organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7,8,9-Tetra­hydro-4b,9b-dihy­dr­oxy­indano[1,2-b]indoline-9,10-dione monohydrate

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cThe Islamia University of Bahawalpur, Department of Chemistry, Bahawalpur, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 June 2010; accepted 28 June 2010; online 3 July 2010)

In the title compound, C15H13NO4·H2O, the organic mol­ecule adopts a V-shaped conformation in which the dihedral angle between the five-membered rings is 68.33 (5)°. The cyclo­hexenone ring adopts an envelope conformation, with one of the methyl­ene C atoms displaced by 0.607 (4) Å from the plane through the other atoms. In the crystal, inter­molecular N—H⋯(O,O) and O—H⋯O hydrogen bonds link the components into (001) sheeets and C–H⋯O inter­actions and aromatic ππ stacking [centroid–centroid separation = 3.6176 (19) Å] help to consolidate the packing.

Related literature

For background to ninhydrin, see: Friedman (1967[Friedman, M. (1967). Can. J. Chem. 45, 2271-2275.]); Moubasher (1948[Moubasher, R. (1948). J. Chem. Soc. pp. 1038-1041.]). For a related structure, see: Black et al. (1994[Black, D. St C., Bowyer, M. C., Condie, G. C., Craig, D. C. & Kumar, N. (1994). Tetrahedron, 50, 10983-10994.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO4·H2O

  • Mr = 289.28

  • Orthorhombic, P b c a

  • a = 10.703 (2) Å

  • b = 13.275 (4) Å

  • c = 19.683 (5) Å

  • V = 2796.6 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.978

  • 17463 measured reflections

  • 2532 independent reflections

  • 1576 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.08

  • 2532 reflections

  • 206 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (3) 2.09 (3) 2.887 (3) 150 (2)
N1—H1⋯O3i 0.88 (3) 2.55 (3) 3.159 (3) 127 (2)
O2—H2A⋯O5ii 0.87 (3) 1.86 (3) 2.720 (3) 168 (3)
O4—H4A⋯O2iii 0.84 (3) 1.88 (3) 2.712 (3) 171 (3)
O5—H51⋯O3iv 0.94 (3) 1.83 (3) 2.762 (4) 174 (3)
C2—H2⋯O1i 0.93 2.46 3.052 (3) 122
C4—H4⋯O4v 0.93 2.34 3.253 (4) 165
C13—H13A⋯O3i 0.97 2.39 3.265 (4) 149
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) -x+2, -y, -z; (iv) -x+1, -y, -z; (v) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The reaction of ninhydrin with 4-aminophenol in acetic acid, or 4-amino benzoic acid in benzene gave the corresponding 2-hydroxy-2-anilino-indane-1,3-diones (Moubasher et al., 1948). Friedman (1967) elaborated on these findings and reported that ortho and para activated anilines gave imines corresponding to the dehydration products of hydroxy compounds. Ninhydrin is used to detect α-amino acids, proteins and dipeptides. The title compound (I), (Fig. 1) is being reported in connection with our plan to synthesize various derivatives of ninhydrin.

The crystal structure of (II) i.e. 5, 10-dihydro-7, 9-dimethoxy-4 b, 9 b, 10-trihydroxy-indeno[1,2-b]indole has been published (Black et al., 1994). The compound (I) differs from (II) due to presence of two oxo groups instead of hydroxy and methoxy at position-9 & 10 respectively, H-atom instead of methoxy function at position-7 and due to presence of three hydrogen at position-6,7 & 8 of indole moiety.

In the organic part of title compound, there are two five membered and two six memberede rings. The carbon containing five membered A (C1/C6/C7/C8/C15) is fused with phenyl B (C1—C6) ring and with heterocyclic ring C (C15/C8/C9/C14/N1). The cyclohexenone ring D (C9—C14) is fused with the ring C. The ring A and B are planar with r. m. s. deviation of 0.0256 and 0.0091 Å, respectively and oriented at a dihedral angle of 3.07 (18)° with each other. The heterocyclic ring C is planar with r. m. s. deviation of 0.0163 Å. The group E (C9—C11/C13/C14) of cyclohexenone ring is also planar with r. m. s. deviation of 0.0206 Å and inclined with C at a dihedral angle of 1.55 (17)°. The C-atom labeled as C12 is at a distance of 0.6073 (40) Å from the mean square plane of E. There exist π···π interaction between rings B & C at a distance of 3.6176 (19)Å as the organic part is mainly in V-shape. The compound is stabilized due to complex form of H-bondings (Table 1, Fig. 2).

Related literature top

For background to ninhydrin, see: Friedman (1967); Moubasher (1948). For a related structure, see: Black et al. (1994).

Experimental top

3-Amino-2-cyclohexene-1-one (0.10 g, 0.89 mmol) was added to a stirred solution of ninhydrin (0.16 g, 0.89 mmol) in propanol (10 ml) and heated under reflux for 35 minuts. After completion of reaction, the mixture was cooled at room temperature. The crystalline solid was collected by suction filtration. Through washing with hot ethanol afforded the white crystalline solid (0.22 g, 85%), m.p. 526 K. Colourless prisms of (I) were grown by diffusion method in ethyl acetate:benzene (1:1) system along with few drops of ethanol.

Refinement top

The coordinates of H-atoms of amine and hydroxy groups were refined and the other H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H-atoms.

Structure description top

The reaction of ninhydrin with 4-aminophenol in acetic acid, or 4-amino benzoic acid in benzene gave the corresponding 2-hydroxy-2-anilino-indane-1,3-diones (Moubasher et al., 1948). Friedman (1967) elaborated on these findings and reported that ortho and para activated anilines gave imines corresponding to the dehydration products of hydroxy compounds. Ninhydrin is used to detect α-amino acids, proteins and dipeptides. The title compound (I), (Fig. 1) is being reported in connection with our plan to synthesize various derivatives of ninhydrin.

The crystal structure of (II) i.e. 5, 10-dihydro-7, 9-dimethoxy-4 b, 9 b, 10-trihydroxy-indeno[1,2-b]indole has been published (Black et al., 1994). The compound (I) differs from (II) due to presence of two oxo groups instead of hydroxy and methoxy at position-9 & 10 respectively, H-atom instead of methoxy function at position-7 and due to presence of three hydrogen at position-6,7 & 8 of indole moiety.

In the organic part of title compound, there are two five membered and two six memberede rings. The carbon containing five membered A (C1/C6/C7/C8/C15) is fused with phenyl B (C1—C6) ring and with heterocyclic ring C (C15/C8/C9/C14/N1). The cyclohexenone ring D (C9—C14) is fused with the ring C. The ring A and B are planar with r. m. s. deviation of 0.0256 and 0.0091 Å, respectively and oriented at a dihedral angle of 3.07 (18)° with each other. The heterocyclic ring C is planar with r. m. s. deviation of 0.0163 Å. The group E (C9—C11/C13/C14) of cyclohexenone ring is also planar with r. m. s. deviation of 0.0206 Å and inclined with C at a dihedral angle of 1.55 (17)°. The C-atom labeled as C12 is at a distance of 0.6073 (40) Å from the mean square plane of E. There exist π···π interaction between rings B & C at a distance of 3.6176 (19)Å as the organic part is mainly in V-shape. The compound is stabilized due to complex form of H-bondings (Table 1, Fig. 2).

For background to ninhydrin, see: Friedman (1967); Moubasher (1948). For a related structure, see: Black et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I).
6,7,8,9-Tetrahydro-4b,9b-dihydroxyindano[1,2-b]indoline-9,10-dione monohydrate top
Crystal data top
C15H13NO4·H2OF(000) = 1216
Mr = 289.28Dx = 1.369 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1576 reflections
a = 10.703 (2) Åθ = 2.7–25.3°
b = 13.275 (4) ŵ = 0.10 mm1
c = 19.683 (5) ÅT = 296 K
V = 2796.6 (12) Å3Prism, colourless
Z = 80.30 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2532 independent reflections
Radiation source: fine-focus sealed tube1576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 8.20 pixels mm-1θmax = 25.5°, θmin = 2.7°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.970, Tmax = 0.978l = 2323
17463 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0498P)2 + 1.2061P]
where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H13NO4·H2OV = 2796.6 (12) Å3
Mr = 289.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.703 (2) ŵ = 0.10 mm1
b = 13.275 (4) ÅT = 296 K
c = 19.683 (5) Å0.30 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2532 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1576 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.978Rint = 0.066
17463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
2532 reflectionsΔρmin = 0.20 e Å3
206 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6918 (2)0.15555 (15)0.11236 (10)0.0602 (8)
O20.91068 (17)0.08706 (14)0.03362 (9)0.0464 (7)
O30.64800 (18)0.14565 (14)0.04188 (10)0.0540 (7)
O40.98666 (17)0.09354 (16)0.09227 (9)0.0498 (7)
N10.8012 (2)0.15460 (17)0.04090 (11)0.0402 (7)
C10.7997 (2)0.0847 (2)0.15639 (13)0.0416 (9)
C20.8110 (3)0.1600 (2)0.20487 (14)0.0563 (11)
C30.7442 (4)0.1498 (3)0.26471 (15)0.0681 (13)
C40.6683 (3)0.0675 (3)0.27637 (16)0.0692 (13)
C50.6593 (3)0.0089 (3)0.22942 (14)0.0582 (11)
C60.7266 (2)0.0012 (2)0.16905 (12)0.0430 (9)
C70.7359 (2)0.07177 (19)0.11328 (13)0.0400 (9)
C80.8128 (2)0.02380 (18)0.05584 (12)0.0366 (8)
C90.7294 (2)0.00822 (18)0.00174 (12)0.0330 (8)
C100.6574 (2)0.0522 (2)0.04613 (13)0.0395 (9)
C110.5833 (3)0.0030 (2)0.10052 (14)0.0482 (10)
C120.6310 (3)0.1070 (2)0.11767 (14)0.0518 (10)
C130.6515 (3)0.16996 (19)0.05470 (13)0.0450 (9)
C140.7286 (2)0.11153 (18)0.00559 (12)0.0353 (8)
C150.8580 (2)0.08050 (19)0.08678 (12)0.0382 (8)
O50.4998 (3)0.2705 (2)0.12020 (14)0.0943 (11)
H10.808 (2)0.220 (2)0.0473 (13)0.0483*
H20.861920.215680.197390.0676*
H2A0.932 (3)0.129 (2)0.0658 (15)0.0556*
H30.750620.199560.297810.0817*
H40.622570.063690.316480.0830*
H4A1.018 (3)0.085 (2)0.0537 (15)0.0597*
H50.610110.065320.237620.0701*
H11A0.583590.037380.141580.0578*
H11B0.497240.008760.085480.0578*
H12A0.571260.140560.147000.0621*
H12B0.709140.101080.142310.0621*
H13A0.693910.232080.066590.0540*
H13B0.571730.186950.034310.0540*
H510.452 (3)0.224 (2)0.0954 (17)0.1131*
H520.526 (4)0.239 (3)0.1564 (14)0.1131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0834 (15)0.0458 (13)0.0515 (13)0.0033 (11)0.0135 (11)0.0065 (10)
O20.0484 (11)0.0525 (12)0.0382 (11)0.0207 (9)0.0053 (9)0.0057 (9)
O30.0633 (13)0.0389 (11)0.0598 (13)0.0041 (9)0.0089 (10)0.0009 (10)
O40.0396 (11)0.0760 (14)0.0337 (10)0.0043 (9)0.0021 (8)0.0020 (10)
N10.0501 (13)0.0359 (12)0.0347 (12)0.0002 (10)0.0058 (10)0.0002 (10)
C10.0455 (15)0.0480 (17)0.0314 (14)0.0096 (13)0.0008 (12)0.0009 (12)
C20.077 (2)0.0570 (19)0.0349 (16)0.0064 (16)0.0027 (15)0.0028 (14)
C30.099 (3)0.068 (2)0.0373 (18)0.020 (2)0.0008 (18)0.0101 (16)
C40.073 (2)0.097 (3)0.0377 (17)0.015 (2)0.0149 (16)0.0000 (18)
C50.0555 (19)0.080 (2)0.0392 (16)0.0044 (16)0.0089 (14)0.0058 (16)
C60.0424 (16)0.0544 (17)0.0321 (14)0.0108 (13)0.0018 (12)0.0031 (13)
C70.0449 (15)0.0399 (16)0.0352 (15)0.0082 (12)0.0020 (12)0.0054 (12)
C80.0376 (14)0.0393 (14)0.0328 (14)0.0089 (11)0.0035 (11)0.0011 (11)
C90.0342 (13)0.0357 (14)0.0291 (12)0.0029 (11)0.0013 (10)0.0014 (10)
C100.0373 (15)0.0454 (16)0.0357 (14)0.0021 (12)0.0034 (12)0.0018 (12)
C110.0462 (16)0.0570 (18)0.0414 (16)0.0024 (14)0.0084 (13)0.0042 (14)
C120.0590 (18)0.0549 (18)0.0415 (16)0.0024 (14)0.0110 (14)0.0083 (14)
C130.0486 (16)0.0420 (16)0.0445 (16)0.0051 (12)0.0083 (13)0.0063 (12)
C140.0347 (14)0.0417 (15)0.0296 (13)0.0015 (11)0.0030 (11)0.0009 (11)
C150.0385 (15)0.0460 (16)0.0301 (13)0.0030 (12)0.0009 (11)0.0001 (11)
O50.122 (2)0.090 (2)0.0708 (18)0.0540 (17)0.0238 (16)0.0200 (14)
Geometric parameters (Å, º) top
O1—C71.208 (3)C7—C81.537 (3)
O2—C81.412 (3)C8—C91.504 (3)
O3—C101.247 (3)C8—C151.588 (3)
O4—C151.392 (3)C9—C141.374 (3)
O2—H2A0.87 (3)C9—C101.414 (3)
O4—H4A0.84 (3)C10—C111.521 (4)
O5—H510.94 (3)C11—C121.510 (4)
O5—H520.87 (3)C12—C131.511 (4)
N1—C141.330 (3)C13—C141.489 (4)
N1—C151.467 (3)C2—H20.9300
N1—H10.88 (3)C3—H30.9300
C1—C61.380 (4)C4—H40.9300
C1—C21.387 (4)C5—H50.9300
C1—C151.507 (3)C11—H11B0.9700
C2—C31.385 (4)C11—H11A0.9700
C3—C41.381 (6)C12—H12A0.9700
C4—C51.376 (5)C12—H12B0.9700
C5—C61.396 (4)C13—H13B0.9700
C6—C71.467 (4)C13—H13A0.9700
C8—O2—H2A110 (2)C12—C13—C14109.0 (2)
C15—O4—H4A108 (2)N1—C14—C13123.1 (2)
H51—O5—H52107 (3)N1—C14—C9112.8 (2)
C14—N1—C15112.2 (2)C9—C14—C13124.0 (2)
C15—N1—H1122.6 (16)N1—C15—C8102.84 (18)
C14—N1—H1124.8 (16)C1—C15—C8104.77 (19)
C2—C1—C6120.3 (2)O4—C15—N1112.0 (2)
C2—C1—C15128.0 (2)O4—C15—C1109.54 (19)
C6—C1—C15111.7 (2)N1—C15—C1111.31 (19)
C1—C2—C3118.0 (3)O4—C15—C8116.07 (19)
C2—C3—C4121.5 (3)C1—C2—H2121.00
C3—C4—C5120.9 (3)C3—C2—H2121.00
C4—C5—C6117.7 (3)C4—C3—H3119.00
C5—C6—C7127.5 (3)C2—C3—H3119.00
C1—C6—C5121.6 (3)C3—C4—H4120.00
C1—C6—C7110.9 (2)C5—C4—H4120.00
C6—C7—C8108.3 (2)C4—C5—H5121.00
O1—C7—C6126.3 (2)C6—C5—H5121.00
O1—C7—C8125.4 (2)C10—C11—H11B109.00
O2—C8—C9112.03 (19)C12—C11—H11A109.00
O2—C8—C7112.26 (19)C12—C11—H11B108.00
C7—C8—C9110.71 (18)H11A—C11—H11B108.00
C7—C8—C15104.02 (19)C10—C11—H11A109.00
C9—C8—C15102.91 (19)C11—C12—H12B109.00
O2—C8—C15114.29 (18)C13—C12—H12A109.00
C8—C9—C14109.1 (2)C11—C12—H12A109.00
C10—C9—C14121.9 (2)H12A—C12—H12B108.00
C8—C9—C10129.0 (2)C13—C12—H12B109.00
O3—C10—C9124.5 (2)C12—C13—H13A110.00
O3—C10—C11119.0 (2)C12—C13—H13B110.00
C9—C10—C11116.5 (2)C14—C13—H13B110.00
C10—C11—C12114.9 (2)H13A—C13—H13B108.00
C11—C12—C13111.8 (2)C14—C13—H13A110.00
C15—N1—C14—C93.2 (3)C6—C7—C8—C155.2 (2)
C15—N1—C14—C13174.7 (2)O2—C8—C9—C1060.0 (3)
C14—N1—C15—O4129.3 (2)O2—C8—C9—C14121.6 (2)
C14—N1—C15—C1107.7 (2)C7—C8—C9—C1066.1 (3)
C14—N1—C15—C84.0 (2)C7—C8—C9—C14112.3 (2)
C6—C1—C2—C31.9 (4)C15—C8—C9—C10176.7 (2)
C15—C1—C2—C3177.3 (3)C15—C8—C9—C141.7 (2)
C2—C1—C6—C52.0 (4)O2—C8—C15—O44.1 (3)
C2—C1—C6—C7175.7 (2)O2—C8—C15—N1118.5 (2)
C15—C1—C6—C5177.3 (2)O2—C8—C15—C1125.1 (2)
C15—C1—C6—C75.1 (3)C7—C8—C15—O4118.6 (2)
C2—C1—C15—O454.1 (3)C7—C8—C15—N1118.75 (19)
C2—C1—C15—N170.3 (3)C7—C8—C15—C12.3 (2)
C2—C1—C15—C8179.3 (2)C9—C8—C15—O4125.8 (2)
C6—C1—C15—O4126.7 (2)C9—C8—C15—N13.2 (2)
C6—C1—C15—N1108.9 (2)C9—C8—C15—C1113.25 (19)
C6—C1—C15—C81.5 (3)C8—C9—C10—O33.4 (4)
C1—C2—C3—C40.0 (5)C8—C9—C10—C11179.2 (2)
C2—C3—C4—C51.9 (6)C14—C9—C10—O3174.8 (2)
C3—C4—C5—C61.8 (5)C14—C9—C10—C112.6 (3)
C4—C5—C6—C10.1 (4)C8—C9—C14—N10.8 (3)
C4—C5—C6—C7177.1 (3)C8—C9—C14—C13177.1 (2)
C1—C6—C7—O1173.0 (2)C10—C9—C14—N1179.3 (2)
C1—C6—C7—C86.5 (3)C10—C9—C14—C131.4 (4)
C5—C6—C7—O14.4 (4)O3—C10—C11—C12160.4 (2)
C5—C6—C7—C8176.1 (3)C9—C10—C11—C1222.0 (3)
O1—C7—C8—O250.3 (3)C10—C11—C12—C1349.8 (3)
O1—C7—C8—C975.7 (3)C11—C12—C13—C1450.8 (3)
O1—C7—C8—C15174.4 (2)C12—C13—C14—N1153.7 (2)
C6—C7—C8—O2129.2 (2)C12—C13—C14—C928.7 (3)
C6—C7—C8—C9104.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (3)2.09 (3)2.887 (3)150 (2)
N1—H1···O3i0.88 (3)2.55 (3)3.159 (3)127 (2)
O2—H2A···O5ii0.87 (3)1.86 (3)2.720 (3)168 (3)
O4—H4A···O2iii0.84 (3)1.88 (3)2.712 (3)171 (3)
O5—H51···O3iv0.94 (3)1.83 (3)2.762 (4)174 (3)
C2—H2···O1i0.932.463.052 (3)122
C4—H4···O4v0.932.343.253 (4)165
C13—H13A···O3i0.972.393.265 (4)149
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y1/2, z; (iii) x+2, y, z; (iv) x+1, y, z; (v) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO4·H2O
Mr289.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.703 (2), 13.275 (4), 19.683 (5)
V3)2796.6 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.970, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
17463, 2532, 1576
Rint0.066
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.08
No. of reflections2532
No. of parameters206
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (3)2.09 (3)2.887 (3)150 (2)
N1—H1···O3i0.88 (3)2.55 (3)3.159 (3)127 (2)
O2—H2A···O5ii0.87 (3)1.86 (3)2.720 (3)168 (3)
O4—H4A···O2iii0.84 (3)1.88 (3)2.712 (3)171 (3)
O5—H51···O3iv0.94 (3)1.83 (3)2.762 (4)174 (3)
C2—H2···O1i0.932.463.052 (3)122
C4—H4···O4v0.932.343.253 (4)165
C13—H13A···O3i0.972.393.265 (4)149
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y1/2, z; (iii) x+2, y, z; (iv) x+1, y, z; (v) x1/2, y, z+1/2.
 

Acknowledgements

The authors would like to thank the Higher Education Commission (HEC), Pakistan, for financial assistance to KM under the National Research Program for Universities.

References

First citationBlack, D. St C., Bowyer, M. C., Condie, G. C., Craig, D. C. & Kumar, N. (1994). Tetrahedron, 50, 10983–10994.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriedman, M. (1967). Can. J. Chem. 45, 2271–2275.  CrossRef CAS Web of Science Google Scholar
First citationMoubasher, R. (1948). J. Chem. Soc. pp. 1038–1041.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds