17—C18—C13 | −178.2 (2) |
C12—N3—C8—C9 | 172.8 (2) | C16—C17—C18—C13 | 1.1 (3) |
C12—N3—C8—C7 | −2.5 (3) | O2—C13—C18—C19 | 2.0 (3) |
O1—C7—C8—C9 | −175.0 (2) | C14—C13—C18—C19 | −178.2 (2) |
N1—C7—C8—C9 | 2.9 (2) | O2—C13—C18—C17 | 179.96 (19) |
O1—C7—C8—N3 | 0.8 (4) | C14—C13—C18—C17 | −0.2 (3) |
N1—C7—C8—N3 | 178.7 (2) | C17—C18—C19—C20 | 0.0 (3) |
N3—C8—C9—N2 | −173.34 (19) | C13—C18—C19—C20 | 178.0 (2) |
C7—C8—C9—N2 | 2.8 (3) | C18—C19—C20—C21 | 0.3 (4) |
N3—C8—C9—C10 | 6.1 (10) | C19—C20—C21—C22 | −0.5 (4) |
C7—C8—C9—C10 | −177.7 (9) | C20—C21—C22—C17 | 0.3 (4) |
N3—C8—C9—C10' | 3.1 (18) | C18—C17—C22—C21 | 0.1 (4) |
C7—C8—C9—C10' | 179.3 (18) | C16—C17—C22—C21 | −179.2 (2) |
N1—N2—C9—C8 | −7.4 (3) |
Experimental details
Crystal data | |
Chemical formula | C22H19N3O2 |
Mr | 357.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 8.0636 (7), 7.4407 (6), 30.169 (3) |
β (°) | 94.329 (2) |
V (Å3) | 1804.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.23 × 0.10 × 0.02 |
Data collection | |
Diffractometer | Bruker APEX area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.981, 0.998 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14746, 3942, 2403 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.147, 1.04 |
No. of reflections | 3942 |
No. of parameters | 252 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.17 |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
O1—C7 | 1.232 (2) | N3—C12 | 1.290 (3) |
O2—C13 | 1.340 (2) | N3—C8 | 1.388 (3) |
N2—N1—C1—C2 | 147.2 (2) | C12—N3—C8—C9 | 172.8 (2) |
C7—N1—C1—C6 | 115.0 (2) | C12—N3—C8—C7 | −2.5 (3) |
Acknowledgements
The work was supported by Qingdao University of Science and Technology.
References
Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148. CSD CrossRef PubMed Google Scholar
Bansal, T., Singh, M., Mishra, G., Talegaonkar, S., Khar, R. K., Jaggi, M. & Mukherjee, R. (2007). J. Chromatogr. B, 859, 261–266. Web of Science CrossRef CAS Google Scholar
Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. 37, 1143–1147. Web of Science CrossRef CAS Google Scholar
Bondock, S., Rabie, R., Etman, H. A. & Fadda, A. A. (2008). Eur. J. Med. Chem. 43, 2122–2129. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Capel, I. D., Jenner, M., Pinnock, M. H. & Williams, D. C. (1978). Biochem. Pharmacol. 27, 1413–1416. CrossRef CAS PubMed Web of Science Google Scholar
Collado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, A. C. (2000). Talanta, 52, 909–920. Web of Science CrossRef PubMed CAS Google Scholar
Coolen, S. A., Ligor, T., Lieshout, M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103–113. CrossRef CAS Google Scholar
Cukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176. Web of Science CrossRef CAS Google Scholar
Cunha, S., Oliveira, S. M., Rodrigues, M. T., Bastos, R. M., Ferrari, J., De Oliveira, C. M. A., Kato, L., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). J. Mol. Struct. 752, 32–39. Web of Science CSD CrossRef CAS Google Scholar
Evstropov, A. N., Yavorovskaya, V. E., Vorob, E. S., Khudonogova, Z. P., Gritsenko, L. N., Shmidt, E. V., Medvedeva, S. G., Filimonov, V. D., Prishchep, T. P. & Saratikov, A. S. (1992). Pharm. Chem. J. 26, 426–430. CrossRef Google Scholar
Farag, A. A. M., El-Shazly, E. A. A., Abdel Rafea, M. & Ibrahim, A. (2009). Sol. Energ. Mat. Sol. C, 93, 1853–1859. Web of Science CrossRef CAS Google Scholar
Khanduja, K. L., Dogra, S. C., Kaushal, S. & Sharma, R. R. (1984). Biochem. Pharmacol. 33, 449–452. CrossRef CAS PubMed Web of Science Google Scholar
Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, o2199–o2200. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, o375–o377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liang, H., Yu, Q. & Hu, R.-X. (2002). Transition Met. Chem. 27, 454–457. CAS Google Scholar
Madiha, M. A., Rania, A., Moataz, H., Samira, S. & Sanaa, B. (2007). Eur. J. Pharmacol. 569, 222–227. Web of Science PubMed Google Scholar
Plesch, G., Blahova, M., Kratsmar-Smogrovic, J. & Friebel, C. (1987). Inorg. Chim. Acta, 136, 117–121. CrossRef CAS Web of Science Google Scholar
Radzikowska, E., Onish, K. & Chojak, E. (1995). Eur. J. Cancer, 31, S225. CrossRef Google Scholar
Rehim, S. S. A. E., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268–273. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y., Hao, Q., Wei, W., Yu, Z., Lu, L., Wang, X. & Wang, Y. (2009). J. Mol. Struct. 929, 10–21. Web of Science CSD CrossRef CAS Google Scholar
Sun, Y., Hao, Q., Yu, Z., Wei, W., Lu, L. & Wang, X. (2009). Mol. Phys. 107, 223–235. Web of Science CSD CrossRef CAS Google Scholar
Sun, Y.-X., Xie, X.-H., Zhang, R., Zhang, L.-F. & Xu, L.-X. (2006). Acta Cryst. E62, o4758–o4760. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467–o469. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-X., Zhang, R., Wang, B.-L., Ding, D.-J. & Liu, S. (2006). Acta Cryst. E62, o4613–o4615. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554. Web of Science CSD CrossRef CAS Google Scholar
Turan-Zitouni, G., Sivaci, M., Kilic, F. S. & Erol, K. (2001). Eur. J. Med. Chem. 36, 685–689. Web of Science CrossRef PubMed CAS Google Scholar
Wen, P. (2005). Acta Cryst. E61, o2918–o2920. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yadav, P. N., Demertzis, M. A., Kovala-Demertzi, D., Skoulika, S. & West, D. X. (2003). Inorg. Chim. Acta, 349, 30–36. Web of Science CSD CrossRef CAS Google Scholar
You, Z.-L., Wang, J. & Chi, J.-Y. (2006). Acta Cryst. E62, o1652–o1653. Web of Science CSD CrossRef IUCr Journals Google Scholar
You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, o801–o803. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X.-L. & Li, Z.-X. (2005). Acta Cryst. E61, o266–o268. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since antipyrine was first synthesized by Knorr in 1883, the antipyrine and its derivatives exhibit a wide range of biologcial or chemical activities and applications (Capel et al., 1978; Radzikowska et al., 1995; Khanduja et al., 1984; Bondock et al., 2008; Cunha et al., 2005; Plesch et al., 1987; Madiha et al., 2007; Evstropov et al., 1992; Turan-Zitouni et al., 2001; Bansal et al., 2007; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Yadav et al., 2003). A few crystal structures of antipyrine derivatives have been investigated (Liang et al., 2002; Li & Zhang, 2004, 2005; Zhang & Li, 2005; You, et al., 2004, 2006; Wen, 2005; Sun, Zhang, Jin et al., 2006, Sun, Zhang, Wang et al., 2006; Sun, Xie et al., 2006 ; Sun, Hao, Wei et al. 2009). Schiff bases condensed by aldehydes and amines have demonstrated significant biological, chemical or optical activites, and new examples are being tested for their antitumor, antimicrobial, antiviral, antioxidant, optical and photovoltaic activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Sun, Hao, Yu et al., 2009; Farag et al., 2009). As an extension of these works on the structural characterization of antipyrine derivatives, a new Schiff base compound, (I), is reported here.
As illustrated in Fig. 1, the compound (I) is a neutral 4-((1-hydroxynaphthalen-2-yl)methyleneamino)-1,2-dihydro-1,5-dimethyl- 2-phenylpyrazol-3-one molecule. Selected geometric parameters are listed in Table 1. The N2-N1-C1-C2 and C7-N1-C1-C6 torsion angles are 147.2 (2) and 115.1 (2) °, respectively. Atom O1 deviates from the pyrazoline mean plane by 0.140 (2) Å, whereas atom C10 and C11 deviate from it, on the opposite side, by 0.087 (2) and 0.614 (2) Å, respectively. The dihedral angle between the N1/N2/C7/C8/C9 pyrazoline ring and the C1-C6 benzene ring planes is 50.4 (3) °. The C12═N3 bond length of 1.290 (3) Å confirms to the value for a double bond. As a result of conjugation through the imino double bond, the C12-N3-C8-C9 and C12-N3-C8-C7 torsion angles are 172.8 (2) and -2.5 (3) ° respectively, the pyrazoline and C13-C22 naphthalene rings are nearly coplannar [mean deviation from the overall combined mean plane is 0.084 (3) Å]; the dihedral angle between the pyrazoline ring and C13-C22 naphthalene ring is 11.5 (3) °. As expected, the molecular structure of the Shiff base adopts a trans coonfigurations about the central C12═N3 bond as the other similar antipyrine derivatives that have been reported.
In the crystal structure, the molecules stack along the a axis with no short contacts except the O—H···N intramolecular hydrogen (Table 2 and Fig. 2).