metal-organic compounds
Dichloridobis(isoquinoline-κN)zinc(II)
aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the title compound, [ZnCl2(C9H7N)2], the ZnII cation is coordinated by two Cl− anions and two isoquinoline ligands in a distorted ZnCl2N2 tetrahedral geometry; the two isoquinoline ring systems are twisted with respect to each other at a dihedral angle of 45.72 (8)°. The parallel isoqiunoline ring systems of adjacent molecules are partially overlapped, with the shorter face-to-face distance of 3.438 (19) Å indicating the existence of weak π–π stacking in the crystal structure.
Related literature
For general background to π-π stacking, see: Deisenhofer & Michel (1989); Su & Xu (2004); Xu et al. (2007). For π-π stacking between isoquinoline ring systems in a CoII complex, see: Li et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810024803/hb5517sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810024803/hb5517Isup2.hkl
Isoquinoline (0.23 ml, 2 mmol) and ZnCl2 (0.14 g, 1 mmol) were dissolved in an absolute ethanol (10 ml). The solution was refluxed for 12 h. After cooling to room temperature, the solution was filtered and colourless prisms of (I) were obtained from the filtrate after 2 d.
H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and refined in riding mode with Uiso(H) = 1.2Ueq(C). An ADDSYM-XCT check (Spek, 2009) shows no additional symmetry for the structure. An attempt at
with higher symmetry [orthorhombic Pmn21] did not give a reasonable solution.The π-π stacking between aromatic rings is an important non-covalent interaction and correlated with the process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its is reported here.
In the title compound, the Zn cation is coordinated by two Cl- anions and two isoquinoline ligands in a distorted ZnCl2N2 tetrahedral geometry (Fig. 1). The two isoquinoline ring systems are tweisted to each other at a dihedral angle of 45.72 (8)°. The parallel N2-isoqiunoline and N2i-isoquinoline ring systems [symmetry code: (i) 2 - x, 1 - y,1 - z] of adjacent molecules are partially overlapped, the shorter face-to-face distance of 3.438 (19) Å indicates the existence of weak π-π stacking in the (Fig. 2), similar to that found in a polymeric Co complex with isoquinoline ligands (Li et al. 2010). No hydrigen bonding is present in the crystal structure.
For general background to π-π stacking, see: Deisenhofer & Michel (1989); Su & Xu (2004); Xu et al. (2007). For π-π stacking between isoquinoline ring systems in a CoII complex, see: Li et al. (2010).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).[ZnCl2(C9H7N)2] | F(000) = 800 |
Mr = 394.58 | Dx = 1.585 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6266 reflections |
a = 7.8956 (15) Å | θ = 3.3–24.6° |
b = 13.363 (2) Å | µ = 1.81 mm−1 |
c = 15.677 (2) Å | T = 294 K |
β = 90.220 (8)° | Prism, colorless |
V = 1654.0 (5) Å3 | 0.40 × 0.32 × 0.30 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP diffractometer | 2975 independent reflections |
Radiation source: fine-focus sealed tube | 1933 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.2°, θmin = 3.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −16→15 |
Tmin = 0.788, Tmax = 0.862 | l = −18→17 |
11270 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.1036P)2] where P = (Fo2 + 2Fc2)/3 |
2975 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 1.33 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[ZnCl2(C9H7N)2] | V = 1654.0 (5) Å3 |
Mr = 394.58 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.8956 (15) Å | µ = 1.81 mm−1 |
b = 13.363 (2) Å | T = 294 K |
c = 15.677 (2) Å | 0.40 × 0.32 × 0.30 mm |
β = 90.220 (8)° |
Rigaku R-AXIS RAPID IP diffractometer | 2975 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1933 reflections with I > 2σ(I) |
Tmin = 0.788, Tmax = 0.862 | Rint = 0.032 |
11270 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 0.95 | Δρmax = 1.33 e Å−3 |
2975 reflections | Δρmin = −0.39 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.75125 (6) | 0.30754 (4) | 0.25278 (3) | 0.0408 (2) | |
Cl1 | 0.51169 (15) | 0.22275 (10) | 0.27066 (8) | 0.0597 (4) | |
Cl2 | 0.98654 (16) | 0.21580 (10) | 0.25609 (9) | 0.0616 (4) | |
N1 | 0.7603 (4) | 0.3828 (3) | 0.1381 (2) | 0.0448 (9) | |
N2 | 0.7615 (5) | 0.4115 (3) | 0.3490 (2) | 0.0466 (9) | |
C1 | 0.7034 (6) | 0.4723 (4) | 0.1236 (3) | 0.0482 (11) | |
H1 | 0.6550 | 0.5071 | 0.1688 | 0.058* | |
C2 | 0.7109 (5) | 0.5212 (3) | 0.0418 (3) | 0.0423 (10) | |
C3 | 0.6513 (6) | 0.6175 (4) | 0.0286 (3) | 0.0590 (13) | |
H3 | 0.6042 | 0.6540 | 0.0731 | 0.071* | |
C4 | 0.6632 (7) | 0.6570 (4) | −0.0501 (3) | 0.0651 (14) | |
H4 | 0.6234 | 0.7216 | −0.0595 | 0.078* | |
C5 | 0.7340 (7) | 0.6037 (5) | −0.1187 (3) | 0.0645 (15) | |
H5 | 0.7409 | 0.6337 | −0.1721 | 0.077* | |
C6 | 0.7913 (7) | 0.5106 (5) | −0.1080 (3) | 0.0620 (14) | |
H6 | 0.8365 | 0.4755 | −0.1538 | 0.074* | |
C7 | 0.7822 (6) | 0.4647 (4) | −0.0243 (3) | 0.0481 (12) | |
C8 | 0.8407 (6) | 0.3682 (4) | −0.0097 (3) | 0.0589 (13) | |
H8 | 0.8863 | 0.3301 | −0.0536 | 0.071* | |
C9 | 0.8294 (6) | 0.3310 (4) | 0.0713 (3) | 0.0559 (12) | |
H9 | 0.8708 | 0.2670 | 0.0816 | 0.067* | |
C10 | 0.7032 (6) | 0.3890 (4) | 0.4234 (3) | 0.0525 (12) | |
H10 | 0.6485 | 0.3279 | 0.4303 | 0.063* | |
C11 | 0.7191 (5) | 0.4547 (3) | 0.4968 (3) | 0.0444 (11) | |
C12 | 0.6585 (7) | 0.4275 (4) | 0.5760 (3) | 0.0620 (14) | |
H12 | 0.6066 | 0.3658 | 0.5846 | 0.074* | |
C13 | 0.6774 (7) | 0.4941 (5) | 0.6412 (3) | 0.0676 (15) | |
H13 | 0.6375 | 0.4770 | 0.6950 | 0.081* | |
C14 | 0.7542 (6) | 0.5864 (4) | 0.6299 (3) | 0.0591 (14) | |
H14 | 0.7638 | 0.6297 | 0.6761 | 0.071* | |
C15 | 0.8152 (6) | 0.6148 (4) | 0.5537 (3) | 0.0582 (13) | |
H15 | 0.8673 | 0.6767 | 0.5473 | 0.070* | |
C16 | 0.7987 (5) | 0.5473 (3) | 0.4815 (3) | 0.0448 (11) | |
C17 | 0.8591 (6) | 0.5706 (4) | 0.4020 (3) | 0.0552 (13) | |
H17 | 0.9120 | 0.6316 | 0.3920 | 0.066* | |
C18 | 0.8402 (6) | 0.5027 (4) | 0.3381 (3) | 0.0551 (13) | |
H18 | 0.8824 | 0.5185 | 0.2845 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0544 (4) | 0.0332 (3) | 0.0347 (3) | 0.0000 (2) | 0.0035 (2) | −0.0002 (2) |
Cl1 | 0.0625 (8) | 0.0496 (8) | 0.0672 (8) | −0.0098 (6) | 0.0145 (6) | −0.0045 (6) |
Cl2 | 0.0638 (8) | 0.0546 (8) | 0.0665 (8) | 0.0131 (6) | 0.0068 (6) | −0.0011 (6) |
N1 | 0.051 (2) | 0.042 (2) | 0.042 (2) | −0.0036 (18) | −0.0006 (16) | 0.0036 (17) |
N2 | 0.053 (2) | 0.049 (2) | 0.037 (2) | 0.0060 (19) | 0.0019 (16) | −0.0027 (18) |
C1 | 0.053 (3) | 0.048 (3) | 0.043 (3) | −0.004 (2) | −0.002 (2) | −0.006 (2) |
C2 | 0.047 (2) | 0.043 (3) | 0.037 (2) | −0.007 (2) | −0.0001 (19) | −0.007 (2) |
C3 | 0.072 (3) | 0.050 (3) | 0.055 (3) | 0.004 (3) | −0.007 (2) | −0.003 (3) |
C4 | 0.073 (3) | 0.070 (4) | 0.053 (3) | −0.011 (3) | −0.010 (3) | 0.012 (3) |
C5 | 0.077 (4) | 0.082 (4) | 0.034 (3) | −0.015 (3) | −0.003 (2) | 0.018 (3) |
C6 | 0.071 (3) | 0.074 (4) | 0.040 (3) | −0.006 (3) | 0.002 (2) | 0.009 (3) |
C7 | 0.048 (3) | 0.046 (3) | 0.050 (3) | −0.006 (2) | −0.002 (2) | −0.005 (2) |
C8 | 0.071 (3) | 0.060 (3) | 0.045 (3) | 0.004 (3) | 0.008 (2) | −0.015 (2) |
C9 | 0.071 (3) | 0.056 (3) | 0.041 (3) | 0.000 (3) | 0.009 (2) | −0.002 (2) |
C10 | 0.054 (3) | 0.057 (3) | 0.046 (3) | 0.001 (2) | 0.000 (2) | 0.001 (2) |
C11 | 0.041 (2) | 0.044 (3) | 0.049 (3) | 0.005 (2) | 0.001 (2) | 0.005 (2) |
C12 | 0.067 (3) | 0.061 (4) | 0.058 (3) | −0.002 (3) | 0.010 (3) | 0.008 (3) |
C13 | 0.075 (4) | 0.078 (4) | 0.049 (3) | 0.005 (3) | −0.001 (3) | −0.012 (3) |
C14 | 0.069 (3) | 0.067 (4) | 0.041 (3) | 0.011 (3) | −0.004 (2) | −0.013 (3) |
C15 | 0.062 (3) | 0.063 (3) | 0.050 (3) | 0.008 (3) | −0.005 (2) | −0.008 (3) |
C16 | 0.042 (2) | 0.049 (3) | 0.043 (3) | 0.013 (2) | 0.0004 (19) | 0.012 (2) |
C17 | 0.072 (3) | 0.038 (3) | 0.056 (3) | −0.003 (2) | 0.004 (2) | 0.010 (2) |
C18 | 0.073 (3) | 0.043 (3) | 0.050 (3) | 0.002 (2) | −0.005 (2) | −0.007 (2) |
Zn—N1 | 2.062 (4) | C7—C8 | 1.388 (7) |
Zn—N2 | 2.052 (4) | C8—C9 | 1.366 (7) |
Zn—Cl1 | 2.2235 (13) | C8—H8 | 0.9300 |
Zn—Cl2 | 2.2262 (13) | C9—H9 | 0.9300 |
N1—C1 | 1.298 (6) | C10—C11 | 1.453 (6) |
N1—C9 | 1.370 (6) | C10—H10 | 0.9300 |
N2—C10 | 1.290 (6) | C11—C12 | 1.381 (7) |
N2—C18 | 1.379 (6) | C11—C16 | 1.409 (6) |
C1—C2 | 1.441 (6) | C12—C13 | 1.363 (7) |
C1—H1 | 0.9300 | C12—H12 | 0.9300 |
C2—C3 | 1.385 (7) | C13—C14 | 1.387 (8) |
C2—C7 | 1.403 (6) | C13—H13 | 0.9300 |
C3—C4 | 1.346 (7) | C14—C15 | 1.344 (7) |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.406 (8) | C15—C16 | 1.453 (7) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.334 (8) | C16—C17 | 1.371 (6) |
C5—H5 | 0.9300 | C17—C18 | 1.359 (7) |
C6—C7 | 1.450 (7) | C17—H17 | 0.9300 |
C6—H6 | 0.9300 | C18—H18 | 0.9300 |
N2—Zn—N1 | 108.05 (16) | C9—C8—C7 | 117.9 (5) |
N2—Zn—Cl1 | 106.47 (11) | C9—C8—H8 | 121.0 |
N1—Zn—Cl1 | 112.99 (10) | C7—C8—H8 | 121.0 |
N2—Zn—Cl2 | 108.96 (11) | C8—C9—N1 | 123.6 (5) |
N1—Zn—Cl2 | 104.91 (11) | C8—C9—H9 | 118.2 |
Cl1—Zn—Cl2 | 115.26 (6) | N1—C9—H9 | 118.2 |
C1—N1—C9 | 118.1 (4) | N2—C10—C11 | 123.0 (5) |
C1—N1—Zn | 126.1 (3) | N2—C10—H10 | 118.5 |
C9—N1—Zn | 115.8 (3) | C11—C10—H10 | 118.5 |
C10—N2—C18 | 118.7 (4) | C12—C11—C16 | 122.8 (5) |
C10—N2—Zn | 119.6 (4) | C12—C11—C10 | 121.6 (5) |
C18—N2—Zn | 121.6 (3) | C16—C11—C10 | 115.6 (4) |
N1—C1—C2 | 123.9 (4) | C13—C12—C11 | 117.7 (5) |
N1—C1—H1 | 118.1 | C13—C12—H12 | 121.2 |
C2—C1—H1 | 118.1 | C11—C12—H12 | 121.2 |
C3—C2—C7 | 121.8 (4) | C12—C13—C14 | 122.1 (5) |
C3—C2—C1 | 122.6 (4) | C12—C13—H13 | 118.9 |
C7—C2—C1 | 115.6 (4) | C14—C13—H13 | 118.9 |
C4—C3—C2 | 118.4 (5) | C15—C14—C13 | 121.5 (5) |
C4—C3—H3 | 120.8 | C15—C14—H14 | 119.2 |
C2—C3—H3 | 120.8 | C13—C14—H14 | 119.2 |
C3—C4—C5 | 122.1 (5) | C14—C15—C16 | 119.1 (5) |
C3—C4—H4 | 118.9 | C14—C15—H15 | 120.5 |
C5—C4—H4 | 118.9 | C16—C15—H15 | 120.5 |
C6—C5—C4 | 120.8 (5) | C17—C16—C11 | 120.7 (5) |
C6—C5—H5 | 119.6 | C17—C16—C15 | 122.5 (5) |
C4—C5—H5 | 119.6 | C11—C16—C15 | 116.8 (4) |
C5—C6—C7 | 119.3 (5) | C18—C17—C16 | 118.7 (5) |
C5—C6—H6 | 120.3 | C18—C17—H17 | 120.6 |
C7—C6—H6 | 120.3 | C16—C17—H17 | 120.6 |
C8—C7—C2 | 120.8 (4) | C17—C18—N2 | 123.2 (5) |
C8—C7—C6 | 121.7 (5) | C17—C18—H18 | 118.4 |
C2—C7—C6 | 117.5 (5) | N2—C18—H18 | 118.4 |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C9H7N)2] |
Mr | 394.58 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 7.8956 (15), 13.363 (2), 15.677 (2) |
β (°) | 90.220 (8) |
V (Å3) | 1654.0 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.81 |
Crystal size (mm) | 0.40 × 0.32 × 0.30 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.788, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11270, 2975, 1933 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.153, 0.95 |
No. of reflections | 2975 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.33, −0.39 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Acknowledgements
The work was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170. CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, M.-J., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m840. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229. Web of Science CSD CrossRef CAS Google Scholar
Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The π-π stacking between aromatic rings is an important non-covalent interaction and correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.
In the title compound, the Zn cation is coordinated by two Cl- anions and two isoquinoline ligands in a distorted ZnCl2N2 tetrahedral geometry (Fig. 1). The two isoquinoline ring systems are tweisted to each other at a dihedral angle of 45.72 (8)°. The parallel N2-isoqiunoline and N2i-isoquinoline ring systems [symmetry code: (i) 2 - x, 1 - y,1 - z] of adjacent molecules are partially overlapped, the shorter face-to-face distance of 3.438 (19) Å indicates the existence of weak π-π stacking in the crystal structure (Fig. 2), similar to that found in a polymeric Co complex with isoquinoline ligands (Li et al. 2010). No hydrigen bonding is present in the crystal structure.