metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ-β-hexa­cosa­oxido­octa­molybdato)tetra­kis­[3-(2-pyrid­yl)pyrazole]­dizinc(II)]

aShandong Provincial Key Laboratory of Microbial Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 19 June 2010; accepted 28 June 2010; online 3 July 2010)

In the hydro­thermally prepared title compound, [Mo8Zn2O26(C8H7N3)4]n or {[Zn(C8H7N3)2]2(Mo8O26)}n, the ZnII atom is coordinated by two N,N′-bidentate 3-(2-pyrid­yl)pyrazole ligands and two O atoms from adjacent octa­molybdate polyanions, generating a distorted cis-ZnO2N4 octa­hedral geometry for the divalent metal ion. The complete octa­molbydate unit is generated by crystallographic inversion symmetry. The polyhedral connectivity leads to [100] chains in the crystal and N—H⋯O and N—H⋯(O,O) hydrogen bonds help to consolidate the packing.

Related literature

For background to polyoxidomolybdates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For related structures, see: Artero & Proust (2000[Artero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393—2400.]); Lee et al. (2002[Lee, U., Joo, H.-C. & Cho, M.-A. (2002). Acta Cryst. E58, m599-m601.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo8Zn2O26(C8H7N3)4]

  • Mr = 947.46

  • Triclinic, [P \overline 1]

  • a = 10.0791 (8) Å

  • b = 11.5339 (10) Å

  • c = 11.6078 (10) Å

  • α = 89.007 (1)°

  • β = 74.731 (1)°

  • γ = 74.623 (1)°

  • V = 1253.19 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.97 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.717, Tmax = 0.797

  • 8795 measured reflections

  • 4353 independent reflections

  • 3927 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.058

  • S = 1.00

  • 4353 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.081 (3)
Zn1—N3 2.196 (2)
Zn1—N5 2.065 (2)
Zn1—N6 2.181 (2)
Zn1—O5i 2.104 (2)
Zn1—O13 2.252 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.13 2.835 (3) 139
N4—H4⋯O6 0.86 2.38 3.094 (4) 141
N4—H4⋯O10ii 0.86 2.53 3.097 (3) 124
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, As shown in Figure 1 and 2, the hexa-coordinated zinc cations act as a bridge to link two neighboring octamolybdate polyanions via terminal oxygen atoms, which are further chelated by two 3-(2-pyridyl)pyrazole ligands via four nitrogen atoms. The Zn—O and Zn—N distances are in the range of 2.104 (2)—2.252 (2) and 2.065 (2)—2.196 (2) Å, respectively.

The octamolybdate polyanion (Mo8O26)2- shows a B configuration with a center of symmetry, which can be bisected into two [(/m5-O)(Mo4O12)]2- planar subunits by Mo—O breaking bonds with the related lengths in the range of 2.26–2.39 Å, similar to previously reported isolated clusters (Lee et al., 2002). The [(/m5-O)(Mo4O12)]2- plane could be considered as one Mo atom protrudes outward from the other four Mo constituted planar. There are two types of Mo—-O bonds in octamolybdate polyanion: terminal Mo—O, and bridging /m2-O—Mo, /m3-O—Mo, and /m5-O—Mo bonds. The related bond distances vary from the shortest, 1.690 (2) Å for one of the terminal Mo—O bonds, to the longest 2.389 (2) Å for one of the bonds to the unusual /m5-O atom that sits in the 4Mo plane near the center of each Mo—O moiety.

In addition, it is noteworthy that the multipoint hydrogen-bonding links also exist between the hydrogen atoms from organic amines and the cluster of the surface oxygen atoms from the wave-like chains; this may make a contribution to stabilizing the chain structures, shown in figure 3.

Related literature top

For background to polyoxomolybdates, see: Pope & Müller (1991). For related structures, see: Artero & Proust (2000); Lee et al. (2002).

Experimental top

The synthesis was performed in a 25-ml Teflon-lined stainless steel vessel. MoO3 (1 mmol, 0.144 g), zinc(II) acetate dihydrate (0.2 mmol, 0.044 g), 3-(2-pyridyl)pyrazole (0.35 mmol, 0.05 g), and H2O (14 ml) were mixed and heated to 423 K for three days. Upon cooling, colourless blocks of (I) were recovered by vacuum filtration.

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). The hydrogen atoms bound to N atoms were refined in calculated positions using a riding model with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(C).

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, As shown in Figure 1 and 2, the hexa-coordinated zinc cations act as a bridge to link two neighboring octamolybdate polyanions via terminal oxygen atoms, which are further chelated by two 3-(2-pyridyl)pyrazole ligands via four nitrogen atoms. The Zn—O and Zn—N distances are in the range of 2.104 (2)—2.252 (2) and 2.065 (2)—2.196 (2) Å, respectively.

The octamolybdate polyanion (Mo8O26)2- shows a B configuration with a center of symmetry, which can be bisected into two [(/m5-O)(Mo4O12)]2- planar subunits by Mo—O breaking bonds with the related lengths in the range of 2.26–2.39 Å, similar to previously reported isolated clusters (Lee et al., 2002). The [(/m5-O)(Mo4O12)]2- plane could be considered as one Mo atom protrudes outward from the other four Mo constituted planar. There are two types of Mo—-O bonds in octamolybdate polyanion: terminal Mo—O, and bridging /m2-O—Mo, /m3-O—Mo, and /m5-O—Mo bonds. The related bond distances vary from the shortest, 1.690 (2) Å for one of the terminal Mo—O bonds, to the longest 2.389 (2) Å for one of the bonds to the unusual /m5-O atom that sits in the 4Mo plane near the center of each Mo—O moiety.

In addition, it is noteworthy that the multipoint hydrogen-bonding links also exist between the hydrogen atoms from organic amines and the cluster of the surface oxygen atoms from the wave-like chains; this may make a contribution to stabilizing the chain structures, shown in figure 3.

For background to polyoxomolybdates, see: Pope & Müller (1991). For related structures, see: Artero & Proust (2000); Lee et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I) displayed with N—H···O hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. The chain structure.
Poly[(µ-β-hexacosaoxidooctamolybdato)tetrakis[3- (2-pyridyl)pyrazole]dizinc(II)] top
Crystal data top
[Mo8Zn2O26(C8H7N3)4]Z = 2
Mr = 947.46F(000) = 908
Triclinic, P1Dx = 2.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0791 (8) ÅCell parameters from 6222 reflections
b = 11.5339 (10) Åθ = 2.2–27.4°
c = 11.6078 (10) ŵ = 2.97 mm1
α = 89.007 (1)°T = 296 K
β = 74.731 (1)°Block, colorless
γ = 74.623 (1)°0.12 × 0.10 × 0.08 mm
V = 1253.19 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4353 independent reflections
Radiation source: fine-focus sealed tube3927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.717, Tmax = 0.797k = 1313
8795 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.038P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
4353 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mo8Zn2O26(C8H7N3)4]γ = 74.623 (1)°
Mr = 947.46V = 1253.19 (18) Å3
Triclinic, P1Z = 2
a = 10.0791 (8) ÅMo Kα radiation
b = 11.5339 (10) ŵ = 2.97 mm1
c = 11.6078 (10) ÅT = 296 K
α = 89.007 (1)°0.12 × 0.10 × 0.08 mm
β = 74.731 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4353 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3927 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.797Rint = 0.015
8795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.00Δρmax = 0.50 e Å3
4353 reflectionsΔρmin = 0.46 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0264 (4)0.0590 (3)0.3713 (3)0.0412 (8)
H10.03340.10450.41120.049*
C20.1715 (4)0.0950 (3)0.3361 (3)0.0423 (8)
H20.23050.16890.34710.051*
C30.2132 (3)0.0033 (3)0.2795 (3)0.0308 (7)
C40.3522 (3)0.0215 (3)0.2193 (3)0.0325 (7)
C50.4798 (4)0.0599 (3)0.2184 (4)0.0510 (10)
H50.48220.13050.25870.061*
C60.6048 (4)0.0338 (4)0.1556 (4)0.0607 (11)
H60.69280.08620.15500.073*
C70.5986 (4)0.0683 (3)0.0952 (4)0.0529 (10)
H70.68200.08450.04990.063*
C80.4674 (4)0.1478 (3)0.1015 (3)0.0404 (8)
H80.46360.21860.06130.048*
C90.2980 (4)0.5417 (3)0.0625 (3)0.0411 (8)
H90.34720.60020.05690.049*
C100.2574 (4)0.4981 (3)0.0278 (3)0.0411 (8)
H100.27280.52050.10650.049*
C110.1880 (3)0.4130 (3)0.0236 (3)0.0289 (7)
C120.1196 (3)0.3344 (3)0.0244 (3)0.0281 (7)
C130.1012 (4)0.3425 (3)0.1379 (3)0.0379 (8)
H130.13450.39770.18910.045*
C140.0328 (4)0.2675 (3)0.1741 (3)0.0437 (9)
H140.01760.27200.24990.052*
C150.0133 (4)0.1852 (3)0.0965 (3)0.0445 (9)
H150.05910.13310.11970.053*
C160.0094 (3)0.1815 (3)0.0150 (3)0.0382 (8)
H160.02240.12640.06710.046*
Mo10.19711 (2)0.56897 (2)0.54612 (2)0.02158 (8)
Mo20.39657 (2)0.68604 (2)0.68548 (2)0.02263 (8)
Mo30.50488 (2)0.40073 (2)0.61961 (2)0.01958 (8)
Mo40.30016 (3)0.27733 (2)0.48179 (2)0.02400 (8)
N10.0993 (3)0.0933 (2)0.2815 (2)0.0324 (6)
N20.0148 (3)0.0536 (2)0.3381 (2)0.0381 (7)
H2A0.10230.09530.35100.046*
N30.3455 (3)0.1258 (2)0.1639 (2)0.0305 (6)
N40.2540 (3)0.4845 (2)0.1601 (2)0.0366 (6)
H40.26720.49730.22850.044*
N50.1867 (3)0.4047 (2)0.1388 (2)0.0305 (6)
N60.0758 (3)0.2545 (2)0.0517 (2)0.0297 (6)
O10.2356 (2)0.7884 (2)0.7426 (2)0.0368 (5)
O20.4653 (2)0.64914 (19)0.80341 (19)0.0331 (5)
O30.33613 (19)0.53414 (17)0.67987 (16)0.0213 (4)
O40.32825 (19)0.67595 (16)0.51042 (17)0.0225 (4)
O50.0610 (2)0.65481 (19)0.65921 (19)0.0317 (5)
O60.1412 (2)0.5936 (2)0.42044 (19)0.0339 (5)
O70.17612 (19)0.41424 (17)0.58213 (17)0.0254 (4)
O80.41746 (19)0.44996 (16)0.44765 (16)0.0211 (4)
O90.4158 (2)0.28943 (18)0.62220 (17)0.0266 (5)
O100.5745 (2)0.37582 (19)0.73826 (18)0.0297 (5)
O110.4944 (2)0.21251 (17)0.39605 (18)0.0273 (5)
O120.2475 (2)0.1589 (2)0.5449 (2)0.0420 (6)
O130.2277 (2)0.3041 (2)0.36228 (19)0.0341 (5)
Zn10.13422 (4)0.25600 (3)0.21960 (3)0.02740 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (2)0.044 (2)0.040 (2)0.0261 (17)0.0111 (17)0.0084 (16)
C20.046 (2)0.0324 (18)0.048 (2)0.0101 (16)0.0131 (17)0.0084 (16)
C30.0344 (17)0.0280 (16)0.0300 (17)0.0041 (13)0.0131 (14)0.0023 (13)
C40.0336 (17)0.0262 (16)0.0331 (18)0.0012 (13)0.0078 (14)0.0032 (13)
C50.036 (2)0.040 (2)0.067 (3)0.0012 (16)0.0104 (19)0.0034 (18)
C60.032 (2)0.059 (3)0.083 (3)0.0005 (18)0.012 (2)0.009 (2)
C70.032 (2)0.060 (3)0.060 (3)0.0160 (19)0.0035 (18)0.014 (2)
C80.043 (2)0.0435 (19)0.0363 (19)0.0196 (16)0.0052 (16)0.0066 (16)
C90.0412 (19)0.046 (2)0.042 (2)0.0223 (16)0.0122 (16)0.0092 (17)
C100.046 (2)0.047 (2)0.0305 (18)0.0184 (17)0.0050 (16)0.0082 (16)
C110.0260 (15)0.0356 (17)0.0223 (16)0.0061 (13)0.0043 (13)0.0060 (13)
C120.0264 (15)0.0320 (16)0.0208 (15)0.0024 (13)0.0029 (12)0.0010 (13)
C130.0412 (19)0.047 (2)0.0242 (17)0.0114 (16)0.0073 (15)0.0019 (15)
C140.044 (2)0.060 (2)0.0270 (18)0.0108 (18)0.0121 (16)0.0042 (17)
C150.043 (2)0.057 (2)0.036 (2)0.0182 (17)0.0093 (16)0.0108 (17)
C160.0377 (19)0.0397 (18)0.0362 (19)0.0122 (15)0.0060 (15)0.0000 (15)
Mo10.01351 (13)0.02965 (14)0.02125 (14)0.00523 (10)0.00454 (10)0.00102 (11)
Mo20.01700 (13)0.02952 (14)0.02131 (14)0.00717 (10)0.00387 (10)0.00267 (11)
Mo30.01706 (13)0.02553 (14)0.01692 (14)0.00626 (10)0.00557 (10)0.00432 (10)
Mo40.02013 (14)0.03132 (15)0.02320 (15)0.01142 (11)0.00577 (11)0.00101 (11)
N10.0256 (14)0.0352 (14)0.0321 (15)0.0045 (11)0.0044 (11)0.0072 (12)
N20.0281 (14)0.0484 (17)0.0360 (16)0.0103 (13)0.0057 (12)0.0060 (13)
N30.0287 (14)0.0313 (14)0.0297 (14)0.0063 (11)0.0065 (12)0.0038 (11)
N40.0402 (16)0.0406 (16)0.0350 (16)0.0123 (13)0.0190 (13)0.0053 (13)
N50.0354 (15)0.0327 (14)0.0291 (14)0.0136 (12)0.0142 (12)0.0077 (11)
N60.0308 (14)0.0314 (13)0.0254 (14)0.0067 (11)0.0068 (11)0.0008 (11)
O10.0228 (11)0.0454 (13)0.0374 (13)0.0042 (10)0.0043 (10)0.0099 (11)
O20.0352 (12)0.0417 (13)0.0285 (12)0.0151 (10)0.0138 (10)0.0011 (10)
O30.0159 (9)0.0299 (10)0.0185 (10)0.0075 (8)0.0037 (8)0.0001 (8)
O40.0180 (10)0.0262 (10)0.0225 (10)0.0049 (8)0.0055 (8)0.0011 (8)
O50.0178 (10)0.0401 (12)0.0350 (13)0.0079 (9)0.0027 (9)0.0080 (10)
O60.0283 (12)0.0461 (13)0.0326 (12)0.0124 (10)0.0151 (10)0.0049 (10)
O70.0188 (10)0.0348 (11)0.0227 (11)0.0119 (9)0.0010 (8)0.0010 (9)
O80.0180 (10)0.0270 (10)0.0184 (10)0.0067 (8)0.0045 (8)0.0020 (8)
O90.0264 (11)0.0325 (11)0.0230 (11)0.0107 (9)0.0076 (9)0.0069 (9)
O100.0295 (11)0.0393 (12)0.0229 (11)0.0090 (9)0.0120 (9)0.0058 (9)
O110.0235 (11)0.0266 (10)0.0309 (12)0.0083 (8)0.0042 (9)0.0008 (9)
O120.0392 (13)0.0435 (14)0.0482 (15)0.0243 (11)0.0070 (11)0.0069 (11)
O130.0256 (11)0.0489 (13)0.0283 (12)0.0060 (10)0.0116 (10)0.0073 (10)
Zn10.02716 (19)0.02776 (19)0.02265 (19)0.00265 (14)0.00377 (15)0.00391 (14)
Geometric parameters (Å, º) top
C1—N21.337 (4)Mo1—O71.8795 (19)
C1—C21.359 (5)Mo1—O42.0000 (19)
C1—H10.9300Mo1—O82.2855 (18)
C2—C31.406 (4)Mo1—O32.3153 (18)
C2—H20.9300Mo2—O21.690 (2)
C3—N11.324 (4)Mo2—O11.706 (2)
C3—C41.459 (4)Mo2—O11i1.8892 (19)
C4—N31.348 (4)Mo2—O32.0089 (19)
C4—C51.375 (4)Mo2—O8i2.3154 (18)
C5—C61.384 (5)Mo2—O42.3248 (19)
C5—H50.9300Mo3—O101.6910 (19)
C6—C71.356 (6)Mo3—O91.747 (2)
C6—H60.9300Mo3—O31.9424 (18)
C7—C81.380 (5)Mo3—O4i1.9517 (19)
C7—H70.9300Mo3—O8i2.1294 (18)
C8—N31.337 (4)Mo3—O82.3886 (18)
C8—H80.9300Mo4—O121.682 (2)
C9—N41.334 (4)Mo4—O131.718 (2)
C9—C101.369 (5)Mo4—O111.8985 (19)
C9—H90.9300Mo4—O71.9139 (19)
C10—C111.389 (4)Mo4—O92.2644 (19)
C10—H100.9300N1—N21.354 (3)
C11—N51.336 (4)N2—H2A0.8600
C11—C121.470 (4)N4—N51.340 (3)
C12—N61.344 (4)N4—H40.8600
C12—C131.377 (4)O4—Mo3i1.9517 (19)
C13—C141.371 (5)O5—Zn1ii2.104 (2)
C13—H130.9300O8—Mo3i2.1294 (18)
C14—C151.382 (5)O8—Mo2i2.3154 (18)
C14—H140.9300O11—Mo2i1.8892 (19)
C15—C161.370 (5)Zn1—N12.081 (3)
C15—H150.9300Zn1—N32.196 (2)
C16—N61.342 (4)Zn1—N52.065 (2)
C16—H160.9300Zn1—N62.181 (2)
Mo1—O61.691 (2)Zn1—O5ii2.104 (2)
Mo1—O51.721 (2)Zn1—O132.252 (2)
N2—C1—C2107.6 (3)O8i—Mo2—O472.75 (6)
N2—C1—H1126.2O10—Mo3—O9104.53 (10)
C2—C1—H1126.2O10—Mo3—O3102.49 (9)
C1—C2—C3105.3 (3)O9—Mo3—O396.90 (9)
C1—C2—H2127.3O10—Mo3—O4i100.83 (9)
C3—C2—H2127.3O9—Mo3—O4i96.38 (9)
N1—C3—C2110.1 (3)O3—Mo3—O4i149.23 (8)
N1—C3—C4117.0 (3)O10—Mo3—O8i99.20 (9)
C2—C3—C4132.9 (3)O9—Mo3—O8i156.24 (8)
N3—C4—C5122.3 (3)O3—Mo3—O8i78.72 (7)
N3—C4—C3114.3 (3)O4i—Mo3—O8i77.97 (8)
C5—C4—C3123.4 (3)O10—Mo3—O8174.80 (9)
C4—C5—C6118.1 (4)O9—Mo3—O880.66 (7)
C4—C5—H5121.0O3—Mo3—O876.97 (7)
C6—C5—H5121.0O4i—Mo3—O877.98 (7)
C7—C6—C5119.9 (4)O8i—Mo3—O875.60 (8)
C7—C6—H6120.0O12—Mo4—O13104.85 (11)
C5—C6—H6120.0O12—Mo4—O11104.88 (10)
C6—C7—C8119.3 (4)O13—Mo4—O1198.55 (9)
C6—C7—H7120.3O12—Mo4—O7104.77 (10)
C8—C7—H7120.3O13—Mo4—O797.38 (9)
N3—C8—C7121.7 (3)O11—Mo4—O7141.25 (8)
N3—C8—H8119.2O12—Mo4—O991.45 (9)
C7—C8—H8119.2O13—Mo4—O9163.67 (9)
N4—C9—C10107.2 (3)O11—Mo4—O977.82 (8)
N4—C9—H9126.4O7—Mo4—O977.04 (8)
C10—C9—H9126.4C3—N1—N2105.8 (2)
C9—C10—C11105.1 (3)C3—N1—Zn1117.2 (2)
C9—C10—H10127.5N2—N1—Zn1136.5 (2)
C11—C10—H10127.5C1—N2—N1111.2 (3)
N5—C11—C10110.5 (3)C1—N2—H2A124.4
N5—C11—C12116.9 (3)N1—N2—H2A124.4
C10—C11—C12132.5 (3)C8—N3—C4118.6 (3)
N6—C12—C13122.7 (3)C8—N3—Zn1126.8 (2)
N6—C12—C11114.6 (3)C4—N3—Zn1113.3 (2)
C13—C12—C11122.6 (3)N5—N4—C9111.9 (3)
C14—C13—C12118.6 (3)N5—N4—H4124.1
C14—C13—H13120.7C9—N4—H4124.1
C12—C13—H13120.7C11—N5—N4105.3 (2)
C13—C14—C15119.2 (3)C11—N5—Zn1116.1 (2)
C13—C14—H14120.4N4—N5—Zn1136.35 (19)
C15—C14—H14120.4C12—N6—C16118.0 (3)
C14—C15—C16119.1 (3)C12—N6—Zn1113.7 (2)
C14—C15—H15120.4C16—N6—Zn1128.2 (2)
C16—C15—H15120.4Mo3—O3—Mo2108.99 (8)
N6—C16—C15122.3 (3)Mo3—O3—Mo1110.34 (8)
N6—C16—H16118.8Mo2—O3—Mo1104.40 (8)
C15—C16—H16118.8Mo3i—O4—Mo1108.87 (9)
O6—Mo1—O5105.92 (10)Mo3i—O4—Mo2109.70 (8)
O6—Mo1—O7102.36 (9)Mo1—O4—Mo2104.35 (8)
O5—Mo1—O7100.55 (9)Mo1—O5—Zn1ii167.30 (12)
O6—Mo1—O496.01 (9)Mo1—O7—Mo4119.86 (10)
O5—Mo1—O4100.20 (9)Mo3i—O8—Mo193.40 (7)
O7—Mo1—O4147.19 (8)Mo3i—O8—Mo2i92.63 (7)
O6—Mo1—O893.81 (9)Mo1—O8—Mo2i163.58 (9)
O5—Mo1—O8159.90 (8)Mo3i—O8—Mo3104.40 (8)
O7—Mo1—O878.43 (7)Mo1—O8—Mo397.00 (7)
O4—Mo1—O873.40 (7)Mo2i—O8—Mo396.26 (6)
O6—Mo1—O3163.48 (9)Mo3—O9—Mo4120.70 (9)
O5—Mo1—O387.50 (8)Mo2i—O11—Mo4120.57 (10)
O7—Mo1—O384.12 (7)Mo4—O13—Zn1155.18 (13)
O4—Mo1—O371.70 (7)N5—Zn1—N1172.65 (10)
O8—Mo1—O372.41 (7)N5—Zn1—O5ii98.46 (9)
O2—Mo2—O1105.26 (11)N1—Zn1—O5ii88.41 (9)
O2—Mo2—O11i102.35 (9)N5—Zn1—N676.74 (10)
O1—Mo2—O11i100.69 (10)N1—Zn1—N699.31 (10)
O2—Mo2—O394.91 (9)O5ii—Zn1—N6102.52 (9)
O1—Mo2—O3101.12 (10)N5—Zn1—N398.82 (10)
O11i—Mo2—O3147.40 (8)N1—Zn1—N375.45 (10)
O2—Mo2—O8i94.13 (9)O5ii—Zn1—N3155.52 (9)
O1—Mo2—O8i160.27 (9)N6—Zn1—N398.23 (9)
O11i—Mo2—O8i78.24 (7)N5—Zn1—O1384.54 (9)
O3—Mo2—O8i73.08 (7)N1—Zn1—O1398.92 (9)
O2—Mo2—O4163.06 (9)O5ii—Zn1—O1383.37 (8)
O1—Mo2—O487.52 (9)N6—Zn1—O13160.98 (9)
O11i—Mo2—O485.74 (8)N3—Zn1—O1381.16 (8)
O3—Mo2—O471.34 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.862.132.835 (3)139
N4—H4···O60.862.383.094 (4)141
N4—H4···O10i0.862.533.097 (3)124
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mo8Zn2O26(C8H7N3)4]
Mr947.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.0791 (8), 11.5339 (10), 11.6078 (10)
α, β, γ (°)89.007 (1), 74.731 (1), 74.623 (1)
V3)1253.19 (18)
Z2
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.717, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
8795, 4353, 3927
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.058, 1.00
No. of reflections4353
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.081 (3)Zn1—N62.181 (2)
Zn1—N32.196 (2)Zn1—O5i2.104 (2)
Zn1—N52.065 (2)Zn1—O132.252 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.132.835 (3)139
N4—H4···O60.862.383.094 (4)141
N4—H4···O10ii0.862.533.097 (3)124
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Inter­national Cooperation Program for Excellent Lectures of 2008 by the Shandong Provincial Education Department is gratefully acknowledged.

References

First citationArtero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393—2400.  Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, U., Joo, H.-C. & Cho, M.-A. (2002). Acta Cryst. E58, m599–m601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds