metal-organic compounds
Dibromido{2-[1-(cyclopropylimino)ethyl]pyridine}zinc(II)
aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com
In the title compound, [ZnBr2(C10H12N2)], the Zn2+ ion is coordinated by the N,N′-bidentate Schiff base ligand and two bromode ions in a distorted tetrahedral arrangement. The dihedral angle between the pyridine and the cyclopropyl rings is 95.4 (8)°.
Related literature
For background to et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009). For similar zinc complexes, see: Zakrzewski & Lingafelter (1970); Gourbatsis et al. (1999); Merino et al. (2001); Majumder et al. (2006).
as chelating ligands, see: HamakerExperimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810025201/hb5526sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810025201/hb5526Isup2.hkl
2-Acetylpyridine (0.1 mmol, 12.1 mg) and cyclopropylamine (0.1 mmol, 5.7 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of zinc bromide (0.1 mmol, 22.5 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a colourless solution. Colourless blocks of (I) were obtained by slow evaporation of the solution at room temperature.
H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group.
Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). We report here the
of the title new zinc complex with the chelating Schiff base ligand cyclopropyl-(1-pyridin-2-ylethylidene)amine.The Zn atom in the complex is four-coordinated by one pyridine N and one imine N atoms of the Schiff base ligand, and by two bromide atoms, forming a tetrahedral geometry (Fig. 1). The dihedral angle between the pyridine and the cyclopropyl rings is 95.4 (8)°. The bond lengths (Table 1) related to the Zn atom are comparable to those observed in similar zinc complexes (Zakrzewski & Lingafelter, 1970; Gourbatsis et al., 1999; Merino et al., 2001; Majumder et al., 2006).
For background to
as chelating ligands, see: Hamaker et al. (2010); Wang et al. (2010); Mirkhani et al. (2010); Liu & Yang (2009). For similar zinc complexes, see: Zakrzewski & Lingafelter (1970); Gourbatsis et al. (1999); Merino et al. (2001); Majumder et al. (2006).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids. |
[ZnBr2(C10H12N2)] | F(000) = 372 |
Mr = 385.41 | Dx = 1.978 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.029 (3) Å | Cell parameters from 1405 reflections |
b = 14.090 (3) Å | θ = 2.8–25.0° |
c = 7.037 (2) Å | µ = 8.04 mm−1 |
β = 111.820 (3)° | T = 298 K |
V = 647.0 (4) Å3 | Block, colourless |
Z = 2 | 0.23 × 0.23 × 0.21 mm |
Bruker APEXII CCD diffractometer | 2408 independent reflections |
Radiation source: fine-focus sealed tube | 1708 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.104 |
ω scans | θmax = 27.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −8→8 |
Tmin = 0.259, Tmax = 0.283 | k = −18→17 |
4060 measured reflections | l = −8→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.165 | w = 1/[σ2(Fo2) + (0.0966P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max < 0.001 |
2408 reflections | Δρmax = 0.96 e Å−3 |
137 parameters | Δρmin = −1.09 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 957 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.05 (3) |
[ZnBr2(C10H12N2)] | V = 647.0 (4) Å3 |
Mr = 385.41 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.029 (3) Å | µ = 8.04 mm−1 |
b = 14.090 (3) Å | T = 298 K |
c = 7.037 (2) Å | 0.23 × 0.23 × 0.21 mm |
β = 111.820 (3)° |
Bruker APEXII CCD diffractometer | 2408 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1708 reflections with I > 2σ(I) |
Tmin = 0.259, Tmax = 0.283 | Rint = 0.104 |
4060 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.165 | Δρmax = 0.96 e Å−3 |
S = 0.95 | Δρmin = −1.09 e Å−3 |
2408 reflections | Absolute structure: Flack (1983), 957 Friedel pairs |
137 parameters | Absolute structure parameter: −0.05 (3) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.01583 (18) | 0.10050 (8) | 0.5412 (2) | 0.0380 (3) | |
Br1 | −0.0650 (2) | −0.05302 (9) | 0.6175 (2) | 0.0601 (4) | |
Br2 | 0.0576 (2) | 0.12235 (9) | 0.2262 (2) | 0.0559 (4) | |
N1 | −0.1663 (14) | 0.2047 (7) | 0.5832 (15) | 0.040 (2) | |
N2 | 0.2313 (14) | 0.1748 (7) | 0.7783 (14) | 0.036 (2) | |
C1 | −0.3710 (18) | 0.2147 (10) | 0.491 (2) | 0.050 (3) | |
H1 | −0.4447 | 0.1674 | 0.4022 | 0.060* | |
C2 | −0.477 (2) | 0.2918 (10) | 0.524 (2) | 0.053 (3) | |
H2 | −0.6184 | 0.2965 | 0.4582 | 0.064* | |
C3 | −0.369 (2) | 0.3597 (10) | 0.652 (2) | 0.057 (4) | |
H3 | −0.4351 | 0.4134 | 0.6742 | 0.069* | |
C4 | −0.158 (2) | 0.3503 (9) | 0.753 (2) | 0.047 (3) | |
H4 | −0.0833 | 0.3966 | 0.8450 | 0.056* | |
C5 | −0.0622 (16) | 0.2727 (8) | 0.7166 (16) | 0.034 (2) | |
C6 | 0.1628 (17) | 0.2531 (8) | 0.8195 (16) | 0.036 (2) | |
C7 | 0.288 (2) | 0.3276 (9) | 0.968 (2) | 0.058 (4) | |
H7A | 0.2300 | 0.3390 | 1.0702 | 0.087* | |
H7B | 0.2870 | 0.3854 | 0.8960 | 0.087* | |
H7C | 0.4265 | 0.3057 | 1.0337 | 0.087* | |
C8 | 0.4414 (17) | 0.1441 (9) | 0.8788 (19) | 0.044 (3) | |
H8 | 0.5438 | 0.1939 | 0.9385 | 0.053* | |
C9 | 0.471 (2) | 0.0526 (10) | 0.995 (2) | 0.051 (3) | |
H9A | 0.3501 | 0.0188 | 0.9917 | 0.061* | |
H9B | 0.5889 | 0.0474 | 1.1220 | 0.061* | |
C10 | 0.511 (2) | 0.0589 (11) | 0.799 (2) | 0.058 (4) | |
H10A | 0.6518 | 0.0572 | 0.8084 | 0.070* | |
H10B | 0.4131 | 0.0285 | 0.6781 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0393 (6) | 0.0335 (7) | 0.0441 (7) | −0.0027 (6) | 0.0189 (5) | −0.0084 (6) |
Br1 | 0.0749 (9) | 0.0420 (7) | 0.0784 (10) | −0.0192 (7) | 0.0460 (8) | −0.0117 (7) |
Br2 | 0.0672 (8) | 0.0607 (9) | 0.0464 (7) | −0.0071 (6) | 0.0287 (7) | −0.0038 (6) |
N1 | 0.039 (5) | 0.039 (6) | 0.039 (5) | 0.000 (4) | 0.010 (4) | −0.005 (4) |
N2 | 0.040 (5) | 0.037 (5) | 0.029 (5) | 0.004 (4) | 0.011 (4) | 0.009 (4) |
C1 | 0.043 (7) | 0.061 (8) | 0.045 (7) | 0.001 (6) | 0.016 (6) | 0.001 (6) |
C2 | 0.056 (8) | 0.056 (8) | 0.056 (8) | 0.029 (7) | 0.030 (7) | 0.009 (7) |
C3 | 0.069 (9) | 0.045 (8) | 0.066 (9) | 0.028 (7) | 0.035 (8) | 0.013 (7) |
C4 | 0.066 (8) | 0.034 (6) | 0.045 (7) | 0.006 (6) | 0.026 (7) | 0.001 (5) |
C5 | 0.035 (6) | 0.038 (6) | 0.028 (5) | 0.003 (5) | 0.009 (5) | 0.009 (5) |
C6 | 0.051 (7) | 0.031 (6) | 0.030 (6) | −0.002 (5) | 0.020 (5) | 0.001 (4) |
C7 | 0.065 (9) | 0.041 (8) | 0.061 (9) | −0.007 (6) | 0.016 (8) | −0.014 (6) |
C8 | 0.032 (6) | 0.043 (7) | 0.052 (7) | 0.002 (5) | 0.009 (5) | 0.001 (6) |
C9 | 0.052 (8) | 0.047 (7) | 0.054 (7) | 0.012 (6) | 0.019 (7) | 0.015 (6) |
C10 | 0.046 (7) | 0.079 (10) | 0.047 (7) | 0.018 (7) | 0.015 (6) | 0.007 (7) |
Zn1—N1 | 2.041 (9) | C4—H4 | 0.9300 |
Zn1—N2 | 2.073 (10) | C5—C6 | 1.500 (15) |
Zn1—Br1 | 2.3488 (18) | C6—C7 | 1.514 (16) |
Zn1—Br2 | 2.3616 (19) | C7—H7A | 0.9600 |
N1—C1 | 1.348 (15) | C7—H7B | 0.9600 |
N1—C5 | 1.350 (15) | C7—H7C | 0.9600 |
N2—C6 | 1.279 (15) | C8—C10 | 1.48 (2) |
N2—C8 | 1.446 (14) | C8—C9 | 1.498 (18) |
C1—C2 | 1.383 (18) | C8—H8 | 0.9800 |
C1—H1 | 0.9300 | C9—C10 | 1.506 (19) |
C2—C3 | 1.34 (2) | C9—H9A | 0.9700 |
C2—H2 | 0.9300 | C9—H9B | 0.9700 |
C3—C4 | 1.392 (19) | C10—H10A | 0.9700 |
C3—H3 | 0.9300 | C10—H10B | 0.9700 |
C4—C5 | 1.358 (17) | ||
N1—Zn1—N2 | 80.2 (4) | N2—C6—C5 | 117.9 (10) |
N1—Zn1—Br1 | 114.3 (3) | N2—C6—C7 | 125.7 (11) |
N2—Zn1—Br1 | 116.6 (3) | C5—C6—C7 | 116.4 (10) |
N1—Zn1—Br2 | 110.2 (3) | C6—C7—H7A | 109.5 |
N2—Zn1—Br2 | 112.4 (3) | C6—C7—H7B | 109.5 |
Br1—Zn1—Br2 | 117.36 (7) | H7A—C7—H7B | 109.5 |
C1—N1—C5 | 117.7 (10) | C6—C7—H7C | 109.5 |
C1—N1—Zn1 | 128.4 (8) | H7A—C7—H7C | 109.5 |
C5—N1—Zn1 | 113.8 (7) | H7B—C7—H7C | 109.5 |
C6—N2—C8 | 123.3 (11) | N2—C8—C10 | 118.4 (11) |
C6—N2—Zn1 | 113.2 (7) | N2—C8—C9 | 115.8 (10) |
C8—N2—Zn1 | 123.4 (8) | C10—C8—C9 | 60.7 (9) |
N1—C1—C2 | 123.2 (13) | N2—C8—H8 | 116.7 |
N1—C1—H1 | 118.4 | C10—C8—H8 | 116.7 |
C2—C1—H1 | 118.4 | C9—C8—H8 | 116.7 |
C3—C2—C1 | 117.8 (12) | C8—C9—C10 | 59.1 (9) |
C3—C2—H2 | 121.1 | C8—C9—H9A | 117.9 |
C1—C2—H2 | 121.1 | C10—C9—H9A | 117.9 |
C2—C3—C4 | 120.3 (12) | C8—C9—H9B | 117.9 |
C2—C3—H3 | 119.8 | C10—C9—H9B | 117.9 |
C4—C3—H3 | 119.8 | H9A—C9—H9B | 115.0 |
C5—C4—C3 | 119.3 (12) | C8—C10—C9 | 60.2 (8) |
C5—C4—H4 | 120.4 | C8—C10—H10A | 117.8 |
C3—C4—H4 | 120.4 | C9—C10—H10A | 117.8 |
N1—C5—C4 | 121.6 (10) | C8—C10—H10B | 117.8 |
N1—C5—C6 | 114.0 (10) | C9—C10—H10B | 117.8 |
C4—C5—C6 | 124.3 (11) | H10A—C10—H10B | 114.9 |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C10H12N2)] |
Mr | 385.41 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 298 |
a, b, c (Å) | 7.029 (3), 14.090 (3), 7.037 (2) |
β (°) | 111.820 (3) |
V (Å3) | 647.0 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 8.04 |
Crystal size (mm) | 0.23 × 0.23 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.259, 0.283 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4060, 2408, 1708 |
Rint | 0.104 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.165, 0.95 |
No. of reflections | 2408 |
No. of parameters | 137 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.96, −1.09 |
Absolute structure | Flack (1983), 957 Friedel pairs |
Absolute structure parameter | −0.05 (3) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375. Web of Science CSD CrossRef CAS Google Scholar
Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem. 44, 5080–5089. Web of Science CSD CrossRef PubMed CAS Google Scholar
Majumder, A., Rosair, G. M., Mallick, A., Chattopadhyay, N. & Mitra, S. (2006). Polyhedron, 25, 1753–1762. Web of Science CSD CrossRef CAS Google Scholar
Merino, P., Anoro, S., Cerrada, E., Laguna, M., Moreno, A. & Tejero, T. (2001). Molecules, 6, 208–220. Web of Science CrossRef CAS Google Scholar
Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem. 35, 81–87. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem. 36, 33–36. Web of Science CrossRef Google Scholar
Zakrzewski, G. & Lingafelter, E. C. (1970). Inorg. Chim. Acta, 4, 251–257. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have often been used as chelating ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). We report here the crystal structure of the title new zinc complex with the chelating Schiff base ligand cyclopropyl-(1-pyridin-2-ylethylidene)amine.
The Zn atom in the complex is four-coordinated by one pyridine N and one imine N atoms of the Schiff base ligand, and by two bromide atoms, forming a tetrahedral geometry (Fig. 1). The dihedral angle between the pyridine and the cyclopropyl rings is 95.4 (8)°. The bond lengths (Table 1) related to the Zn atom are comparable to those observed in similar zinc complexes (Zakrzewski & Lingafelter, 1970; Gourbatsis et al., 1999; Merino et al., 2001; Majumder et al., 2006).