metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(iso­quinoline-κN)zinc(II)

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 22 June 2010; accepted 24 June 2010; online 3 July 2010)

In the title compound, [ZnCl2(C9H7N)2], the ZnII cation is coordinated by two Cl anions and two isoquinoline ligands in a distorted ZnCl2N2 tetra­hedral geometry; the two isoquinoline ring systems are twisted with respect to each other at a dihedral angle of 45.72 (8)°. The parallel isoqiunoline ring systems of adjacent mol­ecules are partially overlapped, with the shorter face-to-face distance of 3.438 (19) Å indicating the existence of weak ππ stacking in the crystal structure.

Related literature

For general background to π-π stacking, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For π-π stacking between isoquinoline ring systems in a CoII complex, see: Li et al. (2010[Li, M.-J., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m840.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C9H7N)2]

  • Mr = 394.58

  • Monoclinic, P 21 /n

  • a = 7.8956 (15) Å

  • b = 13.363 (2) Å

  • c = 15.677 (2) Å

  • β = 90.220 (8)°

  • V = 1654.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 294 K

  • 0.40 × 0.32 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.788, Tmax = 0.862

  • 11270 measured reflections

  • 2975 independent reflections

  • 1933 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.153

  • S = 0.95

  • 2975 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Zn—N1 2.062 (4)
Zn—N2 2.052 (4)
Zn—Cl1 2.2235 (13)
Zn—Cl2 2.2262 (13)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The π-π stacking between aromatic rings is an important non-covalent interaction and correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

In the title compound, the Zn cation is coordinated by two Cl- anions and two isoquinoline ligands in a distorted ZnCl2N2 tetrahedral geometry (Fig. 1). The two isoquinoline ring systems are tweisted to each other at a dihedral angle of 45.72 (8)°. The parallel N2-isoqiunoline and N2i-isoquinoline ring systems [symmetry code: (i) 2 - x, 1 - y,1 - z] of adjacent molecules are partially overlapped, the shorter face-to-face distance of 3.438 (19) Å indicates the existence of weak π-π stacking in the crystal structure (Fig. 2), similar to that found in a polymeric Co complex with isoquinoline ligands (Li et al. 2010). No hydrigen bonding is present in the crystal structure.

Related literature top

For general background to π-π stacking, see: Deisenhofer & Michel (1989); Su & Xu (2004); Xu et al. (2007). For π-π stacking between isoquinoline ring systems in a CoII complex, see: Li et al. (2010).

Experimental top

Isoquinoline (0.23 ml, 2 mmol) and ZnCl2 (0.14 g, 1 mmol) were dissolved in an absolute ethanol (10 ml). The solution was refluxed for 12 h. After cooling to room temperature, the solution was filtered and colourless prisms of (I) were obtained from the filtrate after 2 d.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and refined in riding mode with Uiso(H) = 1.2Ueq(C). An ADDSYM-XCT check (Spek, 2009) shows no additional symmetry for the structure. An attempt at refinement with higher symmetry [orthorhombic Pmn21] did not give a reasonable solution.

Structure description top

The π-π stacking between aromatic rings is an important non-covalent interaction and correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

In the title compound, the Zn cation is coordinated by two Cl- anions and two isoquinoline ligands in a distorted ZnCl2N2 tetrahedral geometry (Fig. 1). The two isoquinoline ring systems are tweisted to each other at a dihedral angle of 45.72 (8)°. The parallel N2-isoqiunoline and N2i-isoquinoline ring systems [symmetry code: (i) 2 - x, 1 - y,1 - z] of adjacent molecules are partially overlapped, the shorter face-to-face distance of 3.438 (19) Å indicates the existence of weak π-π stacking in the crystal structure (Fig. 2), similar to that found in a polymeric Co complex with isoquinoline ligands (Li et al. 2010). No hydrigen bonding is present in the crystal structure.

For general background to π-π stacking, see: Deisenhofer & Michel (1989); Su & Xu (2004); Xu et al. (2007). For π-π stacking between isoquinoline ring systems in a CoII complex, see: Li et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. The unit cell packing diagram of (I) showing the parallel arrangement of isoquinoline ligands. H atoms have been omitted for clarity.
Dichloridobis(isoquinoline-κN)zinc(II) top
Crystal data top
[ZnCl2(C9H7N)2]F(000) = 800
Mr = 394.58Dx = 1.585 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6266 reflections
a = 7.8956 (15) Åθ = 3.3–24.6°
b = 13.363 (2) ŵ = 1.81 mm1
c = 15.677 (2) ÅT = 294 K
β = 90.220 (8)°Prism, colorless
V = 1654.0 (5) Å30.40 × 0.32 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2975 independent reflections
Radiation source: fine-focus sealed tube1933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1615
Tmin = 0.788, Tmax = 0.862l = 1817
11270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1036P)2]
where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[ZnCl2(C9H7N)2]V = 1654.0 (5) Å3
Mr = 394.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8956 (15) ŵ = 1.81 mm1
b = 13.363 (2) ÅT = 294 K
c = 15.677 (2) Å0.40 × 0.32 × 0.30 mm
β = 90.220 (8)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2975 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1933 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.862Rint = 0.032
11270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.95Δρmax = 1.33 e Å3
2975 reflectionsΔρmin = 0.39 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.75125 (6)0.30754 (4)0.25278 (3)0.0408 (2)
Cl10.51169 (15)0.22275 (10)0.27066 (8)0.0597 (4)
Cl20.98654 (16)0.21580 (10)0.25609 (9)0.0616 (4)
N10.7603 (4)0.3828 (3)0.1381 (2)0.0448 (9)
N20.7615 (5)0.4115 (3)0.3490 (2)0.0466 (9)
C10.7034 (6)0.4723 (4)0.1236 (3)0.0482 (11)
H10.65500.50710.16880.058*
C20.7109 (5)0.5212 (3)0.0418 (3)0.0423 (10)
C30.6513 (6)0.6175 (4)0.0286 (3)0.0590 (13)
H30.60420.65400.07310.071*
C40.6632 (7)0.6570 (4)0.0501 (3)0.0651 (14)
H40.62340.72160.05950.078*
C50.7340 (7)0.6037 (5)0.1187 (3)0.0645 (15)
H50.74090.63370.17210.077*
C60.7913 (7)0.5106 (5)0.1080 (3)0.0620 (14)
H60.83650.47550.15380.074*
C70.7822 (6)0.4647 (4)0.0243 (3)0.0481 (12)
C80.8407 (6)0.3682 (4)0.0097 (3)0.0589 (13)
H80.88630.33010.05360.071*
C90.8294 (6)0.3310 (4)0.0713 (3)0.0559 (12)
H90.87080.26700.08160.067*
C100.7032 (6)0.3890 (4)0.4234 (3)0.0525 (12)
H100.64850.32790.43030.063*
C110.7191 (5)0.4547 (3)0.4968 (3)0.0444 (11)
C120.6585 (7)0.4275 (4)0.5760 (3)0.0620 (14)
H120.60660.36580.58460.074*
C130.6774 (7)0.4941 (5)0.6412 (3)0.0676 (15)
H130.63750.47700.69500.081*
C140.7542 (6)0.5864 (4)0.6299 (3)0.0591 (14)
H140.76380.62970.67610.071*
C150.8152 (6)0.6148 (4)0.5537 (3)0.0582 (13)
H150.86730.67670.54730.070*
C160.7987 (5)0.5473 (3)0.4815 (3)0.0448 (11)
C170.8591 (6)0.5706 (4)0.4020 (3)0.0552 (13)
H170.91200.63160.39200.066*
C180.8402 (6)0.5027 (4)0.3381 (3)0.0551 (13)
H180.88240.51850.28450.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0544 (4)0.0332 (3)0.0347 (3)0.0000 (2)0.0035 (2)0.0002 (2)
Cl10.0625 (8)0.0496 (8)0.0672 (8)0.0098 (6)0.0145 (6)0.0045 (6)
Cl20.0638 (8)0.0546 (8)0.0665 (8)0.0131 (6)0.0068 (6)0.0011 (6)
N10.051 (2)0.042 (2)0.042 (2)0.0036 (18)0.0006 (16)0.0036 (17)
N20.053 (2)0.049 (2)0.037 (2)0.0060 (19)0.0019 (16)0.0027 (18)
C10.053 (3)0.048 (3)0.043 (3)0.004 (2)0.002 (2)0.006 (2)
C20.047 (2)0.043 (3)0.037 (2)0.007 (2)0.0001 (19)0.007 (2)
C30.072 (3)0.050 (3)0.055 (3)0.004 (3)0.007 (2)0.003 (3)
C40.073 (3)0.070 (4)0.053 (3)0.011 (3)0.010 (3)0.012 (3)
C50.077 (4)0.082 (4)0.034 (3)0.015 (3)0.003 (2)0.018 (3)
C60.071 (3)0.074 (4)0.040 (3)0.006 (3)0.002 (2)0.009 (3)
C70.048 (3)0.046 (3)0.050 (3)0.006 (2)0.002 (2)0.005 (2)
C80.071 (3)0.060 (3)0.045 (3)0.004 (3)0.008 (2)0.015 (2)
C90.071 (3)0.056 (3)0.041 (3)0.000 (3)0.009 (2)0.002 (2)
C100.054 (3)0.057 (3)0.046 (3)0.001 (2)0.000 (2)0.001 (2)
C110.041 (2)0.044 (3)0.049 (3)0.005 (2)0.001 (2)0.005 (2)
C120.067 (3)0.061 (4)0.058 (3)0.002 (3)0.010 (3)0.008 (3)
C130.075 (4)0.078 (4)0.049 (3)0.005 (3)0.001 (3)0.012 (3)
C140.069 (3)0.067 (4)0.041 (3)0.011 (3)0.004 (2)0.013 (3)
C150.062 (3)0.063 (3)0.050 (3)0.008 (3)0.005 (2)0.008 (3)
C160.042 (2)0.049 (3)0.043 (3)0.013 (2)0.0004 (19)0.012 (2)
C170.072 (3)0.038 (3)0.056 (3)0.003 (2)0.004 (2)0.010 (2)
C180.073 (3)0.043 (3)0.050 (3)0.002 (2)0.005 (2)0.007 (2)
Geometric parameters (Å, º) top
Zn—N12.062 (4)C7—C81.388 (7)
Zn—N22.052 (4)C8—C91.366 (7)
Zn—Cl12.2235 (13)C8—H80.9300
Zn—Cl22.2262 (13)C9—H90.9300
N1—C11.298 (6)C10—C111.453 (6)
N1—C91.370 (6)C10—H100.9300
N2—C101.290 (6)C11—C121.381 (7)
N2—C181.379 (6)C11—C161.409 (6)
C1—C21.441 (6)C12—C131.363 (7)
C1—H10.9300C12—H120.9300
C2—C31.385 (7)C13—C141.387 (8)
C2—C71.403 (6)C13—H130.9300
C3—C41.346 (7)C14—C151.344 (7)
C3—H30.9300C14—H140.9300
C4—C51.406 (8)C15—C161.453 (7)
C4—H40.9300C15—H150.9300
C5—C61.334 (8)C16—C171.371 (6)
C5—H50.9300C17—C181.359 (7)
C6—C71.450 (7)C17—H170.9300
C6—H60.9300C18—H180.9300
N2—Zn—N1108.05 (16)C9—C8—C7117.9 (5)
N2—Zn—Cl1106.47 (11)C9—C8—H8121.0
N1—Zn—Cl1112.99 (10)C7—C8—H8121.0
N2—Zn—Cl2108.96 (11)C8—C9—N1123.6 (5)
N1—Zn—Cl2104.91 (11)C8—C9—H9118.2
Cl1—Zn—Cl2115.26 (6)N1—C9—H9118.2
C1—N1—C9118.1 (4)N2—C10—C11123.0 (5)
C1—N1—Zn126.1 (3)N2—C10—H10118.5
C9—N1—Zn115.8 (3)C11—C10—H10118.5
C10—N2—C18118.7 (4)C12—C11—C16122.8 (5)
C10—N2—Zn119.6 (4)C12—C11—C10121.6 (5)
C18—N2—Zn121.6 (3)C16—C11—C10115.6 (4)
N1—C1—C2123.9 (4)C13—C12—C11117.7 (5)
N1—C1—H1118.1C13—C12—H12121.2
C2—C1—H1118.1C11—C12—H12121.2
C3—C2—C7121.8 (4)C12—C13—C14122.1 (5)
C3—C2—C1122.6 (4)C12—C13—H13118.9
C7—C2—C1115.6 (4)C14—C13—H13118.9
C4—C3—C2118.4 (5)C15—C14—C13121.5 (5)
C4—C3—H3120.8C15—C14—H14119.2
C2—C3—H3120.8C13—C14—H14119.2
C3—C4—C5122.1 (5)C14—C15—C16119.1 (5)
C3—C4—H4118.9C14—C15—H15120.5
C5—C4—H4118.9C16—C15—H15120.5
C6—C5—C4120.8 (5)C17—C16—C11120.7 (5)
C6—C5—H5119.6C17—C16—C15122.5 (5)
C4—C5—H5119.6C11—C16—C15116.8 (4)
C5—C6—C7119.3 (5)C18—C17—C16118.7 (5)
C5—C6—H6120.3C18—C17—H17120.6
C7—C6—H6120.3C16—C17—H17120.6
C8—C7—C2120.8 (4)C17—C18—N2123.2 (5)
C8—C7—C6121.7 (5)C17—C18—H18118.4
C2—C7—C6117.5 (5)N2—C18—H18118.4

Experimental details

Crystal data
Chemical formula[ZnCl2(C9H7N)2]
Mr394.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.8956 (15), 13.363 (2), 15.677 (2)
β (°) 90.220 (8)
V3)1654.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.40 × 0.32 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.788, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
11270, 2975, 1933
Rint0.032
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 0.95
No. of reflections2975
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.39

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn—N12.062 (4)Zn—Cl12.2235 (13)
Zn—N22.052 (4)Zn—Cl22.2262 (13)
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, M.-J., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds