inorganic compounds
Hexakis(thiourea-κS)nickel(II) nitrate: a redetermination
aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr
A preliminary X-ray study of the title molecular salt, [Ni(CH4N2S)6](NO3)2, has been reported twice previously, by Maďar [Acta Cryst. (1961), 14, 894] and Rodriguez, Cubero, Vega, Morente & Vazquez [Acta Cryst. (1961), 14, 1101], using film methods. We confirm the previous studies, but to modern standards of precision and with all H atoms located. The central Ni atom (site symmetry ) of the dication is octahedrally coordinated by six S-bound thiourea molecules. The is stabilized by intra- and intermolecular N—H⋯S and N—H⋯O hydrogen bonds.
Related literature
The structure of the title complex at room temperature has been reported twice previously, see: Maďar (1961); Rodriguez et al. (1961). For the biological and non-linear optical properties and applications of metal complexes of thiourea-type ligands, see: Arslan et al. (2009); Emre et al. (2009); Bhaskaran et al. (2007); Eaton & Law(1975); Figgis & Reynolds (1986). For the crystal structures of some similar Ni complexes, see: Suescun et al. (2000); Zhu et al. (2009). For reference structural data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810026668/hb5527sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810026668/hb5527Isup2.hkl
The complex was prepared by adding 4 equivalents of thiourea in 10 ml methanol to 1 mmole (0.29 g) solution of nickel(II) nitrate hexa hydrate in 10 ml methanol. After stirring the solution for half an hour, the green solution was filtered and the filtrate was kept for crystallization. As a result light green needles of (I) were formed.
H atoms were positioned geometrically and were treated as riding on their parent C atoms, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).
The coordination chemistry of thiourea type ligands has been a matter of interest in view of their biological (Arslan et al., 2009) and non-linear optical (Bhaskaran et al., 2007) properties, and because of their potential use as selective reagents for concentration and separation of metal ions (Emre et al., 2009). The complexes of nickel(II) with thioureas were shown to have a variety of stereochemistries (octahedral, tetragonal, square planar and tetrahedral) both in the solid state and in solution form (Eaton et al., 1975; Figgis et al., 1986; Suescun et al., 2000; Zhu et al., 2009). In order to investigate further about the structures of nickel(II)-thiourea systems, we present here a structural study of a Tu complex with nickel(II) nitrate, which consists of [Ni(Tu)6]+2 molecular ions and nitrate counter ions.
A preliminary X-ray study of complex (I) has been reported twice previously, but with incomplete crystallographic data (Maďar, 1961; Rodriguez et al., 1961). We redetermined the
of complex (I), which we present in this paper.In (I), the central Ni atom is located on a centre of inversion and is six-coordinated by six thiourea groups in a octahedral geometry (Fig. 1). The values of the geometrical parameters of the title molecule are as expected (Allen et al., 1987). The Ni—S bond lengths vary from 2.4708 (7) to 2.4995 (6) Å.
In the crystal packing of (I), adjacent molecules are linked by intra and intermolecular N—H···S and N—H···O hydrogen bonds (Table 2, Fig. 2), forming a three-dimensional network and a supramolecular structure.
The structure of the title complex at room temperature has been reported twice previously, see: Maďar (1961); Rodriguez et al. (1961). For the biological and non-linear optical properties and applications of metal complexes of thiourea-type ligands, see: Arslan et al. (2009); Emre et al. (2009); Bhaskaran et al. (2007); Eaton et al. (1975); Figgis et al. (1986). For the crystal structures of some similar Ni complexes, see: Suescun et al. (2000); Zhu et al. (2009). For reference structural data, see: Allen et al. (1987).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. View of (I) with displacement ellipsoids depicted at the 30% probability level for all non-H atoms. | |
Fig. 2. Partial view of the intra and intermolecular N—H···S and N—H···O hydrogen bonds in the crystal structure of (I), forming a three-dimensional network. |
[Ni(CH4N2S)6](NO3)2 | F(000) = 1320 |
Mr = 639.50 | Dx = 1.633 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4823 reflections |
a = 22.4433 (6) Å | θ = 2.5–28.2° |
b = 9.2398 (3) Å | µ = 1.28 mm−1 |
c = 16.3136 (5) Å | T = 296 K |
β = 129.724 (1)° | Needle, light green |
V = 2601.96 (14) Å3 | 0.25 × 0.10 × 0.06 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2542 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 28.3°, θmin = 2.5° |
φ and ω scans | h = −29→21 |
11568 measured reflections | k = −11→12 |
3129 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0256P)2 + 1.7568P] where P = (Fo2 + 2Fc2)/3 |
3129 reflections | (Δ/σ)max < 0.001 |
151 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Ni(CH4N2S)6](NO3)2 | V = 2601.96 (14) Å3 |
Mr = 639.50 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.4433 (6) Å | µ = 1.28 mm−1 |
b = 9.2398 (3) Å | T = 296 K |
c = 16.3136 (5) Å | 0.25 × 0.10 × 0.06 mm |
β = 129.724 (1)° |
Bruker APEXII CCD diffractometer | 2542 reflections with I > 2σ(I) |
11568 measured reflections | Rint = 0.033 |
3129 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.35 e Å−3 |
3129 reflections | Δρmin = −0.29 e Å−3 |
151 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.25000 | 0.25000 | 0.00000 | 0.0246 (1) | |
S1 | 0.38321 (3) | 0.34540 (6) | 0.10478 (4) | 0.0362 (2) | |
S2 | 0.28084 (3) | −0.01160 (5) | 0.01164 (4) | 0.0331 (1) | |
S3 | 0.28343 (3) | 0.27376 (5) | 0.17786 (4) | 0.0311 (1) | |
N1 | 0.49791 (11) | 0.3572 (3) | 0.10299 (17) | 0.0630 (8) | |
N2 | 0.42272 (13) | 0.1592 (2) | 0.02330 (19) | 0.0630 (9) | |
N3 | 0.40567 (10) | 0.00546 (19) | 0.21644 (13) | 0.0475 (6) | |
N4 | 0.36277 (12) | −0.2195 (2) | 0.14917 (16) | 0.0621 (7) | |
N5 | 0.20704 (11) | 0.0325 (2) | 0.14718 (15) | 0.0516 (7) | |
N6 | 0.29045 (13) | 0.1162 (2) | 0.31643 (15) | 0.0687 (8) | |
C1 | 0.43826 (11) | 0.2808 (2) | 0.07398 (16) | 0.0341 (6) | |
C2 | 0.35527 (11) | −0.0788 (2) | 0.13536 (15) | 0.0324 (6) | |
C3 | 0.25769 (12) | 0.1293 (2) | 0.21517 (16) | 0.0363 (7) | |
O1 | 0.41450 (9) | 0.6847 (2) | −0.02032 (13) | 0.0604 (6) | |
O2 | 0.50573 (11) | 0.6706 (2) | 0.14802 (14) | 0.0786 (7) | |
O3 | 0.48990 (11) | 0.86552 (19) | 0.06598 (15) | 0.0676 (7) | |
N7 | 0.46952 (10) | 0.7413 (2) | 0.06486 (15) | 0.0429 (6) | |
H1A | 0.52660 | 0.32720 | 0.08860 | 0.0940* | |
H1B | 0.50850 | 0.43750 | 0.13650 | 0.0940* | |
H2A | 0.45170 | 0.12990 | 0.00920 | 0.0940* | |
H2B | 0.38350 | 0.10840 | 0.00400 | 0.0940* | |
H3A | 0.44270 | −0.03180 | 0.27720 | 0.0570* | |
H3B | 0.40160 | 0.09790 | 0.20880 | 0.0570* | |
H4A | 0.40020 | −0.25490 | 0.21050 | 0.0930* | |
H4B | 0.33030 | −0.27630 | 0.09690 | 0.0930* | |
H5A | 0.19560 | −0.03860 | 0.16890 | 0.0620* | |
H5B | 0.18520 | 0.03990 | 0.08080 | 0.0620* | |
H6A | 0.27850 | 0.04460 | 0.33710 | 0.0820* | |
H6B | 0.32380 | 0.17910 | 0.36190 | 0.0820* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0289 (2) | 0.0234 (2) | 0.0217 (2) | −0.0015 (1) | 0.0164 (1) | −0.0012 (1) |
S1 | 0.0328 (2) | 0.0410 (3) | 0.0373 (3) | −0.0076 (2) | 0.0235 (2) | −0.0106 (2) |
S2 | 0.0400 (3) | 0.0251 (2) | 0.0238 (2) | 0.0030 (2) | 0.0156 (2) | 0.0008 (2) |
S3 | 0.0450 (3) | 0.0272 (2) | 0.0274 (2) | −0.0046 (2) | 0.0260 (2) | −0.0013 (2) |
N1 | 0.0430 (11) | 0.0898 (17) | 0.0669 (14) | −0.0207 (11) | 0.0401 (11) | −0.0293 (12) |
N2 | 0.0735 (14) | 0.0459 (12) | 0.1040 (18) | −0.0078 (11) | 0.0727 (15) | −0.0195 (12) |
N3 | 0.0421 (10) | 0.0372 (10) | 0.0320 (9) | 0.0044 (8) | 0.0093 (8) | 0.0021 (8) |
N4 | 0.0577 (13) | 0.0333 (10) | 0.0432 (12) | 0.0039 (9) | 0.0082 (10) | 0.0092 (9) |
N5 | 0.0610 (12) | 0.0463 (11) | 0.0399 (11) | −0.0225 (10) | 0.0288 (10) | 0.0010 (9) |
N6 | 0.0915 (16) | 0.0746 (15) | 0.0338 (11) | −0.0326 (13) | 0.0372 (12) | 0.0040 (10) |
C1 | 0.0305 (9) | 0.0398 (12) | 0.0301 (10) | 0.0053 (8) | 0.0185 (9) | 0.0076 (9) |
C2 | 0.0315 (9) | 0.0325 (11) | 0.0298 (10) | 0.0033 (8) | 0.0180 (8) | 0.0039 (8) |
C3 | 0.0413 (11) | 0.0390 (12) | 0.0309 (11) | −0.0049 (9) | 0.0242 (9) | 0.0030 (9) |
O1 | 0.0486 (9) | 0.0701 (12) | 0.0348 (9) | −0.0114 (8) | 0.0138 (8) | −0.0145 (8) |
O2 | 0.0811 (13) | 0.0679 (12) | 0.0360 (10) | −0.0217 (11) | 0.0139 (10) | −0.0029 (9) |
O3 | 0.0798 (13) | 0.0451 (11) | 0.0654 (12) | −0.0100 (9) | 0.0406 (11) | −0.0064 (9) |
N7 | 0.0398 (10) | 0.0498 (12) | 0.0358 (10) | −0.0052 (9) | 0.0226 (9) | −0.0074 (9) |
Ni1—S1 | 2.4708 (7) | N4—C2 | 1.312 (3) |
Ni1—S2 | 2.4879 (5) | N5—C3 | 1.308 (3) |
Ni1—S3 | 2.4995 (6) | N6—C3 | 1.316 (3) |
Ni1—S1i | 2.4708 (7) | N1—H1B | 0.8600 |
Ni1—S2i | 2.4879 (5) | N1—H1A | 0.8600 |
Ni1—S3i | 2.4995 (6) | N2—H2A | 0.8600 |
S1—C1 | 1.711 (3) | N2—H2B | 0.8600 |
S2—C2 | 1.715 (2) | N3—H3A | 0.8600 |
S3—C3 | 1.713 (2) | N3—H3B | 0.8600 |
O1—N7 | 1.239 (3) | N4—H4B | 0.8600 |
O2—N7 | 1.232 (3) | N4—H4A | 0.8600 |
O3—N7 | 1.231 (3) | N5—H5A | 0.8600 |
N1—C1 | 1.306 (4) | N5—H5B | 0.8600 |
N2—C1 | 1.304 (3) | N6—H6A | 0.8600 |
N3—C2 | 1.313 (3) | N6—H6B | 0.8600 |
S1—Ni1—S2 | 98.00 (2) | C2—N3—H3B | 120.00 |
S1—Ni1—S3 | 80.37 (2) | C2—N3—H3A | 120.00 |
S1—Ni1—S1i | 180.00 | H3A—N3—H3B | 120.00 |
S1—Ni1—S2i | 82.00 (2) | C2—N4—H4B | 120.00 |
S1—Ni1—S3i | 99.63 (2) | C2—N4—H4A | 120.00 |
S2—Ni1—S3 | 97.72 (2) | H4A—N4—H4B | 120.00 |
S1i—Ni1—S2 | 82.00 (2) | H5A—N5—H5B | 120.00 |
S2—Ni1—S2i | 180.00 | C3—N5—H5A | 120.00 |
S2—Ni1—S3i | 82.28 (2) | C3—N5—H5B | 120.00 |
S1i—Ni1—S3 | 99.63 (2) | C3—N6—H6B | 120.00 |
S2i—Ni1—S3 | 82.28 (2) | H6A—N6—H6B | 120.00 |
S3—Ni1—S3i | 180.00 | C3—N6—H6A | 120.00 |
S1i—Ni1—S2i | 98.00 (2) | O2—N7—O3 | 120.0 (2) |
S1i—Ni1—S3i | 80.37 (2) | O1—N7—O2 | 119.6 (2) |
S2i—Ni1—S3i | 97.72 (2) | O1—N7—O3 | 120.29 (19) |
Ni1—S1—C1 | 116.99 (8) | S1—C1—N2 | 122.4 (2) |
Ni1—S2—C2 | 117.12 (7) | S1—C1—N1 | 118.06 (18) |
Ni1—S3—C3 | 115.14 (7) | N1—C1—N2 | 119.5 (3) |
C1—N1—H1B | 120.00 | S2—C2—N4 | 118.85 (16) |
H1A—N1—H1B | 120.00 | S2—C2—N3 | 122.36 (15) |
C1—N1—H1A | 120.00 | N3—C2—N4 | 118.78 (19) |
H2A—N2—H2B | 120.00 | N5—C3—N6 | 119.2 (2) |
C1—N2—H2A | 120.00 | S3—C3—N5 | 122.62 (17) |
C1—N2—H2B | 120.00 | S3—C3—N6 | 118.22 (17) |
S2—Ni1—S1—C1 | 47.38 (8) | S2—Ni1—S3—C3 | −38.66 (11) |
S3—Ni1—S1—C1 | 143.91 (8) | S1i—Ni1—S3—C3 | 44.48 (11) |
S2i—Ni1—S1—C1 | −132.62 (8) | S2i—Ni1—S3—C3 | 141.34 (11) |
S3i—Ni1—S1—C1 | −36.09 (8) | Ni1—S1—C1—N1 | 159.63 (16) |
S1—Ni1—S2—C2 | 48.29 (12) | Ni1—S1—C1—N2 | −20.5 (2) |
S3—Ni1—S2—C2 | −33.00 (12) | Ni1—S2—C2—N3 | −15.4 (3) |
S1i—Ni1—S2—C2 | −131.71 (12) | Ni1—S2—C2—N4 | 165.6 (2) |
S3i—Ni1—S2—C2 | 147.00 (12) | Ni1—S3—C3—N5 | −17.6 (3) |
S1—Ni1—S3—C3 | −135.52 (11) | Ni1—S3—C3—N6 | 162.5 (2) |
Symmetry code: (i) −x+1/2, −y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.86 | 2.21 | 3.037 (4) | 161 |
N1—H1B···O2 | 0.86 | 2.17 | 2.965 (3) | 154 |
N2—H2A···O3iii | 0.86 | 2.56 | 2.963 (3) | 110 |
N2—H2A···O3ii | 0.86 | 2.30 | 3.110 (4) | 157 |
N2—H2B···S2 | 0.86 | 2.63 | 3.449 (3) | 159 |
N3—H3A···O3iv | 0.86 | 2.19 | 3.022 (2) | 163 |
N3—H3B···S1 | 0.86 | 2.72 | 3.5021 (19) | 152 |
N3—H3B···S3 | 0.86 | 2.87 | 3.444 (2) | 126 |
N4—H4A···O2iv | 0.86 | 2.01 | 2.865 (3) | 175 |
N4—H4B···S2v | 0.86 | 2.75 | 3.555 (2) | 157 |
N5—H5A···S3vi | 0.86 | 2.82 | 3.623 (2) | 155 |
N5—H5A···O1i | 0.86 | 2.48 | 2.922 (3) | 113 |
N5—H5B···S1i | 0.86 | 2.59 | 3.410 (2) | 160 |
N6—H6A···S2vii | 0.86 | 2.83 | 3.464 (3) | 132 |
N6—H6A···S3vi | 0.86 | 2.80 | 3.601 (2) | 156 |
N6—H6B···O1viii | 0.86 | 2.10 | 2.958 (3) | 174 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) −x+1, y−1, −z+1/2; (v) −x+1/2, −y−1/2, −z; (vi) −x+1/2, y−1/2, −z+1/2; (vii) x, −y, z+1/2; (viii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(CH4N2S)6](NO3)2 |
Mr | 639.50 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 22.4433 (6), 9.2398 (3), 16.3136 (5) |
β (°) | 129.724 (1) |
V (Å3) | 2601.96 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.28 |
Crystal size (mm) | 0.25 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11568, 3129, 2542 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.068, 1.03 |
No. of reflections | 3129 |
No. of parameters | 151 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.29 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.21 | 3.037 (4) | 161 |
N1—H1B···O2 | 0.86 | 2.17 | 2.965 (3) | 154 |
N2—H2A···O3ii | 0.86 | 2.56 | 2.963 (3) | 110 |
N2—H2A···O3i | 0.86 | 2.30 | 3.110 (4) | 157 |
N2—H2B···S2 | 0.86 | 2.63 | 3.449 (3) | 159 |
N3—H3A···O3iii | 0.86 | 2.19 | 3.022 (2) | 163 |
N3—H3B···S1 | 0.86 | 2.72 | 3.5021 (19) | 152 |
N3—H3B···S3 | 0.86 | 2.87 | 3.444 (2) | 126 |
N4—H4A···O2iii | 0.86 | 2.01 | 2.865 (3) | 175 |
N4—H4B···S2iv | 0.86 | 2.75 | 3.555 (2) | 157 |
N5—H5A···S3v | 0.86 | 2.82 | 3.623 (2) | 155 |
N5—H5A···O1vi | 0.86 | 2.48 | 2.922 (3) | 113 |
N5—H5B···S1vi | 0.86 | 2.59 | 3.410 (2) | 160 |
N6—H6A···S2vii | 0.86 | 2.83 | 3.464 (3) | 132 |
N6—H6A···S3v | 0.86 | 2.80 | 3.601 (2) | 156 |
N6—H6B···O1viii | 0.86 | 2.10 | 2.958 (3) | 174 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z; (iii) −x+1, y−1, −z+1/2; (iv) −x+1/2, −y−1/2, −z; (v) −x+1/2, y−1/2, −z+1/2; (vi) −x+1/2, −y+1/2, −z; (vii) x, −y, z+1/2; (viii) x, −y+1, z+1/2. |
Footnotes
‡Additional corresponding author: saeed_a786@hotmail.com
Acknowledgements
The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527. Web of Science CrossRef PubMed Google Scholar
Bhaskaran, A., Ragavan, C. M., Sankar, R., Mohankumar, R. & Jayavel, R. (2007). Cryst. Res. Technol. 42, 477–482. Web of Science CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eaton, D. R. & Zaw, K. (1975). Can. J. Chem. 53, 633–643. CrossRef CAS Web of Science Google Scholar
Emre, B., Mustafa, G. & Osman, A. A. (2009). Hydrometallurgy, 95, 15–21. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Figgis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125–134. CSD CrossRef Web of Science Google Scholar
Maďar, J. (1961). Acta Cryst. 14, 894. CSD CrossRef IUCr Journals Web of Science Google Scholar
Rodriguez, M. P., Cubero, M., Vega, R., Morente, A. & Vazquez, J. L. (1961). Acta Cryst. 14, 1101. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suescun, L., Mombrú, A. W., Mariezcurrena, R. A., Pardo, H., Russi, S. & Baggio, R. (2000). Acta Cryst. C56, 179–181. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhu, J., Wang, J.-G., Duan, T. & Zhang, Q.-F. (2009). Acta Cryst. E65, m1697. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of thiourea type ligands has been a matter of interest in view of their biological (Arslan et al., 2009) and non-linear optical (Bhaskaran et al., 2007) properties, and because of their potential use as selective reagents for concentration and separation of metal ions (Emre et al., 2009). The complexes of nickel(II) with thioureas were shown to have a variety of stereochemistries (octahedral, tetragonal, square planar and tetrahedral) both in the solid state and in solution form (Eaton et al., 1975; Figgis et al., 1986; Suescun et al., 2000; Zhu et al., 2009). In order to investigate further about the structures of nickel(II)-thiourea systems, we present here a structural study of a Tu complex with nickel(II) nitrate, which consists of [Ni(Tu)6]+2 molecular ions and nitrate counter ions.
A preliminary X-ray study of complex (I) has been reported twice previously, but with incomplete crystallographic data (Maďar, 1961; Rodriguez et al., 1961). We redetermined the crystal structure of complex (I), which we present in this paper.
In (I), the central Ni atom is located on a centre of inversion and is six-coordinated by six thiourea groups in a octahedral geometry (Fig. 1). The values of the geometrical parameters of the title molecule are as expected (Allen et al., 1987). The Ni—S bond lengths vary from 2.4708 (7) to 2.4995 (6) Å.
In the crystal packing of (I), adjacent molecules are linked by intra and intermolecular N—H···S and N—H···O hydrogen bonds (Table 2, Fig. 2), forming a three-dimensional network and a supramolecular structure.