organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­phen­yl)-6-(pyrazol-1-yl)pyridazin-3-amine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, Applied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and eInstituto de Quimica, Universidade Estadual de Londrina, Londrina, Pr., Brazil
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 21 June 2010; accepted 24 June 2010; online 3 July 2010)

In the title compound, C14H13N5, the pyrazole ring is disordered over two orientations in a 0.571 (10):0.429 (10) ratio and the dihedral angle between the pyridazine ring and the benzene ring is 28.07 (10)°. In the crystal, pairs of N—H⋯N and C—H⋯N hydrogen bonds link the mol­ecules into dimers, with the aid of a crystallographic twofold axis. The packing is consolidated by further C—H⋯N bonds and weak C—H⋯π inter­actions.

Related literature

For related structures, see: Ather et al. (2009[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.], 2010a[Ather, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295.],b[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327.],c[Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2016.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N5

  • Mr = 251.29

  • Monoclinic, C 2/c

  • a = 31.8677 (17) Å

  • b = 7.9408 (5) Å

  • c = 10.8446 (7) Å

  • β = 109.715 (3)°

  • V = 2583.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 9293 measured reflections

  • 2336 independent reflections

  • 1384 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.176

  • S = 1.03

  • 2336 reflections

  • 156 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N4/N5B/C12B–C14B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.12 2.982 (3) 178
C6—H6⋯N3i 0.93 2.62 3.498 (4) 157
C14B—H14B⋯N5Bii 0.93 2.47 3.357 (11) 160
C5—H5⋯Cg1iii 0.93 2.99 3.527 (5) 118
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to pyrazolylpyridazine derivatives (Ather et al., 2009, 2010a, 2010b, 2010c), the title compound (I, Fig. 1) is being reported here.

The title compound is reaction product of 3-chloro-6-(1H-pyrazol-1-yl)pyridazine and 4-toluidine. There are three cyclic rings in the final product. In (I), the pyrazole ring except adjoining N-atom and H-atoms of the only methyl group are disordered over two set of sites with occupancy ratio of 0.571 (10):0.429 (10). The majority group A (N4/N5B/C12B/C13B/C14B), the pyridazine ring B (C8—C11/N3/N2) and the 4-toludine group C (N1/C1—C7) are planar with r. m. s. deviations of 0.0431, 0.0175 and 0.0153 Å respectively. The miniority disordered group D (N4/N5A/C12A/C13A/C14A) is also planar with r. m. s. deviation of 0.0555 Å. The dihedral angle between A/B, A/C and B/C is 6.46 (24)°, 32.15 (28)° and 28.07 (10)° respectively. The dihedral angle between the disordered groups A/D is 17.72 (34)°. There exist intermolecular H-bondings of N—H···N and C—H···N types (Table 1). The molecules are stabilized in the form of dimers. In dimers, one ring motif of R22(8) and two ring motifs of R22(7) types (Bernstein et al., 1995) are present (Fig. 2). C—H···π interaction (Table 1) also play role in stabilizing the molecules.

Related literature top

For related structures, see: Ather et al. (2009, 2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-Chloro-6-(1H-pyrazol-1-yl)pyridazine (1.68 g, 9.33 mmol) and 4-toluidine (1 g, 9.34 mmol) were refluxed in dimethylformamide (DMF) for 2 h. The reaction mixture was concentrated under vacuum and poured in cold water. The precipitates obtained were filtered, washed with distilled water and dried to give 74.0% yield. The product obtained was purified by column chromatography and recrystallized in ethanol to afford light brown needles of title compound (I).

Refinement top

The bond distances, bond angles and thermal elipsoids present in the pyrazol ring showed that there is disorder. Similarly difference Fourier map showed that H-atoms of methyl are also disordered. For the disordered heavy atoms the bond distances and bond angles are best fitted according to the known structures (Ather et al., 2009, 2010a,b,c). The disordered atoms were refined using equal anisotropic thermal parameters.

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

In continuation to pyrazolylpyridazine derivatives (Ather et al., 2009, 2010a, 2010b, 2010c), the title compound (I, Fig. 1) is being reported here.

The title compound is reaction product of 3-chloro-6-(1H-pyrazol-1-yl)pyridazine and 4-toluidine. There are three cyclic rings in the final product. In (I), the pyrazole ring except adjoining N-atom and H-atoms of the only methyl group are disordered over two set of sites with occupancy ratio of 0.571 (10):0.429 (10). The majority group A (N4/N5B/C12B/C13B/C14B), the pyridazine ring B (C8—C11/N3/N2) and the 4-toludine group C (N1/C1—C7) are planar with r. m. s. deviations of 0.0431, 0.0175 and 0.0153 Å respectively. The miniority disordered group D (N4/N5A/C12A/C13A/C14A) is also planar with r. m. s. deviation of 0.0555 Å. The dihedral angle between A/B, A/C and B/C is 6.46 (24)°, 32.15 (28)° and 28.07 (10)° respectively. The dihedral angle between the disordered groups A/D is 17.72 (34)°. There exist intermolecular H-bondings of N—H···N and C—H···N types (Table 1). The molecules are stabilized in the form of dimers. In dimers, one ring motif of R22(8) and two ring motifs of R22(7) types (Bernstein et al., 1995) are present (Fig. 2). C—H···π interaction (Table 1) also play role in stabilizing the molecules.

For related structures, see: Ather et al. (2009, 2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) showing the major orientation of the pyrazole ring with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of (I) showing the minor orientation of the pyrazole ring with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Packing diagram of (I), showing that the dimers are formed with ring motifs.
N-(4-Methylphenyl)-6-(pyrazol-1-yl)pyridazin-3-amine top
Crystal data top
C14H13N5F(000) = 1056
Mr = 251.29Dx = 1.292 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1384 reflections
a = 31.8677 (17) Åθ = 2.7–25.2°
b = 7.9408 (5) ŵ = 0.08 mm1
c = 10.8446 (7) ÅT = 296 K
β = 109.715 (3)°Needle, light brown
V = 2583.4 (3) Å30.32 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2336 independent reflections
Radiation source: fine-focus sealed tube1384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 7.5 pixels mm-1θmax = 25.2°, θmin = 2.7°
ω scansh = 3838
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.982, Tmax = 0.988l = 1113
9293 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0773P)2 + 1.8092P]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.40 e Å3
11 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H13N5V = 2583.4 (3) Å3
Mr = 251.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.8677 (17) ŵ = 0.08 mm1
b = 7.9408 (5) ÅT = 296 K
c = 10.8446 (7) Å0.32 × 0.18 × 0.16 mm
β = 109.715 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1384 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.059
9293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06011 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
2336 reflectionsΔρmin = 0.33 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.01706 (7)0.2747 (3)0.5655 (2)0.0510 (9)
N20.04995 (8)0.3448 (3)0.7127 (2)0.0510 (10)
N30.09382 (8)0.3783 (4)0.7500 (2)0.0524 (10)
N40.15970 (9)0.4068 (4)0.7102 (3)0.0707 (8)
N5B0.18195 (19)0.4362 (12)0.6217 (6)0.0707 (8)0.571 (10)
C10.05015 (9)0.2122 (4)0.4533 (3)0.0442 (10)
C20.04181 (10)0.1187 (4)0.3561 (3)0.0505 (11)
C30.07680 (10)0.0626 (4)0.2491 (3)0.0530 (11)
C40.12061 (10)0.0918 (4)0.2371 (3)0.0549 (11)
C50.12852 (10)0.1783 (5)0.3377 (3)0.0559 (13)
C60.09415 (9)0.2382 (4)0.4439 (3)0.0509 (11)
C70.15858 (7)0.0306 (5)0.1201 (2)0.0777 (14)
C80.02676 (6)0.3091 (3)0.58716 (18)0.0442 (10)
C90.04727 (6)0.3151 (3)0.49129 (18)0.0533 (11)
C100.09141 (10)0.3458 (4)0.5291 (3)0.0572 (13)
C110.11362 (9)0.3742 (4)0.6618 (3)0.0502 (11)
C12B0.2222 (2)0.4805 (14)0.6947 (7)0.0707 (8)0.571 (10)
C13B0.2269 (2)0.4969 (12)0.8208 (8)0.0707 (8)0.571 (10)
C14B0.1867 (3)0.4636 (14)0.8260 (9)0.0707 (8)0.571 (10)
C13A0.2274 (3)0.4340 (16)0.8474 (10)0.0707 (8)0.429 (10)
C14A0.1844 (4)0.4271 (19)0.8420 (11)0.0707 (8)0.429 (10)
N5A0.1847 (3)0.3606 (15)0.6367 (9)0.0707 (8)0.429 (10)
C12A0.2262 (3)0.3897 (18)0.7145 (9)0.0707 (8)0.429 (10)
H30.070560.003360.183330.0638*
H7D0.162310.105270.047530.1168*0.571 (10)
H50.157780.196570.333650.0670*
H60.100530.296600.509780.0610*
H90.030740.298200.403410.0639*
H100.106410.347810.468970.0688*
H12B0.245300.498670.661810.0847*0.571 (10)
H13B0.252490.525370.889740.0847*0.571 (10)
H14B0.178430.477640.899860.0847*0.571 (10)
H7E0.185510.028400.141200.1168*0.571 (10)
H7F0.152080.080700.097090.1168*0.571 (10)
H10.025830.294290.630890.0611*
H20.012620.093670.362740.0605*
H7A0.172270.065430.144650.1168*0.429 (10)
H7B0.147400.000410.051420.1168*0.429 (10)
H7C0.180230.118820.089760.1168*0.429 (10)
H12A0.251100.383070.688550.0847*0.429 (10)
H13A0.252310.460820.919290.0847*0.429 (10)
H14A0.173660.434410.911630.0847*0.429 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0412 (13)0.073 (2)0.0373 (15)0.0006 (13)0.0111 (11)0.0051 (13)
N20.0433 (14)0.068 (2)0.0398 (15)0.0029 (13)0.0117 (11)0.0001 (12)
N30.0446 (14)0.070 (2)0.0410 (15)0.0049 (13)0.0122 (12)0.0027 (13)
N40.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
N5B0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
C10.0422 (16)0.052 (2)0.0352 (16)0.0011 (14)0.0090 (13)0.0037 (14)
C20.0428 (16)0.060 (2)0.0476 (19)0.0018 (15)0.0137 (14)0.0025 (16)
C30.057 (2)0.060 (2)0.0432 (18)0.0024 (16)0.0186 (15)0.0079 (16)
C40.0505 (18)0.066 (2)0.0430 (19)0.0077 (16)0.0088 (15)0.0011 (16)
C50.0421 (17)0.071 (3)0.054 (2)0.0001 (16)0.0155 (15)0.0004 (17)
C60.0459 (17)0.066 (2)0.0407 (18)0.0012 (16)0.0145 (14)0.0004 (15)
C70.057 (2)0.101 (3)0.066 (2)0.013 (2)0.0088 (18)0.019 (2)
C80.0447 (16)0.047 (2)0.0388 (17)0.0043 (14)0.0112 (13)0.0033 (14)
C90.0527 (18)0.071 (2)0.0351 (17)0.0060 (16)0.0133 (14)0.0021 (15)
C100.0534 (19)0.076 (3)0.0466 (19)0.0070 (17)0.0226 (15)0.0046 (17)
C110.0452 (17)0.064 (2)0.0416 (18)0.0003 (15)0.0148 (14)0.0035 (16)
C12B0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
C13B0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
C14B0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
C13A0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
C14A0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
N5A0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
C12A0.0481 (9)0.106 (2)0.0581 (12)0.0103 (12)0.0181 (8)0.0075 (13)
Geometric parameters (Å, º) top
N1—C11.405 (4)C12A—C13A1.472 (14)
N1—C81.363 (3)C12B—C13B1.331 (11)
N2—N31.344 (4)C13A—C14A1.353 (17)
N2—C81.342 (3)C13B—C14B1.328 (12)
N3—C111.312 (4)C2—H20.9300
N4—N5B1.392 (7)C3—H30.9300
N4—C111.407 (4)C5—H50.9300
N4—C14B1.339 (10)C6—H60.9300
N4—N5A1.354 (10)C7—H7D0.9600
N4—C14A1.389 (12)C7—H7E0.9600
N5A—C12A1.327 (14)C7—H7F0.9600
N5B—C12B1.308 (10)C7—H7A0.9600
N1—H10.8600C7—H7B0.9600
C1—C61.387 (4)C7—H7C0.9600
C1—C21.386 (4)C9—H90.9300
C2—C31.384 (4)C10—H100.9300
C3—C41.377 (5)C12A—H12A0.9300
C4—C51.382 (5)C12B—H12B0.9300
C4—C71.508 (4)C13A—H13A0.9300
C5—C61.379 (4)C13B—H13B0.9300
C8—C91.403 (3)C14A—H14A0.9300
C9—C101.348 (4)C14B—H14B0.9300
C10—C111.391 (4)
C1—N1—C8130.3 (2)C1—C2—H2120.00
N3—N2—C8120.5 (2)C3—C2—H2120.00
N2—N3—C11118.9 (2)C2—C3—H3119.00
N5B—N4—C11119.0 (4)C4—C3—H3119.00
N5B—N4—C14B105.9 (6)C4—C5—H5119.00
C11—N4—C14B132.2 (5)C6—C5—H5119.00
N5A—N4—C11118.6 (5)C1—C6—H6120.00
C11—N4—C14A124.3 (6)C5—C6—H6120.00
N5A—N4—C14A113.3 (7)C4—C7—H7D109.00
N4—N5A—C12A103.7 (8)C4—C7—H7E109.00
N4—N5B—C12B104.6 (5)C4—C7—H7F109.00
C8—N1—H1115.00C4—C7—H7A109.00
C1—N1—H1115.00C4—C7—H7B109.00
C2—C1—C6118.2 (3)C4—C7—H7C109.00
N1—C1—C6117.1 (3)H7D—C7—H7E109.00
N1—C1—C2124.6 (3)H7D—C7—H7F109.00
C1—C2—C3120.2 (3)H7E—C7—H7F110.00
C2—C3—C4122.0 (3)H7A—C7—H7B110.00
C3—C4—C5117.3 (3)H7A—C7—H7C109.00
C5—C4—C7121.1 (3)H7B—C7—H7C109.00
C3—C4—C7121.7 (3)C8—C9—H9121.00
C4—C5—C6121.7 (3)C10—C9—H9121.00
C1—C6—C5120.6 (3)C9—C10—H10121.00
N2—C8—C9120.7 (2)C11—C10—H10121.00
N1—C8—C9125.82 (18)C13A—C12A—H12A125.00
N1—C8—N2113.5 (2)N5A—C12A—H12A125.00
C8—C9—C10118.7 (2)C13B—C12B—H12B123.00
C9—C10—C11117.3 (3)N5B—C12B—H12B123.00
N4—C11—C10121.2 (3)C14A—C13A—H13A128.00
N3—C11—C10123.8 (3)C12A—C13A—H13A127.00
N3—C11—N4114.9 (3)C14B—C13B—H13B128.00
N5A—C12A—C13A110.8 (9)C12B—C13B—H13B128.00
N5B—C12B—C13B113.3 (7)C13A—C14A—H14A127.00
C12A—C13A—C14A104.9 (9)N4—C14A—H14A127.00
C12B—C13B—C14B104.4 (7)C13B—C14B—H14B125.00
N4—C14A—C13A105.3 (9)N4—C14B—H14B125.00
N4—C14B—C13B110.6 (8)
C8—N1—C1—C223.6 (5)N1—C1—C2—C3180.0 (3)
C8—N1—C1—C6160.4 (3)C6—C1—C2—C33.9 (5)
C1—N1—C8—N2171.0 (3)N1—C1—C6—C5179.0 (3)
C1—N1—C8—C911.4 (4)C2—C1—C6—C52.7 (5)
C8—N2—N3—C110.5 (4)C1—C2—C3—C42.2 (5)
N3—N2—C8—N1178.7 (2)C2—C3—C4—C50.8 (5)
N3—N2—C8—C93.5 (4)C2—C3—C4—C7179.9 (3)
N2—N3—C11—N4178.5 (3)C3—C4—C5—C62.1 (5)
N2—N3—C11—C103.6 (5)C7—C4—C5—C6178.6 (3)
C11—N4—N5B—C12B173.1 (6)C4—C5—C6—C10.4 (5)
C14B—N4—N5B—C12B10.1 (10)N1—C8—C9—C10178.0 (3)
N5B—N4—C11—N3168.2 (5)N2—C8—C9—C104.6 (4)
N5B—N4—C11—C109.8 (6)C8—C9—C10—C111.7 (4)
C14B—N4—C11—N310.4 (8)C9—C10—C11—N32.4 (5)
C14B—N4—C11—C10167.5 (7)C9—C10—C11—N4179.8 (3)
N5B—N4—C14B—C13B11.5 (10)N5B—C12B—C13B—C14B1.2 (13)
C11—N4—C14B—C13B171.3 (6)C12B—C13B—C14B—N48.0 (12)
N4—N5B—C12B—C13B5.6 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N4/N5B/C12B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.122.982 (3)178
C6—H6···N3i0.932.623.498 (4)157
C14B—H14B···N5Bii0.932.473.357 (11)160
C5—H5···Cg1iii0.932.993.527 (5)118
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H13N5
Mr251.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)31.8677 (17), 7.9408 (5), 10.8446 (7)
β (°) 109.715 (3)
V3)2583.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9293, 2336, 1384
Rint0.059
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.176, 1.03
No. of reflections2336
No. of parameters156
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N4/N5B/C12B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.122.982 (3)178
C6—H6···N3i0.932.623.498 (4)157
C14B—H14B···N5Bii0.932.473.357 (11)160
C5—H5···Cg1iii0.932.993.527 (5)118
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationAther, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds