organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Meth­­oxy­benzyl­­idene)-2-phenyl­hydrazine

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 27 June 2010; accepted 28 June 2010; online 3 July 2010)

In the title compound, C14H14N2O, the dihedral angle between the aromatic rings is 9.30 (6)°. In the crystal, mol­ecules are linked by C—H⋯π and N—H⋯π inter­actions.

Related literature

For related structures, see: Tunç et al. (2003[Tunç, T., Sarı, M., Yagbasan, R., Tezcan, H. & Şahin, E. (2003). Acta Cryst. C59, o192-o193.]); Harada et al. (2004[Harada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578-588.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O

  • Mr = 226.27

  • Monoclinic, P 21 /n

  • a = 5.8021 (2) Å

  • b = 7.5819 (2) Å

  • c = 27.7907 (9) Å

  • β = 95.808 (1)°

  • V = 1216.26 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.959

  • 18675 measured reflections

  • 3004 independent reflections

  • 2257 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.01

  • 3004 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg1i 0.86 2.69 3.3484 (13) 146
C3—H3⋯Cg1ii 0.93 2.63 3.3796 (14) 138
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structure of (II) i.e., N-(4-methoxybenzylidene)-N'-(2-pyridyl)hydrazine (Tunç et al. 2003) and N-(4-methoxybenzylidene)aniline (Harada et al. 2004) have been published which are related to the title compound (I, Fig. 1).

In (I) the phenyl ring A (C1–C6) of phenylhydrazide and B (C8–C13) of 4-anisaldehyde are planar with r. m. s. deviation of 0.0015 and 0.0096 Å, respectively. The dihedral angle between A/B is 9.30 (6)°. The central group C (N1/N2/C7) is of course planar and the orientation of A/C and B/C is 11.59 (17) and 2.89 (18)°, respectively. The molecules are essentially monomer. Due to the packing and unavailabilty of strong acceptor atom, the H-atom of N—H is not directly involved in H-bonding. The molecules are stabilized through C—H···π and N—H···π interactions (Table 1).

Related literature top

For related structures, see: Tunç et al. (2003); Harada et al. (2004).

Experimental top

Equimolar quantities of phenylhydrazine and 4-methoxybenzaldehyde were refluxed in methanol for 45 min resulting in yellow solution. The solution was kept at room temperature which affoarded yellow needles of (I) after 72 h.

Refinement top

Although all H-atoms appear in the difference Fourier map but were positioned geometrically (N–H = 0.86, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

The crystal structure of (II) i.e., N-(4-methoxybenzylidene)-N'-(2-pyridyl)hydrazine (Tunç et al. 2003) and N-(4-methoxybenzylidene)aniline (Harada et al. 2004) have been published which are related to the title compound (I, Fig. 1).

In (I) the phenyl ring A (C1–C6) of phenylhydrazide and B (C8–C13) of 4-anisaldehyde are planar with r. m. s. deviation of 0.0015 and 0.0096 Å, respectively. The dihedral angle between A/B is 9.30 (6)°. The central group C (N1/N2/C7) is of course planar and the orientation of A/C and B/C is 11.59 (17) and 2.89 (18)°, respectively. The molecules are essentially monomer. Due to the packing and unavailabilty of strong acceptor atom, the H-atom of N—H is not directly involved in H-bonding. The molecules are stabilized through C—H···π and N—H···π interactions (Table 1).

For related structures, see: Tunç et al. (2003); Harada et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius.
(E)-1-(4-Methoxybenzylidene)-2-phenylhydrazine top
Crystal data top
C14H14N2OF(000) = 480
Mr = 226.27Dx = 1.236 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2257 reflections
a = 5.8021 (2) Åθ = 2.8–28.4°
b = 7.5819 (2) ŵ = 0.08 mm1
c = 27.7907 (9) ÅT = 296 K
β = 95.808 (1)°Cut needle, yellow
V = 1216.26 (7) Å30.30 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.20 pixels mm-1θmax = 28.4°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 910
Tmin = 0.942, Tmax = 0.959l = 3737
18675 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2017P]
where P = (Fo2 + 2Fc2)/3
3004 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H14N2OV = 1216.26 (7) Å3
Mr = 226.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8021 (2) ŵ = 0.08 mm1
b = 7.5819 (2) ÅT = 296 K
c = 27.7907 (9) Å0.30 × 0.16 × 0.14 mm
β = 95.808 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2257 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.959Rint = 0.028
18675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
3004 reflectionsΔρmin = 0.16 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58571 (17)0.12817 (13)0.05523 (3)0.0593 (3)
N11.0199 (2)0.27807 (16)0.32418 (4)0.0576 (4)
N20.99619 (18)0.22429 (14)0.27710 (4)0.0475 (3)
C11.1991 (2)0.21880 (15)0.35653 (4)0.0431 (4)
C21.3896 (2)0.13069 (16)0.34188 (5)0.0486 (4)
C31.5625 (2)0.07433 (18)0.37608 (6)0.0594 (5)
C41.5495 (3)0.1038 (2)0.42465 (6)0.0659 (5)
C51.3613 (3)0.1917 (2)0.43908 (5)0.0616 (5)
C61.1872 (2)0.24896 (17)0.40553 (5)0.0520 (4)
C70.8064 (2)0.26802 (16)0.25267 (4)0.0458 (4)
C80.7500 (2)0.22464 (14)0.20197 (4)0.0404 (3)
C90.9001 (2)0.13387 (15)0.17420 (4)0.0436 (4)
C100.8384 (2)0.10202 (16)0.12601 (4)0.0458 (4)
C110.6270 (2)0.16101 (15)0.10379 (4)0.0438 (4)
C120.4738 (2)0.24744 (16)0.13072 (4)0.0458 (4)
C130.5363 (2)0.27705 (16)0.17934 (4)0.0449 (4)
C140.3755 (3)0.1915 (3)0.03100 (5)0.0771 (6)
H10.920650.350710.333930.0691*
H21.400530.109820.309220.0583*
H31.690100.015380.366200.0713*
H41.666850.064570.447400.0791*
H51.351700.212590.471790.0739*
H61.060520.308340.415700.0624*
H70.698290.331190.268240.0550*
H91.042770.094900.188550.0523*
H100.938760.040440.108070.0550*
H120.330600.285090.116280.0550*
H130.432350.333790.197490.0539*
H14A0.247130.138410.044810.1156*
H14B0.368470.161730.002690.1156*
H14C0.368280.317310.034460.1156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0679 (6)0.0706 (6)0.0389 (5)0.0039 (5)0.0023 (4)0.0054 (4)
N10.0616 (7)0.0695 (7)0.0400 (6)0.0237 (6)0.0038 (5)0.0104 (5)
N20.0537 (6)0.0484 (6)0.0398 (6)0.0048 (4)0.0018 (5)0.0027 (4)
C10.0458 (6)0.0395 (6)0.0431 (7)0.0005 (5)0.0004 (5)0.0025 (5)
C20.0480 (7)0.0464 (6)0.0512 (7)0.0004 (5)0.0045 (5)0.0080 (5)
C30.0476 (7)0.0518 (7)0.0771 (10)0.0065 (6)0.0020 (7)0.0102 (7)
C40.0627 (9)0.0603 (8)0.0690 (10)0.0073 (7)0.0207 (7)0.0022 (7)
C50.0714 (9)0.0650 (9)0.0458 (8)0.0017 (7)0.0066 (7)0.0033 (6)
C60.0560 (7)0.0546 (8)0.0452 (7)0.0065 (6)0.0035 (6)0.0055 (5)
C70.0503 (7)0.0449 (6)0.0421 (7)0.0051 (5)0.0038 (5)0.0012 (5)
C80.0444 (6)0.0370 (5)0.0400 (6)0.0027 (4)0.0048 (5)0.0016 (4)
C90.0412 (6)0.0434 (6)0.0462 (7)0.0004 (5)0.0044 (5)0.0036 (5)
C100.0465 (6)0.0467 (6)0.0458 (7)0.0008 (5)0.0125 (5)0.0029 (5)
C110.0509 (7)0.0430 (6)0.0376 (6)0.0061 (5)0.0050 (5)0.0006 (5)
C120.0413 (6)0.0495 (7)0.0457 (7)0.0009 (5)0.0004 (5)0.0010 (5)
C130.0435 (6)0.0460 (6)0.0456 (7)0.0027 (5)0.0070 (5)0.0024 (5)
C140.0929 (12)0.0906 (12)0.0443 (8)0.0169 (10)0.0095 (8)0.0024 (8)
Geometric parameters (Å, º) top
O1—C111.3694 (14)C10—C111.3902 (16)
O1—C141.416 (2)C11—C121.3836 (16)
N1—N21.3641 (16)C12—C131.3815 (16)
N1—C11.3792 (16)C2—H20.9300
N2—C71.2776 (16)C3—H30.9300
N1—H10.8600C4—H40.9300
C1—C61.3894 (18)C5—H50.9300
C1—C21.3874 (17)C6—H60.9300
C2—C31.3782 (19)C7—H70.9300
C3—C41.378 (2)C9—H90.9300
C4—C51.373 (2)C10—H100.9300
C5—C61.374 (2)C12—H120.9300
C7—C81.4516 (16)C13—H130.9300
C8—C131.3903 (16)C14—H14A0.9600
C8—C91.4013 (16)C14—H14B0.9600
C9—C101.3722 (16)C14—H14C0.9600
C11—O1—C14117.60 (10)C3—C2—H2120.00
N2—N1—C1121.61 (11)C2—C3—H3119.00
N1—N2—C7115.47 (11)C4—C3—H3119.00
N2—N1—H1119.00C3—C4—H4120.00
C1—N1—H1119.00C5—C4—H4120.00
N1—C1—C2122.42 (11)C4—C5—H5120.00
N1—C1—C6118.45 (11)C6—C5—H5120.00
C2—C1—C6119.14 (11)C1—C6—H6120.00
C1—C2—C3119.53 (12)C5—C6—H6120.00
C2—C3—C4121.14 (13)N2—C7—H7118.00
C3—C4—C5119.26 (14)C8—C7—H7118.00
C4—C5—C6120.46 (13)C8—C9—H9120.00
C1—C6—C5120.47 (12)C10—C9—H9120.00
N2—C7—C8123.68 (11)C9—C10—H10120.00
C9—C8—C13117.82 (10)C11—C10—H10120.00
C7—C8—C9123.66 (10)C11—C12—H12120.00
C7—C8—C13118.52 (10)C13—C12—H12120.00
C8—C9—C10120.57 (11)C8—C13—H13119.00
C9—C10—C11120.55 (11)C12—C13—H13119.00
O1—C11—C12124.15 (11)O1—C14—H14A109.00
O1—C11—C10115.96 (10)O1—C14—H14B109.00
C10—C11—C12119.89 (10)O1—C14—H14C109.00
C11—C12—C13119.12 (11)H14A—C14—H14B109.00
C8—C13—C12121.99 (11)H14A—C14—H14C109.00
C1—C2—H2120.00H14B—C14—H14C109.00
C14—O1—C11—C121.90 (19)C4—C5—C6—C10.0 (2)
C14—O1—C11—C10177.93 (13)N2—C7—C8—C13179.04 (12)
N2—N1—C1—C213.07 (18)N2—C7—C8—C91.57 (19)
N2—N1—C1—C6166.94 (11)C7—C8—C13—C12177.18 (11)
C1—N1—N2—C7170.35 (11)C9—C8—C13—C122.24 (17)
N1—N2—C7—C8179.36 (11)C7—C8—C9—C10177.96 (11)
N1—C1—C6—C5179.76 (12)C13—C8—C9—C101.44 (17)
N1—C1—C2—C3179.78 (12)C8—C9—C10—C110.73 (18)
C6—C1—C2—C30.24 (18)C9—C10—C11—C122.17 (18)
C2—C1—C6—C50.26 (19)C9—C10—C11—O1177.67 (11)
C1—C2—C3—C40.1 (2)O1—C11—C12—C13178.45 (11)
C2—C3—C4—C50.3 (2)C10—C11—C12—C131.38 (18)
C3—C4—C5—C60.3 (2)C11—C12—C13—C80.85 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg1i0.862.693.3484 (13)146
C3—H3···Cg1ii0.932.633.3796 (14)138
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14N2O
Mr226.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.8021 (2), 7.5819 (2), 27.7907 (9)
β (°) 95.808 (1)
V3)1216.26 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
18675, 3004, 2257
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.01
No. of reflections3004
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg1i0.862.693.3484 (13)146
C3—H3···Cg1ii0.932.633.3796 (14)138
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+5/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTunç, T., Sarı, M., Yagbasan, R., Tezcan, H. & Şahin, E. (2003). Acta Cryst. C59, o192–o193.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds