metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4,8,11-Tetra­azonia­cyclo­tetra­decane tetra­chloridocobaltate(II) dichloride

aLaboratoire des Matériaux Utiles, Institut National de Recherche et d'Analyse Physico-chimique, Pole Technologique de Sidi-Thabet, 2020 Tunis, Tunisia, and bLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: dhaouadihassouna@yahoo.fr

(Received 21 June 2010; accepted 25 June 2010; online 3 July 2010)

The asymmetric unit of the title compound, (C10H28N4)[CoCl4]Cl2, contains two half-mol­ecules of the macrocycle, which are both completed by crystallographic inversion symmetry. In the dianion, the Co2+ cation is tetra­hedrally coordinated by four Cl atoms; the Co—Cl bond lengths correlate with the number of hydrogen bonds that the chloride ions accept. The crystal cohesion is supported by electrostatic inter­actions which, together with numerous N—H⋯Cl, N—H⋯(Cl,Cl) and C—H⋯Cl hydrogen bonds, lead to a three-dimensional network.

Related literature

For background to organic–inorganic hybrid networks and their properties, see: Bu et al. (2001[Bu, X. H., Liu, H., Du, M., Wong, K. M. C., Yam, V. W. W. & Shionoya, M. (2001). Inorg. Chem. 40, 4143-4149.]); Mitzi et al. (1999[Mitzi, D. B. (1999). Prog. Inorg. Chem. 1, 48-121.]). For hydrogen-bonding in supra­molecular networks, see: Brammer et al. (2002[Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956-4961.]). For related structures, see: El Glaoui et al. (2009[El Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Open Crystallogr. J. 2, 1-5.]); Jakubas et al. (2005[Jakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Holderna-Natkaniec, K., Zielinski, P. & Galazka, M. (2005). Solid State Sci. 7, 381-390.]); Adamski et al. (2009[Adamski, A., Patroniak, V. & Kubicki, M. (2009). Acta Cryst. E65, m175-m176.]); Boyd & McFadyen (2007[Boyd, S. & McFadyen, W. D. (2007). Polyhedron, 26, 1669-1676.]); Hashizume et al. (1999[Hashizume, D., Takayama, R., Nakayama, K., Ishida, T., Nogami, T., Yasui, M. & Iwasaki, F. (1999). Acta Cryst. C55, 1793-1797.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H28N4)[CoCl4]Cl2

  • Mr = 475.99

  • Triclinic, [P \overline 1]

  • a = 7.4058 (10) Å

  • b = 8.1244 (10) Å

  • c = 17.147 (1) Å

  • α = 84.36 (2)°

  • β = 85.56 (2)°

  • γ = 77.84 (2)°

  • V = 1001.97 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 21712 measured reflections

  • 4375 independent reflections

  • 4023 reflections with I > 2σ(I)

  • Rint = 0.012

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.13

  • 4375 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Co—Cl1 2.2609 (8)
Co—Cl2 2.2950 (9)
Co—Cl3 2.2963 (7)
Co—Cl4 2.3170 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl6 0.90 2.26 3.155 (2) 171
N1—H1B⋯Cl4i 0.90 2.65 3.370 (2) 138
N1—H1B⋯Cl2 0.90 2.75 3.315 (2) 122
N2—H2A⋯Cl6 0.90 2.20 3.090 (2) 170
N2—H2B⋯Cl2ii 0.90 2.51 3.284 (2) 144
N2—H2B⋯Cl4ii 0.90 2.95 3.609 (2) 131
N3—H3A⋯Cl5iii 0.90 2.27 3.129 (2) 160
N3—H3B⋯Cl5i 0.90 2.32 3.132 (2) 151
N4—H4A⋯Cl4 0.90 2.50 3.298 (2) 147
N4—H4A⋯Cl2iv 0.90 2.93 3.508 (2) 123
N4—H4B⋯Cl5 0.90 2.43 3.192 (2) 143
C2—H2C⋯Cl6ii 0.97 2.74 3.589 (3) 147
C6—H6B⋯Cl3v 0.97 2.80 3.758 (3) 169
C10—H10A⋯Cl3v 0.97 2.92 3.820 (3) 155
C3—H3D⋯Cl1vi 0.97 2.74 3.610 (3) 150
C3—H3C⋯Cl6vi 0.97 2.79 3.634 (3) 147
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y, -z+1; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+2, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The rational design and synthesis of organic-inorganic hybrid materials have attracted an increasing interest in recent years not only from a structural point of view, but also due to their potential applications in different areas such as catalysis, medicine, electrical conductivity, magnetism and photochemistry (e.g. Bu et al., 2001).

A large number of transition metal when associated to organic molecule which presents potential sites of the hydrogen bonding interactions, exhibit interesting one- (1-D), two- (2-D), and three-dimensional (3-D) structures. These organic molecules may be present different and interesting properties which can profoundly influence the structures of inorganic component in the resultant hybrid material. Such organic-inorganic hybrid materials can combine appropriate characteristics of each component to produce novel structural types, as well as new properties arising from the interplay of the two components (Mitzi et al., 1999).

The asymmetric unit of the [CoCl4](C10H28N4),2Cl, (I). contains one tetrachlorocobalt anion, one organic cation and two chloride anion as shown in Fig. 1. The cohesion and the stability between these different components are assured by the network hydrogen bonding of type (N—H···Cl). However, the energetic of N—H···Cl—M (M = metal) hydrogen bonds and their possible roles in supramolecular chemistry have only been recently described in details (Brammer et al., 2002). This type of hydrogen bond is also observed in other hybrid compounds such as Bis(5-Chloro-2,4-Dimethoxyanilinium) Tetrachlorozincate Trihydrate (El Glaoui et al., 2009) and pyrrolidinium hexachloroantimonate (V) (Jakubas et al., 2005).

The Co2+ entity is tetrahedrally coordinated to four chloride atoms as shown in Figure 2. The distortion from the ideal geometry is small. This situation is also observed in others compounds which contain CoCl42- entity as an anion (Adamski et al., 2009). Examination of the CoCl42- geometry shows two types of Co—Cl distances. The largest ones 2.3170 (8) Å, 2.2963 (7) Å and 2.2950 (9) Å, while the smallest one is 2.2609 (8) Å. The average values of the Co—Cl distances and Cl—Co—Cl angles are 2.2923 Å and 109.52°, respectively. These geometrical features have also been noticed in others crystal structure (Boyd et al., 2007); (Hashizume et al., 1999).

The differences in the Co—Cl bond lengths correlate with the number of hydrogen bonds accepted by the Cl atom: Co—Cl4 bond is the longest (2.3170 (8) Å); Cl4 accepts three H-bonds, Co—Cl2 and Co—Cl3 have similar, intermediate lengths, and Cl1, which accepts only C—H···Cl hydrogen bond, makes the shortest Co—Cl bond.

The four N atoms of the macrocyclic ring are protonated, which provide the cations as formula (C10H28N4)4+, for neutralize the negative charge of the anionic part. Crystal cohesion and stability are supported by electrostatic interactions which, together with N—H···Cl and C—H···Cl hydrogen bonds, build up a three-dimensional network.

Related literature top

For background to organic–inorganic hybrid networks and their properties, see: Bu et al. (2001); Mitzi et al. (1999). For hydrogen-bonding in supramolecular networks, see: Brammer et al. (2002). For related structures, see: El Glaoui et al. (2009); Jakubas et al. (2005); Adamski et al. (2009); Boyd & McFadyen (2007); Hashizume et al. (1999).

For related literature, see: Farrugia (1998); Harms & Wocadlo (1996).

Experimental top

The hexahydrate of chloride cobalt (II) CoCl2.6H2O (3.1 mmol) was added to an aqueous solution containing a stochiometric ratio of C10H24N4 (1,4,8,11-tetraazacyclotetradecane) (3.1 mmol) under continuous stirring. A pink precipitate was formed, which was completely dissolved by adding an aqueous solution of HCl until it disappeared. The obtained solution was slowly evaporated at room temperature for several days until the formation of blue prisms of (I). The synthesis is reproducible and crystals obtained in this way are stable for a long time under normal conditions of temperature and humidity.

Structure description top

The rational design and synthesis of organic-inorganic hybrid materials have attracted an increasing interest in recent years not only from a structural point of view, but also due to their potential applications in different areas such as catalysis, medicine, electrical conductivity, magnetism and photochemistry (e.g. Bu et al., 2001).

A large number of transition metal when associated to organic molecule which presents potential sites of the hydrogen bonding interactions, exhibit interesting one- (1-D), two- (2-D), and three-dimensional (3-D) structures. These organic molecules may be present different and interesting properties which can profoundly influence the structures of inorganic component in the resultant hybrid material. Such organic-inorganic hybrid materials can combine appropriate characteristics of each component to produce novel structural types, as well as new properties arising from the interplay of the two components (Mitzi et al., 1999).

The asymmetric unit of the [CoCl4](C10H28N4),2Cl, (I). contains one tetrachlorocobalt anion, one organic cation and two chloride anion as shown in Fig. 1. The cohesion and the stability between these different components are assured by the network hydrogen bonding of type (N—H···Cl). However, the energetic of N—H···Cl—M (M = metal) hydrogen bonds and their possible roles in supramolecular chemistry have only been recently described in details (Brammer et al., 2002). This type of hydrogen bond is also observed in other hybrid compounds such as Bis(5-Chloro-2,4-Dimethoxyanilinium) Tetrachlorozincate Trihydrate (El Glaoui et al., 2009) and pyrrolidinium hexachloroantimonate (V) (Jakubas et al., 2005).

The Co2+ entity is tetrahedrally coordinated to four chloride atoms as shown in Figure 2. The distortion from the ideal geometry is small. This situation is also observed in others compounds which contain CoCl42- entity as an anion (Adamski et al., 2009). Examination of the CoCl42- geometry shows two types of Co—Cl distances. The largest ones 2.3170 (8) Å, 2.2963 (7) Å and 2.2950 (9) Å, while the smallest one is 2.2609 (8) Å. The average values of the Co—Cl distances and Cl—Co—Cl angles are 2.2923 Å and 109.52°, respectively. These geometrical features have also been noticed in others crystal structure (Boyd et al., 2007); (Hashizume et al., 1999).

The differences in the Co—Cl bond lengths correlate with the number of hydrogen bonds accepted by the Cl atom: Co—Cl4 bond is the longest (2.3170 (8) Å); Cl4 accepts three H-bonds, Co—Cl2 and Co—Cl3 have similar, intermediate lengths, and Cl1, which accepts only C—H···Cl hydrogen bond, makes the shortest Co—Cl bond.

The four N atoms of the macrocyclic ring are protonated, which provide the cations as formula (C10H28N4)4+, for neutralize the negative charge of the anionic part. Crystal cohesion and stability are supported by electrostatic interactions which, together with N—H···Cl and C—H···Cl hydrogen bonds, build up a three-dimensional network.

For background to organic–inorganic hybrid networks and their properties, see: Bu et al. (2001); Mitzi et al. (1999). For hydrogen-bonding in supramolecular networks, see: Brammer et al. (2002). For related structures, see: El Glaoui et al. (2009); Jakubas et al. (2005); Adamski et al. (2009); Boyd & McFadyen (2007); Hashizume et al. (1999).

For related literature, see: Farrugia (1998); Harms & Wocadlo (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I): displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) (-x + 1, -y + 1, -z + 1))(ii) (x, -1 + y, z)].
[Figure 2] Fig. 2. Projection of (I) along the a axis.
1,4,8,11-Tetraazoniacyclotetradecane tetrachloridocobaltate(II) dichloride top
Crystal data top
(C10H28N4)[CoCl4]Cl2Z = 2
Mr = 475.99F(000) = 490
Triclinic, P1Dx = 1.578 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4058 (10) ÅCell parameters from 25 reflections
b = 8.1244 (10) Åθ = 12–15°
c = 17.147 (1) ŵ = 1.66 mm1
α = 84.36 (2)°T = 293 K
β = 85.56 (2)°Prism, blue
γ = 77.84 (2)°0.20 × 0.15 × 0.10 mm
V = 1001.97 (19) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.4°
Graphite monochromatorh = 92
non–profiled ω/2θ scansk = 1010
21712 measured reflectionsl = 2121
4375 independent reflections2 standard reflections every 120 min
4023 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.0784P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4375 reflectionsΔρmax = 0.99 e Å3
191 parametersΔρmin = 0.70 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0098 (15)
Crystal data top
(C10H28N4)[CoCl4]Cl2γ = 77.84 (2)°
Mr = 475.99V = 1001.97 (19) Å3
Triclinic, P1Z = 2
a = 7.4058 (10) ÅMo Kα radiation
b = 8.1244 (10) ŵ = 1.66 mm1
c = 17.147 (1) ÅT = 293 K
α = 84.36 (2)°0.20 × 0.15 × 0.10 mm
β = 85.56 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
21712 measured reflections2 standard reflections every 120 min
4375 independent reflections intensity decay: 1%
4023 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.13Δρmax = 0.99 e Å3
4375 reflectionsΔρmin = 0.70 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.70021 (4)0.68008 (4)0.739869 (18)0.02545 (12)
Cl10.59983 (10)0.94777 (8)0.77340 (4)0.03784 (17)
Cl20.98382 (9)0.53726 (8)0.77981 (4)0.03170 (15)
Cl30.72293 (9)0.69599 (9)0.60513 (3)0.03302 (16)
Cl40.49963 (9)0.51312 (8)0.79699 (4)0.03371 (16)
Cl50.13290 (9)0.05084 (8)0.62097 (4)0.03219 (15)
Cl60.79324 (9)0.72834 (9)0.98838 (4)0.03847 (17)
N40.3477 (3)0.3336 (3)0.65786 (12)0.0285 (4)
H4A0.33850.38780.70180.034*
H4B0.30430.23830.67050.034*
N11.1540 (3)0.7804 (3)0.88701 (12)0.0287 (4)
H1A1.04610.77810.91470.034*
H1B1.19480.67810.86880.034*
N21.1506 (3)0.7095 (2)1.07369 (12)0.0260 (4)
H2A1.04760.70141.05100.031*
H2B1.17080.62631.11260.031*
N30.7691 (3)0.1442 (3)0.53021 (13)0.0288 (4)
H3A0.78010.07090.49320.035*
H3B0.84700.09550.56750.035*
C50.8823 (4)1.0892 (3)1.18244 (15)0.0317 (5)
H5A0.77091.09901.21680.038*
H5B0.97851.11491.21170.038*
C70.5487 (3)0.2847 (3)0.63236 (14)0.0266 (5)
H7A0.61800.22860.67660.032*
H7B0.59580.38550.61420.032*
C21.3114 (3)0.6829 (3)1.01371 (15)0.0293 (5)
H2C1.32740.57000.99680.035*
H2D1.42270.68901.03870.035*
C80.2242 (3)0.4440 (3)0.59907 (15)0.0282 (5)
H8A0.09900.46990.62240.034*
H8B0.22230.38190.55370.034*
C11.2914 (3)0.8090 (3)0.94166 (14)0.0276 (5)
H1C1.25310.92230.95850.033*
H1D1.41110.80160.91340.033*
C40.9406 (4)0.9072 (3)1.16103 (15)0.0308 (5)
H4C0.95870.83281.20890.037*
H4D0.84170.87871.13450.037*
C60.5756 (3)0.1671 (3)0.56660 (15)0.0274 (5)
H6A0.55080.05820.58740.033*
H6B0.48840.21390.52680.033*
C100.1664 (3)0.7006 (3)0.50678 (16)0.0297 (5)
H10A0.16740.62410.46670.036*
H10B0.03990.73330.52790.036*
C31.1177 (4)0.8759 (3)1.10836 (17)0.0336 (6)
H3C1.11040.96561.06630.040*
H3D1.22180.87941.13870.040*
C90.2862 (4)0.6085 (3)0.57213 (18)0.0371 (6)
H9A0.27390.67840.61570.045*
H9B0.41510.58490.55320.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02721 (19)0.02537 (18)0.02405 (18)0.00576 (13)0.00061 (12)0.00424 (12)
Cl10.0455 (4)0.0261 (3)0.0424 (4)0.0072 (3)0.0007 (3)0.0074 (3)
Cl20.0307 (3)0.0305 (3)0.0328 (3)0.0039 (2)0.0015 (2)0.0029 (2)
Cl30.0324 (3)0.0433 (4)0.0248 (3)0.0102 (3)0.0001 (2)0.0059 (2)
Cl40.0350 (3)0.0343 (3)0.0348 (3)0.0141 (3)0.0055 (2)0.0087 (2)
Cl50.0361 (3)0.0301 (3)0.0321 (3)0.0084 (2)0.0056 (2)0.0048 (2)
Cl60.0296 (3)0.0405 (4)0.0482 (4)0.0144 (3)0.0001 (3)0.0041 (3)
N40.0340 (11)0.0270 (10)0.0257 (10)0.0094 (9)0.0056 (8)0.0071 (8)
N10.0315 (11)0.0259 (10)0.0297 (10)0.0072 (8)0.0032 (8)0.0080 (8)
N20.0289 (10)0.0208 (9)0.0271 (10)0.0036 (8)0.0004 (8)0.0001 (8)
N30.0262 (10)0.0248 (10)0.0340 (11)0.0006 (8)0.0022 (8)0.0060 (8)
C50.0376 (14)0.0331 (13)0.0241 (11)0.0065 (11)0.0034 (10)0.0066 (10)
C70.0286 (12)0.0254 (11)0.0263 (11)0.0059 (9)0.0027 (9)0.0030 (9)
C20.0253 (11)0.0258 (11)0.0351 (13)0.0011 (9)0.0020 (10)0.0062 (10)
C80.0258 (11)0.0281 (12)0.0310 (12)0.0055 (9)0.0033 (9)0.0076 (9)
C10.0256 (11)0.0301 (12)0.0288 (12)0.0094 (9)0.0040 (9)0.0067 (9)
C40.0355 (13)0.0282 (12)0.0280 (12)0.0071 (10)0.0053 (10)0.0030 (10)
C60.0262 (11)0.0235 (11)0.0328 (12)0.0051 (9)0.0007 (9)0.0054 (9)
C100.0235 (11)0.0314 (12)0.0347 (13)0.0064 (9)0.0006 (10)0.0045 (10)
C30.0334 (13)0.0319 (13)0.0383 (14)0.0100 (11)0.0063 (11)0.0151 (11)
C90.0392 (14)0.0281 (13)0.0475 (16)0.0122 (11)0.0130 (12)0.0003 (11)
Geometric parameters (Å, º) top
Co—Cl12.2609 (8)C7—C61.523 (3)
Co—Cl22.2950 (9)C7—H7A0.9700
Co—Cl32.2963 (7)C7—H7B0.9700
Co—Cl42.3170 (8)C2—C11.521 (4)
N4—C71.500 (3)C2—H2C0.9700
N4—C81.509 (3)C2—H2D0.9700
N4—H4A0.9000C8—C91.522 (4)
N4—H4B0.9000C8—H8A0.9700
N1—C11.503 (3)C8—H8B0.9700
N1—C5i1.515 (3)C1—H1C0.9700
N1—H1A0.9000C1—H1D0.9700
N1—H1B0.9000C4—C31.523 (4)
N2—C31.495 (3)C4—H4C0.9700
N2—C21.506 (3)C4—H4D0.9700
N2—H2A0.9000C6—H6A0.9700
N2—H2B0.9000C6—H6B0.9700
N3—C61.500 (3)C10—N3ii1.506 (3)
N3—C10ii1.506 (3)C10—C91.521 (4)
N3—H3A0.9000C10—H10A0.9700
N3—H3B0.9000C10—H10B0.9700
C5—N1i1.515 (3)C3—H3C0.9700
C5—C41.524 (4)C3—H3D0.9700
C5—H5A0.9700C9—H9A0.9700
C5—H5B0.9700C9—H9B0.9700
Cl1—Co—Cl2117.71 (3)N2—C2—H2D108.6
Cl1—Co—Cl3106.35 (3)C1—C2—H2D108.6
Cl2—Co—Cl3106.05 (3)H2C—C2—H2D107.6
Cl1—Co—Cl4109.41 (3)N4—C8—C9113.0 (2)
Cl2—Co—Cl4103.43 (3)N4—C8—H8A109.0
Cl3—Co—Cl4114.17 (3)C9—C8—H8A109.0
C7—N4—C8116.34 (19)N4—C8—H8B109.0
C7—N4—H4A108.2C9—C8—H8B109.0
C8—N4—H4A108.2H8A—C8—H8B107.8
C7—N4—H4B108.2N1—C1—C2113.2 (2)
C8—N4—H4B108.2N1—C1—H1C108.9
H4A—N4—H4B107.4C2—C1—H1C108.9
C1—N1—C5i115.3 (2)N1—C1—H1D108.9
C1—N1—H1A108.5C2—C1—H1D108.9
C5i—N1—H1A108.5H1C—C1—H1D107.8
C1—N1—H1B108.5C3—C4—C5113.2 (2)
C5i—N1—H1B108.5C3—C4—H4C108.9
H1A—N1—H1B107.5C5—C4—H4C108.9
C3—N2—C2114.07 (19)C3—C4—H4D108.9
C3—N2—H2A108.7C5—C4—H4D108.9
C2—N2—H2A108.7H4C—C4—H4D107.7
C3—N2—H2B108.7N3—C6—C7110.9 (2)
C2—N2—H2B108.7N3—C6—H6A109.5
H2A—N2—H2B107.6C7—C6—H6A109.5
C6—N3—C10ii117.64 (19)N3—C6—H6B109.5
C6—N3—H3A107.9C7—C6—H6B109.5
C10ii—N3—H3A107.9H6A—C6—H6B108.1
C6—N3—H3B107.9N3ii—C10—C9112.8 (2)
C10ii—N3—H3B107.9N3ii—C10—H10A109.0
H3A—N3—H3B107.2C9—C10—H10A109.0
N1i—C5—C4114.7 (2)N3ii—C10—H10B109.0
N1i—C5—H5A108.6C9—C10—H10B109.0
C4—C5—H5A108.6H10A—C10—H10B107.8
N1i—C5—H5B108.6N2—C3—C4112.5 (2)
C4—C5—H5B108.6N2—C3—H3C109.1
H5A—C5—H5B107.6C4—C3—H3C109.1
N4—C7—C6110.50 (19)N2—C3—H3D109.1
N4—C7—H7A109.6C4—C3—H3D109.1
C6—C7—H7A109.6H3C—C3—H3D107.8
N4—C7—H7B109.6C10—C9—C8108.7 (2)
C6—C7—H7B109.6C10—C9—H9A109.9
H7A—C7—H7B108.1C8—C9—H9A109.9
N2—C2—C1114.7 (2)C10—C9—H9B109.9
N2—C2—H2C108.6C8—C9—H9B109.9
C1—C2—H2C108.6H9A—C9—H9B108.3
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl60.902.263.155 (2)171
N1—H1B···Cl4iii0.902.653.370 (2)138
N1—H1B···Cl20.902.753.315 (2)122
N2—H2A···Cl60.902.203.090 (2)170
N2—H2B···Cl2iv0.902.513.284 (2)144
N2—H2B···Cl4iv0.902.953.609 (2)131
N3—H3A···Cl5v0.902.273.129 (2)160
N3—H3B···Cl5iii0.902.323.132 (2)151
N4—H4A···Cl40.902.503.298 (2)147
N4—H4A···Cl2vi0.902.933.508 (2)123
N4—H4B···Cl50.902.433.192 (2)143
C2—H2C···Cl6iv0.972.743.589 (3)147
C6—H6B···Cl3ii0.972.803.758 (3)169
C10—H10A···Cl3ii0.972.923.820 (3)155
C3—H3D···Cl1i0.972.743.610 (3)150
C3—H3C···Cl6i0.972.793.634 (3)147
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+2; (v) x+1, y, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula(C10H28N4)[CoCl4]Cl2
Mr475.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4058 (10), 8.1244 (10), 17.147 (1)
α, β, γ (°)84.36 (2), 85.56 (2), 77.84 (2)
V3)1001.97 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21712, 4375, 4023
Rint0.012
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.13
No. of reflections4375
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.70

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—Cl12.2609 (8)Co—Cl32.2963 (7)
Co—Cl22.2950 (9)Co—Cl42.3170 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl60.902.263.155 (2)171
N1—H1B···Cl4i0.902.653.370 (2)138
N1—H1B···Cl20.902.753.315 (2)122
N2—H2A···Cl60.902.203.090 (2)170
N2—H2B···Cl2ii0.902.513.284 (2)144
N2—H2B···Cl4ii0.902.953.609 (2)131
N3—H3A···Cl5iii0.902.273.129 (2)160
N3—H3B···Cl5i0.902.323.132 (2)151
N4—H4A···Cl40.902.503.298 (2)147
N4—H4A···Cl2iv0.902.933.508 (2)123
N4—H4B···Cl50.902.433.192 (2)143
C2—H2C···Cl6ii0.972.743.589 (3)147
C6—H6B···Cl3v0.972.803.758 (3)169
C10—H10A···Cl3v0.972.923.820 (3)155
C3—H3D···Cl1vi0.972.743.610 (3)150
C3—H3C···Cl6vi0.972.793.634 (3)147
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y, z+1; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+2, y+2, z+2.
 

References

First citationAdamski, A., Patroniak, V. & Kubicki, M. (2009). Acta Cryst. E65, m175–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoyd, S. & McFadyen, W. D. (2007). Polyhedron, 26, 1669–1676.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBu, X. H., Liu, H., Du, M., Wong, K. M. C., Yam, V. W. W. & Shionoya, M. (2001). Inorg. Chem. 40, 4143–4149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEl Glaoui, M., Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2009). Open Crystallogr. J. 2, 1–5.  CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHashizume, D., Takayama, R., Nakayama, K., Ishida, T., Nogami, T., Yasui, M. & Iwasaki, F. (1999). Acta Cryst. C55, 1793–1797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Holderna-Natkaniec, K., Zielinski, P. & Galazka, M. (2005). Solid State Sci. 7, 381–390.  Web of Science CSD CrossRef CAS Google Scholar
First citationMitzi, D. B. (1999). Prog. Inorg. Chem. 1, 48–121.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds