inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(thio­urea-κS)nickel(II) nitrate: a redetermination

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 26 June 2010; accepted 6 July 2010; online 10 July 2010)

A preliminary X-ray study of the title mol­ecular salt, [Ni(CH4N2S)6](NO3)2, has been reported twice previously, by Maďar [Acta Cryst. (1961), 14, 894] and Rodriguez, Cubero, Vega, Morente & Vazquez [Acta Cryst. (1961), 14, 1101], using film methods. We confirm the previous studies, but to modern standards of precision and with all H atoms located. The central Ni atom (site symmetry [\overline{1}]) of the dication is octa­hedrally coordinated by six S-bound thio­urea mol­ecules. The crystal structure is stabilized by intra- and inter­molecular N—H⋯S and N—H⋯O hydrogen bonds.

Related literature

The structure of the title complex at room temperature has been reported twice previously, see: Maďar (1961[Maďar, J. (1961). Acta Cryst. 14, 894.]); Rodriguez et al. (1961[Rodriguez, M. P., Cubero, M., Vega, R., Morente, A. & Vazquez, J. L. (1961). Acta Cryst. 14, 1101.]). For the biological and non-linear optical properties and applications of metal complexes of thio­urea-type ligands, see: Arslan et al. (2009[Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]); Emre et al. (2009[Emre, B., Mustafa, G. & Osman, A. A. (2009). Hydrometallurgy, 95, 15-21.]); Bhaskaran et al. (2007[Bhaskaran, A., Ragavan, C. M., Sankar, R., Mohankumar, R. & Jayavel, R. (2007). Cryst. Res. Technol. 42, 477-482.]); Eaton & Law(1975[Eaton, D. R. & Zaw, K. (1975). Can. J. Chem. 53, 633-643.]); Figgis & Reynolds (1986[Figgis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125-134.]). For the crystal structures of some similar Ni complexes, see: Suescun et al. (2000[Suescun, L., Mombrú, A. W., Mariezcurrena, R. A., Pardo, H., Russi, S. & Baggio, R. (2000). Acta Cryst. C56, 179-181.]); Zhu et al. (2009[Zhu, J., Wang, J.-G., Duan, T. & Zhang, Q.-F. (2009). Acta Cryst. E65, m1697.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(CH4N2S)6](NO3)2

  • Mr = 639.50

  • Monoclinic, C 2/c

  • a = 22.4433 (6) Å

  • b = 9.2398 (3) Å

  • c = 16.3136 (5) Å

  • β = 129.724 (1)°

  • V = 2601.96 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 296 K

  • 0.25 × 0.10 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11568 measured reflections

  • 3129 independent reflections

  • 2542 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.068

  • S = 1.03

  • 3129 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—S1 2.4708 (7)
Ni1—S2 2.4879 (5)
Ni1—S3 2.4995 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.21 3.037 (4) 161
N1—H1B⋯O2 0.86 2.17 2.965 (3) 154
N2—H2A⋯O3ii 0.86 2.56 2.963 (3) 110
N2—H2A⋯O3i 0.86 2.30 3.110 (4) 157
N2—H2B⋯S2 0.86 2.63 3.449 (3) 159
N3—H3A⋯O3iii 0.86 2.19 3.022 (2) 163
N3—H3B⋯S1 0.86 2.72 3.5021 (19) 152
N3—H3B⋯S3 0.86 2.87 3.444 (2) 126
N4—H4A⋯O2iii 0.86 2.01 2.865 (3) 175
N4—H4B⋯S2iv 0.86 2.75 3.555 (2) 157
N5—H5A⋯S3v 0.86 2.82 3.623 (2) 155
N5—H5A⋯O1vi 0.86 2.48 2.922 (3) 113
N5—H5B⋯S1vi 0.86 2.59 3.410 (2) 160
N6—H6A⋯S2vii 0.86 2.83 3.464 (3) 132
N6—H6A⋯S3v 0.86 2.80 3.601 (2) 156
N6—H6B⋯O1viii 0.86 2.10 2.958 (3) 174
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vii) [x, -y, z+{\script{1\over 2}}]; (viii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordination chemistry of thiourea type ligands has been a matter of interest in view of their biological (Arslan et al., 2009) and non-linear optical (Bhaskaran et al., 2007) properties, and because of their potential use as selective reagents for concentration and separation of metal ions (Emre et al., 2009). The complexes of nickel(II) with thioureas were shown to have a variety of stereochemistries (octahedral, tetragonal, square planar and tetrahedral) both in the solid state and in solution form (Eaton et al., 1975; Figgis et al., 1986; Suescun et al., 2000; Zhu et al., 2009). In order to investigate further about the structures of nickel(II)-thiourea systems, we present here a structural study of a Tu complex with nickel(II) nitrate, which consists of [Ni(Tu)6]+2 molecular ions and nitrate counter ions.

A preliminary X-ray study of complex (I) has been reported twice previously, but with incomplete crystallographic data (Maďar, 1961; Rodriguez et al., 1961). We redetermined the crystal structure of complex (I), which we present in this paper.

In (I), the central Ni atom is located on a centre of inversion and is six-coordinated by six thiourea groups in a octahedral geometry (Fig. 1). The values of the geometrical parameters of the title molecule are as expected (Allen et al., 1987). The Ni—S bond lengths vary from 2.4708 (7) to 2.4995 (6) Å.

In the crystal packing of (I), adjacent molecules are linked by intra and intermolecular N—H···S and N—H···O hydrogen bonds (Table 2, Fig. 2), forming a three-dimensional network and a supramolecular structure.

Related literature top

The structure of the title complex at room temperature has been reported twice previously, see: Maďar (1961); Rodriguez et al. (1961). For the biological and non-linear optical properties and applications of metal complexes of thiourea-type ligands, see: Arslan et al. (2009); Emre et al. (2009); Bhaskaran et al. (2007); Eaton et al. (1975); Figgis et al. (1986). For the crystal structures of some similar Ni complexes, see: Suescun et al. (2000); Zhu et al. (2009). For reference structural data, see: Allen et al. (1987).

Experimental top

The complex was prepared by adding 4 equivalents of thiourea in 10 ml methanol to 1 mmole (0.29 g) solution of nickel(II) nitrate hexa hydrate in 10 ml methanol. After stirring the solution for half an hour, the green solution was filtered and the filtrate was kept for crystallization. As a result light green needles of (I) were formed.

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Structure description top

The coordination chemistry of thiourea type ligands has been a matter of interest in view of their biological (Arslan et al., 2009) and non-linear optical (Bhaskaran et al., 2007) properties, and because of their potential use as selective reagents for concentration and separation of metal ions (Emre et al., 2009). The complexes of nickel(II) with thioureas were shown to have a variety of stereochemistries (octahedral, tetragonal, square planar and tetrahedral) both in the solid state and in solution form (Eaton et al., 1975; Figgis et al., 1986; Suescun et al., 2000; Zhu et al., 2009). In order to investigate further about the structures of nickel(II)-thiourea systems, we present here a structural study of a Tu complex with nickel(II) nitrate, which consists of [Ni(Tu)6]+2 molecular ions and nitrate counter ions.

A preliminary X-ray study of complex (I) has been reported twice previously, but with incomplete crystallographic data (Maďar, 1961; Rodriguez et al., 1961). We redetermined the crystal structure of complex (I), which we present in this paper.

In (I), the central Ni atom is located on a centre of inversion and is six-coordinated by six thiourea groups in a octahedral geometry (Fig. 1). The values of the geometrical parameters of the title molecule are as expected (Allen et al., 1987). The Ni—S bond lengths vary from 2.4708 (7) to 2.4995 (6) Å.

In the crystal packing of (I), adjacent molecules are linked by intra and intermolecular N—H···S and N—H···O hydrogen bonds (Table 2, Fig. 2), forming a three-dimensional network and a supramolecular structure.

The structure of the title complex at room temperature has been reported twice previously, see: Maďar (1961); Rodriguez et al. (1961). For the biological and non-linear optical properties and applications of metal complexes of thiourea-type ligands, see: Arslan et al. (2009); Emre et al. (2009); Bhaskaran et al. (2007); Eaton et al. (1975); Figgis et al. (1986). For the crystal structures of some similar Ni complexes, see: Suescun et al. (2000); Zhu et al. (2009). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids depicted at the 30% probability level for all non-H atoms.
[Figure 2] Fig. 2. Partial view of the intra and intermolecular N—H···S and N—H···O hydrogen bonds in the crystal structure of (I), forming a three-dimensional network.
Hexakis(thiourea-κS)nickel(II) dinitrate top
Crystal data top
[Ni(CH4N2S)6](NO3)2F(000) = 1320
Mr = 639.50Dx = 1.633 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4823 reflections
a = 22.4433 (6) Åθ = 2.5–28.2°
b = 9.2398 (3) ŵ = 1.28 mm1
c = 16.3136 (5) ÅT = 296 K
β = 129.724 (1)°Needle, light green
V = 2601.96 (14) Å30.25 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2542 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.033
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
φ and ω scansh = 2921
11568 measured reflectionsk = 1112
3129 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2 + 1.7568P]
where P = (Fo2 + 2Fc2)/3
3129 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni(CH4N2S)6](NO3)2V = 2601.96 (14) Å3
Mr = 639.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.4433 (6) ŵ = 1.28 mm1
b = 9.2398 (3) ÅT = 296 K
c = 16.3136 (5) Å0.25 × 0.10 × 0.06 mm
β = 129.724 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2542 reflections with I > 2σ(I)
11568 measured reflectionsRint = 0.033
3129 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
3129 reflectionsΔρmin = 0.29 e Å3
151 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.250000.250000.000000.0246 (1)
S10.38321 (3)0.34540 (6)0.10478 (4)0.0362 (2)
S20.28084 (3)0.01160 (5)0.01164 (4)0.0331 (1)
S30.28343 (3)0.27376 (5)0.17786 (4)0.0311 (1)
N10.49791 (11)0.3572 (3)0.10299 (17)0.0630 (8)
N20.42272 (13)0.1592 (2)0.02330 (19)0.0630 (9)
N30.40567 (10)0.00546 (19)0.21644 (13)0.0475 (6)
N40.36277 (12)0.2195 (2)0.14917 (16)0.0621 (7)
N50.20704 (11)0.0325 (2)0.14718 (15)0.0516 (7)
N60.29045 (13)0.1162 (2)0.31643 (15)0.0687 (8)
C10.43826 (11)0.2808 (2)0.07398 (16)0.0341 (6)
C20.35527 (11)0.0788 (2)0.13536 (15)0.0324 (6)
C30.25769 (12)0.1293 (2)0.21517 (16)0.0363 (7)
O10.41450 (9)0.6847 (2)0.02032 (13)0.0604 (6)
O20.50573 (11)0.6706 (2)0.14802 (14)0.0786 (7)
O30.48990 (11)0.86552 (19)0.06598 (15)0.0676 (7)
N70.46952 (10)0.7413 (2)0.06486 (15)0.0429 (6)
H1A0.526600.327200.088600.0940*
H1B0.508500.437500.136500.0940*
H2A0.451700.129900.009200.0940*
H2B0.383500.108400.004000.0940*
H3A0.442700.031800.277200.0570*
H3B0.401600.097900.208800.0570*
H4A0.400200.254900.210500.0930*
H4B0.330300.276300.096900.0930*
H5A0.195600.038600.168900.0620*
H5B0.185200.039900.080800.0620*
H6A0.278500.044600.337100.0820*
H6B0.323800.179100.361900.0820*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0289 (2)0.0234 (2)0.0217 (2)0.0015 (1)0.0164 (1)0.0012 (1)
S10.0328 (2)0.0410 (3)0.0373 (3)0.0076 (2)0.0235 (2)0.0106 (2)
S20.0400 (3)0.0251 (2)0.0238 (2)0.0030 (2)0.0156 (2)0.0008 (2)
S30.0450 (3)0.0272 (2)0.0274 (2)0.0046 (2)0.0260 (2)0.0013 (2)
N10.0430 (11)0.0898 (17)0.0669 (14)0.0207 (11)0.0401 (11)0.0293 (12)
N20.0735 (14)0.0459 (12)0.1040 (18)0.0078 (11)0.0727 (15)0.0195 (12)
N30.0421 (10)0.0372 (10)0.0320 (9)0.0044 (8)0.0093 (8)0.0021 (8)
N40.0577 (13)0.0333 (10)0.0432 (12)0.0039 (9)0.0082 (10)0.0092 (9)
N50.0610 (12)0.0463 (11)0.0399 (11)0.0225 (10)0.0288 (10)0.0010 (9)
N60.0915 (16)0.0746 (15)0.0338 (11)0.0326 (13)0.0372 (12)0.0040 (10)
C10.0305 (9)0.0398 (12)0.0301 (10)0.0053 (8)0.0185 (9)0.0076 (9)
C20.0315 (9)0.0325 (11)0.0298 (10)0.0033 (8)0.0180 (8)0.0039 (8)
C30.0413 (11)0.0390 (12)0.0309 (11)0.0049 (9)0.0242 (9)0.0030 (9)
O10.0486 (9)0.0701 (12)0.0348 (9)0.0114 (8)0.0138 (8)0.0145 (8)
O20.0811 (13)0.0679 (12)0.0360 (10)0.0217 (11)0.0139 (10)0.0029 (9)
O30.0798 (13)0.0451 (11)0.0654 (12)0.0100 (9)0.0406 (11)0.0064 (9)
N70.0398 (10)0.0498 (12)0.0358 (10)0.0052 (9)0.0226 (9)0.0074 (9)
Geometric parameters (Å, º) top
Ni1—S12.4708 (7)N4—C21.312 (3)
Ni1—S22.4879 (5)N5—C31.308 (3)
Ni1—S32.4995 (6)N6—C31.316 (3)
Ni1—S1i2.4708 (7)N1—H1B0.8600
Ni1—S2i2.4879 (5)N1—H1A0.8600
Ni1—S3i2.4995 (6)N2—H2A0.8600
S1—C11.711 (3)N2—H2B0.8600
S2—C21.715 (2)N3—H3A0.8600
S3—C31.713 (2)N3—H3B0.8600
O1—N71.239 (3)N4—H4B0.8600
O2—N71.232 (3)N4—H4A0.8600
O3—N71.231 (3)N5—H5A0.8600
N1—C11.306 (4)N5—H5B0.8600
N2—C11.304 (3)N6—H6A0.8600
N3—C21.313 (3)N6—H6B0.8600
S1—Ni1—S298.00 (2)C2—N3—H3B120.00
S1—Ni1—S380.37 (2)C2—N3—H3A120.00
S1—Ni1—S1i180.00H3A—N3—H3B120.00
S1—Ni1—S2i82.00 (2)C2—N4—H4B120.00
S1—Ni1—S3i99.63 (2)C2—N4—H4A120.00
S2—Ni1—S397.72 (2)H4A—N4—H4B120.00
S1i—Ni1—S282.00 (2)H5A—N5—H5B120.00
S2—Ni1—S2i180.00C3—N5—H5A120.00
S2—Ni1—S3i82.28 (2)C3—N5—H5B120.00
S1i—Ni1—S399.63 (2)C3—N6—H6B120.00
S2i—Ni1—S382.28 (2)H6A—N6—H6B120.00
S3—Ni1—S3i180.00C3—N6—H6A120.00
S1i—Ni1—S2i98.00 (2)O2—N7—O3120.0 (2)
S1i—Ni1—S3i80.37 (2)O1—N7—O2119.6 (2)
S2i—Ni1—S3i97.72 (2)O1—N7—O3120.29 (19)
Ni1—S1—C1116.99 (8)S1—C1—N2122.4 (2)
Ni1—S2—C2117.12 (7)S1—C1—N1118.06 (18)
Ni1—S3—C3115.14 (7)N1—C1—N2119.5 (3)
C1—N1—H1B120.00S2—C2—N4118.85 (16)
H1A—N1—H1B120.00S2—C2—N3122.36 (15)
C1—N1—H1A120.00N3—C2—N4118.78 (19)
H2A—N2—H2B120.00N5—C3—N6119.2 (2)
C1—N2—H2A120.00S3—C3—N5122.62 (17)
C1—N2—H2B120.00S3—C3—N6118.22 (17)
S2—Ni1—S1—C147.38 (8)S2—Ni1—S3—C338.66 (11)
S3—Ni1—S1—C1143.91 (8)S1i—Ni1—S3—C344.48 (11)
S2i—Ni1—S1—C1132.62 (8)S2i—Ni1—S3—C3141.34 (11)
S3i—Ni1—S1—C136.09 (8)Ni1—S1—C1—N1159.63 (16)
S1—Ni1—S2—C248.29 (12)Ni1—S1—C1—N220.5 (2)
S3—Ni1—S2—C233.00 (12)Ni1—S2—C2—N315.4 (3)
S1i—Ni1—S2—C2131.71 (12)Ni1—S2—C2—N4165.6 (2)
S3i—Ni1—S2—C2147.00 (12)Ni1—S3—C3—N517.6 (3)
S1—Ni1—S3—C3135.52 (11)Ni1—S3—C3—N6162.5 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.862.213.037 (4)161
N1—H1B···O20.862.172.965 (3)154
N2—H2A···O3iii0.862.562.963 (3)110
N2—H2A···O3ii0.862.303.110 (4)157
N2—H2B···S20.862.633.449 (3)159
N3—H3A···O3iv0.862.193.022 (2)163
N3—H3B···S10.862.723.5021 (19)152
N3—H3B···S30.862.873.444 (2)126
N4—H4A···O2iv0.862.012.865 (3)175
N4—H4B···S2v0.862.753.555 (2)157
N5—H5A···S3vi0.862.823.623 (2)155
N5—H5A···O1i0.862.482.922 (3)113
N5—H5B···S1i0.862.593.410 (2)160
N6—H6A···S2vii0.862.833.464 (3)132
N6—H6A···S3vi0.862.803.601 (2)156
N6—H6B···O1viii0.862.102.958 (3)174
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y1, z+1/2; (v) x+1/2, y1/2, z; (vi) x+1/2, y1/2, z+1/2; (vii) x, y, z+1/2; (viii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(CH4N2S)6](NO3)2
Mr639.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.4433 (6), 9.2398 (3), 16.3136 (5)
β (°) 129.724 (1)
V3)2601.96 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.25 × 0.10 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11568, 3129, 2542
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 1.03
No. of reflections3129
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—S12.4708 (7)Ni1—S32.4995 (6)
Ni1—S22.4879 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.213.037 (4)161
N1—H1B···O20.862.172.965 (3)154
N2—H2A···O3ii0.862.562.963 (3)110
N2—H2A···O3i0.862.303.110 (4)157
N2—H2B···S20.862.633.449 (3)159
N3—H3A···O3iii0.862.193.022 (2)163
N3—H3B···S10.862.723.5021 (19)152
N3—H3B···S30.862.873.444 (2)126
N4—H4A···O2iii0.862.012.865 (3)175
N4—H4B···S2iv0.862.753.555 (2)157
N5—H5A···S3v0.862.823.623 (2)155
N5—H5A···O1vi0.862.482.922 (3)113
N5—H5B···S1vi0.862.593.410 (2)160
N6—H6A···S2vii0.862.833.464 (3)132
N6—H6A···S3v0.862.803.601 (2)156
N6—H6B···O1viii0.862.102.958 (3)174
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+1, y1, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x, y, z+1/2; (viii) x, y+1, z+1/2.
 

Footnotes

Additional corresponding author: saeed_a786@hotmail.com

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationBhaskaran, A., Ragavan, C. M., Sankar, R., Mohankumar, R. & Jayavel, R. (2007). Cryst. Res. Technol. 42, 477–482.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEaton, D. R. & Zaw, K. (1975). Can. J. Chem. 53, 633–643.  CrossRef CAS Web of Science Google Scholar
First citationEmre, B., Mustafa, G. & Osman, A. A. (2009). Hydrometallurgy, 95, 15–21.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFiggis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125–134.  CSD CrossRef Web of Science Google Scholar
First citationMaďar, J. (1961). Acta Cryst. 14, 894.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRodriguez, M. P., Cubero, M., Vega, R., Morente, A. & Vazquez, J. L. (1961). Acta Cryst. 14, 1101.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuescun, L., Mombrú, A. W., Mariezcurrena, R. A., Pardo, H., Russi, S. & Baggio, R. (2000). Acta Cryst. C56, 179–181.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhu, J., Wang, J.-G., Duan, T. & Zhang, Q.-F. (2009). Acta Cryst. E65, m1697.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds