organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(1-Hy­dr­oxy-2-naphth­yl)methyl­ene­amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, Teachers College of Qingdao University, Qingdao, Shandong 266071, People's Republic of China
*Correspondence e-mail: qliang59@163.com

(Received 23 April 2010; accepted 5 July 2010; online 10 July 2010)

The title anti­pyrine derivative, C22H19N3O2, was synthesized by the reaction of 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro­pyrazol-3-one and 1-hy­droxy­naphthalene-2-carbaldehyde in methanol solution. As expected, the compound adopts a trans configuration about the central C=N bond. The N atom is involved in an intra­molecular O—H⋯N bond which stabilizes the mol­ecular configuration. In the crystal structure, adjacent mol­ecules stack with no short contacts.

Related literature

For background to the applications of anti­pyrine derivatives, see: Bashkatova et al. (2005[Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. 37, 1143-1147.]); Bansal et al. (2007[Bansal, T., Singh, M., Mishra, G., Talegaonkar, S., Khar, R. K., Jaggi, M. & Mukherjee, R. (2007). J. Chromatogr. B, 859, 261-266.]); Bondock et al. (2008[Bondock, S., Rabie, R., Etman, H. A. & Fadda, A. A. (2008). Eur. J. Med. Chem. 43, 2122-2129.]); Capel et al. (1978[Capel, I. D., Jenner, M., Pinnock, M. H. & Williams, D. C. (1978). Biochem. Pharmacol. 27, 1413-1416.]); Coolen et al. (1999[Coolen, S. A., Ligor, T., Lieshout, M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103-113.]); Collado et al. (2000[Collado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, A. C. (2000). Talanta, 52, 909-920.]); Cunha et al. (2005[Cunha, S., Oliveira, S. M., Rodrigues, M. T., Bastos, R. M., Ferrari, J., De Oliveira, C. M. A., Kato, L., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). J. Mol. Struct. 752, 32-39.]); Evstropov et al. (1992[Evstropov, A. N., Yavorovskaya, V. E., Vorob, E. S., Khudonogova, Z. P., Gritsenko, L. N., Shmidt, E. V., Medvedeva, S. G., Filimonov, V. D., Prishchep, T. P. & Saratikov, A. S. (1992). Pharm. Chem. J. 26, 426-430.]); Khanduja et al. (1984[Khanduja, K. L., Dogra, S. C., Kaushal, S. & Sharma, R. R. (1984). Biochem. Pharmacol. 33, 449-452.]); Madiha et al. (2007[Madiha, M. A., Rania, A., Moataz, H., Samira, S. & Sanaa, B. (2007). Eur. J. Pharmacol. 569, 222-227.]); Plesch et al. (1987[Plesch, G., Blahova, M., Kratsmar-Smogrovic, J. & Friebel, C. (1987). Inorg. Chim. Acta, 136, 117-121.]); Radzikowska et al. (1995[Radzikowska, E., Onish, K. & Chojak, E. (1995). Eur. J. Cancer, 31, S225.]); Rehim et al. (2001[Rehim, S. S. A. E., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268-273.]); Turan-Zitouni et al. (2001[Turan-Zitouni, G., Sivaci, M., Kilic, F. S. & Erol, K. (2001). Eur. J. Med. Chem. 36, 685-689.]); Yadav et al. (2003[Yadav, P. N., Demertzis, M. A., Kovala-Demertzi, D., Skoulika, S. & West, D. X. (2003). Inorg. Chim. Acta, 349, 30-36.]). For some typical structures of anti­pyrine derivatives, see: Liang et al. (2002[Liang, H., Yu, Q. & Hu, R.-X. (2002). Transition Met. Chem. 27, 454-457.]); Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, o2199-o2200.], 2005[Li, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, o375-o377.]); Sun, Xie et al. (2006[Sun, Y.-X., Xie, X.-H., Zhang, R., Zhang, L.-F. & Xu, L.-X. (2006). Acta Cryst. E62, o4758-o4760.]); Sun, Zhang, Jin et al. (2006[Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467-o469.]); Sun, Zhang, Wang et al. (2006[Sun, Y.-X., Zhang, R., Wang, B.-L., Ding, D.-J. & Liu, S. (2006). Acta Cryst. E62, o4613-o4615.]); Sun, Hao, Wei et al. (2009[Sun, Y., Hao, Q., Wei, W., Yu, Z., Lu, L., Wang, X. & Wang, Y. (2009). J. Mol. Struct. 929, 10-21.]); Wen et al. (2005[Wen, P. (2005). Acta Cryst. E61, o2918-o2920.]); You et al. (2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, o801-o803.], 2006[You, Z.-L., Wang, J. & Chi, J.-Y. (2006). Acta Cryst. E62, o1652-o1653.]); Zhang & Li et al. (2005[Zhang, X.-L. & Li, Z.-X. (2005). Acta Cryst. E61, o266-o268.]). For related structures involving Schiff bases, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]); Bashkatova et al. (2005[Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. 37, 1143-1147.]); Coolen et al. (1999[Coolen, S. A., Ligor, T., Lieshout, M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103-113.]); Collado et al. (2000[Collado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, A. C. (2000). Talanta, 52, 909-920.]); Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Farag et al. (2009[Farag, A. A. M., El-Shazly, E. A. A., Abdel Rafea, M. & Ibrahim, A. (2009). Sol. Energ. Mat. Sol. C, 93, 1853-1859.]); Rehim et al. (2001[Rehim, S. S. A. E., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268-273.]); Sun, Hao, Yu et al. (2009[Sun, Y., Hao, Q., Yu, Z., Wei, W., Lu, L. & Wang, X. (2009). Mol. Phys. 107, 223-235.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N3O2

  • Mr = 357.40

  • Monoclinic, P 21 /c

  • a = 8.0636 (7) Å

  • b = 7.4407 (6) Å

  • c = 30.169 (3) Å

  • β = 94.329 (2)°

  • V = 1804.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.23 × 0.10 × 0.02 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.998

  • 14746 measured reflections

  • 3942 independent reflections

  • 2403 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.147

  • S = 1.04

  • 3942 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N3 0.82 1.84 2.569 (2) 148

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2002[Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since antipyrine was first synthesized by Knorr in 1883, the antipyrine and its derivatives exhibit a wide range of biologcial or chemical activities and applications (Capel et al., 1978; Radzikowska et al., 1995; Khanduja et al., 1984; Bondock et al., 2008; Cunha et al., 2005; Plesch et al., 1987; Madiha et al., 2007; Evstropov et al., 1992; Turan-Zitouni et al., 2001; Bansal et al., 2007; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Yadav et al., 2003). A few crystal structures of antipyrine derivatives have been investigated (Liang et al., 2002; Li & Zhang, 2004, 2005; Zhang & Li, 2005; You, et al., 2004, 2006; Wen, 2005; Sun, Zhang, Jin et al., 2006, Sun, Zhang, Wang et al., 2006; Sun, Xie et al., 2006 ; Sun, Hao, Wei et al. 2009). Schiff bases condensed by aldehydes and amines have demonstrated significant biological, chemical or optical activites, and new examples are being tested for their antitumor, antimicrobial, antiviral, antioxidant, optical and photovoltaic activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Sun, Hao, Yu et al., 2009; Farag et al., 2009). As an extension of these works on the structural characterization of antipyrine derivatives, a new Schiff base compound, (I), is reported here.

As illustrated in Fig. 1, the compound (I) is a neutral 4-((1-hydroxynaphthalen-2-yl)methyleneamino)-1,2-dihydro-1,5-dimethyl- 2-phenylpyrazol-3-one molecule. Selected geometric parameters are listed in Table 1. The N2-N1-C1-C2 and C7-N1-C1-C6 torsion angles are 147.2 (2) and 115.1 (2) °, respectively. Atom O1 deviates from the pyrazoline mean plane by 0.140 (2) Å, whereas atom C10 and C11 deviate from it, on the opposite side, by 0.087 (2) and 0.614 (2) Å, respectively. The dihedral angle between the N1/N2/C7/C8/C9 pyrazoline ring and the C1-C6 benzene ring planes is 50.4 (3) °. The C12N3 bond length of 1.290 (3) Å confirms to the value for a double bond. As a result of conjugation through the imino double bond, the C12-N3-C8-C9 and C12-N3-C8-C7 torsion angles are 172.8 (2) and -2.5 (3) ° respectively, the pyrazoline and C13-C22 naphthalene rings are nearly coplannar [mean deviation from the overall combined mean plane is 0.084 (3) Å]; the dihedral angle between the pyrazoline ring and C13-C22 naphthalene ring is 11.5 (3) °. As expected, the molecular structure of the Shiff base adopts a trans coonfigurations about the central C12N3 bond as the other similar antipyrine derivatives that have been reported.

In the crystal structure, the molecules stack along the a axis with no short contacts except the O—H···N intramolecular hydrogen (Table 2 and Fig. 2).

Related literature top

For background to the applications of antipyrine derivatives, see: Bashkatova et al. (2005); Bansal et al. (2007); Bondock et al. (2008); Capel et al. (1978); Coolen et al. (1999); Collado et al. (2000); Cunha et al. (2005); Evstropov et al. (1992); Khanduja et al. (1984); Madiha et al. (2007); Plesch et al. (1987); Radzikowska et al. (1995); Rehim et al. (2001); Turan-Zitouni et al. (2001); Yadav et al. (2003). For some typical structures of antipyrine derivatives, see: Liang et al. (2002); Li & Zhang (2004, 2005); Sun, Xie et al. (2006); Sun, Zhang, Jin et al. (2006); Sun, Zhang, Wang et al. (2006); Sun, Hao, Wei et al. (2009); Wen et al. (2005); You et al. (2004, 2006); Zhang & Li et al. (2005). For related structures involving Schiff bases, see: Ali et al. (2002); Bashkatova et al. (2005); Coolen et al. (1999); Collado et al. (2000); Cukurovali et al. (2002); Farag et al. (2009); Rehim et al. (2001); Sun, Hao, Yu et al. (2009); Tarafder et al. (2002).

Experimental top

All the chemicals were obtained from commercial sources and used without purification. 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydropyrazole-3-one (0.5 mmol, 101.6 mg) and an equimolar quantity of 1-hydroxynaphthalene- 2-carbaldehyde (0.5 mmol, 86.1 mg) were dissolved in methanol (100 ml). The mixture was stirred for 1 h at room temperature to give a clear yellow solution. The resulting solution was kept in air for 8 d after which time yellow plane-shaped crystals of (I) were formed at the bottom of the vessel on slow evaporation of the methanol. (yield 95.2%). Analysis calculated for (C18H16ClN3O2): C 73.93, H 5.36, N 11.76%; found: C 73.55, H 5.42, N 11.73%.

Refinement top

All H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93 or 0.96 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O) for phenolic H atom, Uiso(H) = 1.2 for aromatic H atoms or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Since antipyrine was first synthesized by Knorr in 1883, the antipyrine and its derivatives exhibit a wide range of biologcial or chemical activities and applications (Capel et al., 1978; Radzikowska et al., 1995; Khanduja et al., 1984; Bondock et al., 2008; Cunha et al., 2005; Plesch et al., 1987; Madiha et al., 2007; Evstropov et al., 1992; Turan-Zitouni et al., 2001; Bansal et al., 2007; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Yadav et al., 2003). A few crystal structures of antipyrine derivatives have been investigated (Liang et al., 2002; Li & Zhang, 2004, 2005; Zhang & Li, 2005; You, et al., 2004, 2006; Wen, 2005; Sun, Zhang, Jin et al., 2006, Sun, Zhang, Wang et al., 2006; Sun, Xie et al., 2006 ; Sun, Hao, Wei et al. 2009). Schiff bases condensed by aldehydes and amines have demonstrated significant biological, chemical or optical activites, and new examples are being tested for their antitumor, antimicrobial, antiviral, antioxidant, optical and photovoltaic activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002; Bashkatova et al., 2005; Rehim et al., 2001; Collado et al., 2000; Coolen et al., 1999; Sun, Hao, Yu et al., 2009; Farag et al., 2009). As an extension of these works on the structural characterization of antipyrine derivatives, a new Schiff base compound, (I), is reported here.

As illustrated in Fig. 1, the compound (I) is a neutral 4-((1-hydroxynaphthalen-2-yl)methyleneamino)-1,2-dihydro-1,5-dimethyl- 2-phenylpyrazol-3-one molecule. Selected geometric parameters are listed in Table 1. The N2-N1-C1-C2 and C7-N1-C1-C6 torsion angles are 147.2 (2) and 115.1 (2) °, respectively. Atom O1 deviates from the pyrazoline mean plane by 0.140 (2) Å, whereas atom C10 and C11 deviate from it, on the opposite side, by 0.087 (2) and 0.614 (2) Å, respectively. The dihedral angle between the N1/N2/C7/C8/C9 pyrazoline ring and the C1-C6 benzene ring planes is 50.4 (3) °. The C12N3 bond length of 1.290 (3) Å confirms to the value for a double bond. As a result of conjugation through the imino double bond, the C12-N3-C8-C9 and C12-N3-C8-C7 torsion angles are 172.8 (2) and -2.5 (3) ° respectively, the pyrazoline and C13-C22 naphthalene rings are nearly coplannar [mean deviation from the overall combined mean plane is 0.084 (3) Å]; the dihedral angle between the pyrazoline ring and C13-C22 naphthalene ring is 11.5 (3) °. As expected, the molecular structure of the Shiff base adopts a trans coonfigurations about the central C12N3 bond as the other similar antipyrine derivatives that have been reported.

In the crystal structure, the molecules stack along the a axis with no short contacts except the O—H···N intramolecular hydrogen (Table 2 and Fig. 2).

For background to the applications of antipyrine derivatives, see: Bashkatova et al. (2005); Bansal et al. (2007); Bondock et al. (2008); Capel et al. (1978); Coolen et al. (1999); Collado et al. (2000); Cunha et al. (2005); Evstropov et al. (1992); Khanduja et al. (1984); Madiha et al. (2007); Plesch et al. (1987); Radzikowska et al. (1995); Rehim et al. (2001); Turan-Zitouni et al. (2001); Yadav et al. (2003). For some typical structures of antipyrine derivatives, see: Liang et al. (2002); Li & Zhang (2004, 2005); Sun, Xie et al. (2006); Sun, Zhang, Jin et al. (2006); Sun, Zhang, Wang et al. (2006); Sun, Hao, Wei et al. (2009); Wen et al. (2005); You et al. (2004, 2006); Zhang & Li et al. (2005). For related structures involving Schiff bases, see: Ali et al. (2002); Bashkatova et al. (2005); Coolen et al. (1999); Collado et al. (2000); Cukurovali et al. (2002); Farag et al. (2009); Rehim et al. (2001); Sun, Hao, Yu et al. (2009); Tarafder et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. O—H···N contacts are shown as Hydrogen bonds.
4-[(1-Hydroxy-2-naphthyl)methyleneamino]-1,5-dimethyl-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C22H19N3O2F(000) = 752
Mr = 357.40Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1592 reflections
a = 8.0636 (7) Åθ = 2.5–25.1°
b = 7.4407 (6) ŵ = 0.09 mm1
c = 30.169 (3) ÅT = 295 K
β = 94.329 (2)°Plane, yellow
V = 1804.9 (3) Å30.23 × 0.10 × 0.02 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
3942 independent reflections
Radiation source: fine-focus sealed tube2403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.981, Tmax = 0.998k = 99
14746 measured reflectionsl = 3738
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.2473P]
where P = (Fo2 + 2Fc2)/3
3942 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H19N3O2V = 1804.9 (3) Å3
Mr = 357.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0636 (7) ŵ = 0.09 mm1
b = 7.4407 (6) ÅT = 295 K
c = 30.169 (3) Å0.23 × 0.10 × 0.02 mm
β = 94.329 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
3942 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2403 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.998Rint = 0.050
14746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
3942 reflectionsΔρmin = 0.17 e Å3
252 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5537 (2)0.63818 (19)0.63468 (5)0.0518 (4)
O20.2652 (2)0.2809 (2)0.48208 (5)0.0529 (5)
H20.32460.27630.50530.079*
N10.6496 (2)0.3617 (2)0.66126 (6)0.0430 (5)
N20.6208 (2)0.1816 (2)0.64902 (6)0.0440 (5)
N30.4118 (2)0.3947 (2)0.55528 (6)0.0391 (4)
C10.6836 (3)0.4067 (3)0.70681 (7)0.0416 (5)
C20.7888 (3)0.5480 (3)0.71763 (8)0.0546 (6)
H2A0.83800.61090.69540.066*
C30.8210 (3)0.5961 (4)0.76159 (9)0.0662 (8)
H30.89100.69260.76900.079*
C40.7503 (4)0.5023 (4)0.79433 (9)0.0699 (8)
H40.77260.53510.82390.084*
C50.6471 (4)0.3607 (4)0.78370 (8)0.0633 (7)
H50.60070.29630.80610.076*
C60.6115 (3)0.3130 (3)0.73982 (8)0.0526 (6)
H60.53930.21820.73250.063*
C70.5673 (3)0.4746 (3)0.62969 (7)0.0383 (5)
C80.5054 (3)0.3554 (3)0.59459 (7)0.0366 (5)
C90.5442 (3)0.1841 (3)0.60707 (7)0.0408 (5)
C100.513 (2)0.016 (3)0.5821 (7)0.0599 (11)0.68 (4)
H10A0.44440.04060.55540.090*0.68 (4)
H10B0.45720.06790.60010.090*0.68 (4)
H10C0.61680.03430.57460.090*0.68 (4)
C10'0.501 (5)0.018 (7)0.5804 (16)0.0599 (11)0.32 (4)
H10D0.38240.01050.57460.090*0.32 (4)
H10E0.54020.08610.59690.090*0.32 (4)
H10F0.55250.02310.55280.090*0.32 (4)
C110.7486 (3)0.0508 (3)0.66333 (8)0.0575 (7)
H11A0.71260.06730.65410.086*
H11B0.76720.05390.69510.086*
H11C0.85010.07970.65020.086*
C120.3597 (3)0.5544 (3)0.54508 (7)0.0412 (5)
H120.39030.64990.56380.049*
C130.2085 (3)0.4488 (3)0.47564 (7)0.0404 (5)
C140.2546 (3)0.5875 (3)0.50496 (7)0.0382 (5)
C150.1916 (3)0.7620 (3)0.49565 (8)0.0496 (6)
H150.22300.85550.51500.059*
C160.0877 (3)0.7968 (3)0.45970 (8)0.0562 (7)
H160.04890.91320.45460.067*
C170.0366 (3)0.6577 (3)0.42957 (7)0.0497 (6)
C180.0988 (3)0.4819 (3)0.43735 (7)0.0444 (6)
C190.0465 (3)0.3427 (4)0.40779 (8)0.0570 (7)
H190.08670.22660.41260.068*
C200.0626 (4)0.3776 (5)0.37217 (9)0.0740 (9)
H200.09680.28490.35290.089*
C210.1237 (3)0.5509 (5)0.36419 (9)0.0755 (9)
H210.19760.57300.33960.091*
C220.0758 (3)0.6875 (4)0.39216 (8)0.0660 (8)
H220.11780.80240.38660.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0777 (12)0.0296 (9)0.0462 (10)0.0008 (8)0.0081 (8)0.0028 (7)
O20.0680 (12)0.0423 (10)0.0465 (10)0.0065 (8)0.0091 (8)0.0060 (8)
N10.0618 (12)0.0285 (10)0.0368 (10)0.0024 (9)0.0082 (9)0.0010 (8)
N20.0610 (13)0.0258 (10)0.0432 (11)0.0017 (9)0.0086 (9)0.0001 (8)
N30.0464 (11)0.0342 (10)0.0362 (10)0.0010 (8)0.0006 (8)0.0002 (8)
C10.0508 (14)0.0365 (12)0.0359 (12)0.0005 (10)0.0071 (10)0.0004 (10)
C20.0617 (16)0.0486 (15)0.0519 (15)0.0066 (12)0.0064 (13)0.0003 (12)
C30.0732 (19)0.0597 (18)0.0620 (18)0.0080 (15)0.0195 (15)0.0113 (15)
C40.095 (2)0.071 (2)0.0398 (15)0.0118 (17)0.0171 (15)0.0065 (14)
C50.088 (2)0.0609 (17)0.0401 (15)0.0049 (16)0.0006 (14)0.0079 (13)
C60.0630 (16)0.0472 (15)0.0461 (15)0.0066 (12)0.0055 (12)0.0051 (11)
C70.0456 (13)0.0316 (12)0.0372 (12)0.0003 (10)0.0001 (10)0.0023 (9)
C80.0416 (12)0.0305 (11)0.0372 (12)0.0015 (10)0.0014 (10)0.0018 (9)
C90.0476 (13)0.0349 (12)0.0395 (13)0.0029 (10)0.0003 (10)0.0028 (9)
C100.091 (3)0.0295 (14)0.057 (2)0.000 (2)0.013 (3)0.0056 (15)
C10'0.091 (3)0.0295 (14)0.057 (2)0.000 (2)0.013 (3)0.0056 (15)
C110.0692 (17)0.0410 (14)0.0601 (16)0.0112 (12)0.0110 (13)0.0041 (12)
C120.0460 (13)0.0374 (13)0.0401 (13)0.0028 (10)0.0019 (10)0.0029 (10)
C130.0434 (13)0.0402 (13)0.0379 (12)0.0006 (10)0.0048 (10)0.0023 (10)
C140.0410 (12)0.0358 (12)0.0377 (12)0.0015 (10)0.0031 (10)0.0029 (9)
C150.0563 (15)0.0399 (13)0.0519 (15)0.0023 (11)0.0003 (12)0.0023 (11)
C160.0575 (16)0.0499 (15)0.0604 (17)0.0077 (13)0.0001 (13)0.0140 (13)
C170.0417 (14)0.0658 (17)0.0417 (14)0.0009 (12)0.0027 (11)0.0149 (12)
C180.0413 (13)0.0564 (15)0.0357 (12)0.0070 (11)0.0043 (10)0.0045 (11)
C190.0570 (16)0.0698 (18)0.0435 (14)0.0126 (13)0.0011 (12)0.0044 (13)
C200.0669 (19)0.105 (3)0.0485 (17)0.0213 (18)0.0042 (14)0.0058 (17)
C210.0522 (17)0.131 (3)0.0420 (16)0.0102 (19)0.0091 (13)0.0173 (18)
C220.0512 (16)0.093 (2)0.0533 (17)0.0027 (15)0.0003 (13)0.0269 (16)
Geometric parameters (Å, º) top
O1—C71.232 (2)C10—H10C0.9600
O2—C131.340 (2)C10'—H10D0.9600
O2—H20.8200C10'—H10E0.9600
N1—C71.399 (3)C10'—H10F0.9600
N1—N21.405 (2)C11—H11A0.9600
N1—C11.421 (3)C11—H11B0.9600
N2—C91.366 (3)C11—H11C0.9600
N2—C111.459 (3)C12—C141.445 (3)
N3—C121.290 (3)C12—H120.9300
N3—C81.388 (3)C13—C141.391 (3)
C1—C21.375 (3)C13—C181.422 (3)
C1—C61.380 (3)C14—C151.415 (3)
C2—C31.379 (3)C15—C161.345 (3)
C2—H2A0.9300C15—H150.9300
C3—C41.369 (4)C16—C171.418 (3)
C3—H30.9300C16—H160.9300
C4—C51.365 (4)C17—C221.411 (3)
C4—H40.9300C17—C181.414 (3)
C5—C61.380 (3)C18—C191.410 (3)
C5—H50.9300C19—C201.362 (3)
C6—H60.9300C19—H190.9300
C7—C81.441 (3)C20—C211.395 (4)
C8—C91.359 (3)C20—H200.9300
C9—C101.47 (3)C21—C221.358 (4)
C9—C10'1.50 (6)C21—H210.9300
C10—H10A0.9600C22—H220.9300
C10—H10B0.9600
C13—O2—H2109.5H10D—C10'—H10E109.5
C7—N1—N2109.49 (16)C9—C10'—H10F109.5
C7—N1—C1124.31 (17)H10D—C10'—H10F109.5
N2—N1—C1119.69 (16)H10E—C10'—H10F109.5
C9—N2—N1106.54 (16)N2—C11—H11A109.5
C9—N2—C11122.92 (18)N2—C11—H11B109.5
N1—N2—C11117.36 (18)H11A—C11—H11B109.5
C12—N3—C8123.00 (18)N2—C11—H11C109.5
C2—C1—C6120.1 (2)H11A—C11—H11C109.5
C2—C1—N1118.7 (2)H11B—C11—H11C109.5
C6—C1—N1121.2 (2)N3—C12—C14121.1 (2)
C1—C2—C3119.7 (2)N3—C12—H12119.4
C1—C2—H2A120.2C14—C12—H12119.4
C3—C2—H2A120.2O2—C13—C14121.88 (19)
C4—C3—C2120.2 (3)O2—C13—C18117.6 (2)
C4—C3—H3119.9C14—C13—C18120.5 (2)
C2—C3—H3119.9C13—C14—C15118.7 (2)
C5—C4—C3120.2 (2)C13—C14—C12121.15 (19)
C5—C4—H4119.9C15—C14—C12120.1 (2)
C3—C4—H4119.9C16—C15—C14122.0 (2)
C4—C5—C6120.2 (3)C16—C15—H15119.0
C4—C5—H5119.9C14—C15—H15119.0
C6—C5—H5119.9C15—C16—C17120.7 (2)
C5—C6—C1119.6 (2)C15—C16—H16119.7
C5—C6—H6120.2C17—C16—H16119.7
C1—C6—H6120.2C22—C17—C18118.5 (2)
O1—C7—N1123.52 (19)C22—C17—C16122.4 (2)
O1—C7—C8131.94 (19)C18—C17—C16119.1 (2)
N1—C7—C8104.51 (17)C19—C18—C17119.3 (2)
C9—C8—N3122.23 (19)C19—C18—C13121.6 (2)
C9—C8—C7108.31 (19)C17—C18—C13119.1 (2)
N3—C8—C7129.33 (18)C20—C19—C18120.2 (3)
C8—C9—N2110.37 (18)C20—C19—H19119.9
C8—C9—C10128.9 (9)C18—C19—H19119.9
N2—C9—C10120.7 (9)C19—C20—C21120.8 (3)
C8—C9—C10'125.8 (18)C19—C20—H20119.6
N2—C9—C10'123.7 (18)C21—C20—H20119.6
C10—C9—C10'4 (2)C22—C21—C20120.3 (3)
C9—C10—H10A109.5C22—C21—H21119.9
C9—C10—H10B109.5C20—C21—H21119.9
C9—C10—H10C109.5C21—C22—C17121.0 (3)
C9—C10'—H10D109.5C21—C22—H22119.5
C9—C10'—H10E109.5C17—C22—H22119.5
C7—N1—N2—C99.2 (2)C11—N2—C9—C8147.1 (2)
C1—N1—N2—C9162.14 (19)N1—N2—C9—C10173.1 (9)
C7—N1—N2—C11151.62 (19)C11—N2—C9—C1033.4 (9)
C1—N1—N2—C1155.5 (3)N1—N2—C9—C10'176.1 (18)
C7—N1—C1—C264.1 (3)C11—N2—C9—C10'36.4 (18)
N2—N1—C1—C2147.2 (2)C8—N3—C12—C14176.44 (19)
C7—N1—C1—C6115.0 (2)O2—C13—C14—C15179.1 (2)
N2—N1—C1—C633.6 (3)C18—C13—C14—C150.7 (3)
C6—C1—C2—C30.4 (4)O2—C13—C14—C123.1 (3)
N1—C1—C2—C3178.8 (2)C18—C13—C14—C12177.09 (19)
C1—C2—C3—C40.8 (4)N3—C12—C14—C131.2 (3)
C2—C3—C4—C50.1 (4)N3—C12—C14—C15176.6 (2)
C3—C4—C5—C61.0 (4)C13—C14—C15—C160.7 (3)
C4—C5—C6—C11.4 (4)C12—C14—C15—C16177.1 (2)
C2—C1—C6—C50.7 (4)C14—C15—C16—C170.2 (4)
N1—C1—C6—C5179.9 (2)C15—C16—C17—C22178.2 (2)
N2—N1—C7—O1170.7 (2)C15—C16—C17—C181.1 (3)
C1—N1—C7—O119.4 (3)C22—C17—C18—C190.2 (3)
N2—N1—C7—C87.4 (2)C16—C17—C18—C19179.1 (2)
C1—N1—C7—C8158.8 (2)C22—C17—C18—C13178.2 (2)
C12—N3—C8—C9172.8 (2)C16—C17—C18—C131.1 (3)
C12—N3—C8—C72.5 (3)O2—C13—C18—C192.0 (3)
O1—C7—C8—C9175.0 (2)C14—C13—C18—C19178.2 (2)
N1—C7—C8—C92.9 (2)O2—C13—C18—C17179.96 (19)
O1—C7—C8—N30.8 (4)C14—C13—C18—C170.2 (3)
N1—C7—C8—N3178.7 (2)C17—C18—C19—C200.0 (3)
N3—C8—C9—N2173.34 (19)C13—C18—C19—C20178.0 (2)
C7—C8—C9—N22.8 (3)C18—C19—C20—C210.3 (4)
N3—C8—C9—C106.1 (10)C19—C20—C21—C220.5 (4)
C7—C8—C9—C10177.7 (9)C20—C21—C22—C170.3 (4)
N3—C8—C9—C10'3.1 (18)C18—C17—C22—C210.1 (4)
C7—C8—C9—C10'179.3 (18)C16—C17—C22—C21179.2 (2)
N1—N2—C9—C87.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N30.821.842.569 (2)148

Experimental details

Crystal data
Chemical formulaC22H19N3O2
Mr357.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.0636 (7), 7.4407 (6), 30.169 (3)
β (°) 94.329 (2)
V3)1804.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.10 × 0.02
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
14746, 3942, 2403
Rint0.050
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.147, 1.04
No. of reflections3942
No. of parameters252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—C71.232 (2)N3—C121.290 (3)
O2—C131.340 (2)N3—C81.388 (3)
N2—N1—C1—C2147.2 (2)C12—N3—C8—C9172.8 (2)
C7—N1—C1—C6115.0 (2)C12—N3—C8—C72.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N30.821.842.569 (2)147.6
 

Acknowledgements

The work was supported by Qingdao University of Science and Technology.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationBansal, T., Singh, M., Mishra, G., Talegaonkar, S., Khar, R. K., Jaggi, M. & Mukherjee, R. (2007). J. Chromatogr. B, 859, 261–266.  Web of Science CrossRef CAS Google Scholar
First citationBashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. 37, 1143–1147.  Web of Science CrossRef CAS Google Scholar
First citationBondock, S., Rabie, R., Etman, H. A. & Fadda, A. A. (2008). Eur. J. Med. Chem. 43, 2122–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapel, I. D., Jenner, M., Pinnock, M. H. & Williams, D. C. (1978). Biochem. Pharmacol. 27, 1413–1416.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCollado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, A. C. (2000). Talanta, 52, 909–920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoolen, S. A., Ligor, T., Lieshout, M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103–113.  CrossRef CAS Google Scholar
First citationCukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationCunha, S., Oliveira, S. M., Rodrigues, M. T., Bastos, R. M., Ferrari, J., De Oliveira, C. M. A., Kato, L., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). J. Mol. Struct. 752, 32–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvstropov, A. N., Yavorovskaya, V. E., Vorob, E. S., Khudonogova, Z. P., Gritsenko, L. N., Shmidt, E. V., Medvedeva, S. G., Filimonov, V. D., Prishchep, T. P. & Saratikov, A. S. (1992). Pharm. Chem. J. 26, 426–430.  CrossRef Google Scholar
First citationFarag, A. A. M., El-Shazly, E. A. A., Abdel Rafea, M. & Ibrahim, A. (2009). Sol. Energ. Mat. Sol. C, 93, 1853–1859.  Web of Science CrossRef CAS Google Scholar
First citationKhanduja, K. L., Dogra, S. C., Kaushal, S. & Sharma, R. R. (1984). Biochem. Pharmacol. 33, 449–452.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, o2199–o2200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, o375–o377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, H., Yu, Q. & Hu, R.-X. (2002). Transition Met. Chem. 27, 454–457.  CAS Google Scholar
First citationMadiha, M. A., Rania, A., Moataz, H., Samira, S. & Sanaa, B. (2007). Eur. J. Pharmacol. 569, 222–227.  Web of Science PubMed Google Scholar
First citationPlesch, G., Blahova, M., Kratsmar-Smogrovic, J. & Friebel, C. (1987). Inorg. Chim. Acta, 136, 117–121.  CrossRef CAS Web of Science Google Scholar
First citationRadzikowska, E., Onish, K. & Chojak, E. (1995). Eur. J. Cancer, 31, S225.  CrossRef Google Scholar
First citationRehim, S. S. A. E., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268–273.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Hao, Q., Wei, W., Yu, Z., Lu, L., Wang, X. & Wang, Y. (2009). J. Mol. Struct. 929, 10–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, Y., Hao, Q., Yu, Z., Wei, W., Lu, L. & Wang, X. (2009). Mol. Phys. 107, 223–235.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, Y.-X., Xie, X.-H., Zhang, R., Zhang, L.-F. & Xu, L.-X. (2006). Acta Cryst. E62, o4758–o4760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467–o469.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., Zhang, R., Wang, B.-L., Ding, D.-J. & Liu, S. (2006). Acta Cryst. E62, o4613–o4615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationTuran-Zitouni, G., Sivaci, M., Kilic, F. S. & Erol, K. (2001). Eur. J. Med. Chem. 36, 685–689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWen, P. (2005). Acta Cryst. E61, o2918–o2920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYadav, P. N., Demertzis, M. A., Kovala-Demertzi, D., Skoulika, S. & West, D. X. (2003). Inorg. Chim. Acta, 349, 30–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, Z.-L., Wang, J. & Chi, J.-Y. (2006). Acta Cryst. E62, o1652–o1653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, o801–o803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-L. & Li, Z.-X. (2005). Acta Cryst. E61, o266–o268.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds