organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2-Nitro­benzyl­­idene)-2-phenyl­hydrazine

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 28 June 2010; accepted 1 July 2010; online 7 July 2010)

The asymmetric unit of the title compound, C13H11N3O2, contains two mol­ecules with slightly different conformations: the dihedral angle between the aromatic rings is 13.01 (10)° in one mol­ecule and 14.05 (10)° in the other. Both mol­ecules feature short intra­molecular C—H⋯O contacts, which generate S(6) rings. In the crystal, both mol­ecules form inversion dimers linked by pairs of N—H⋯O hydrogen bonds, thereby generating R22(16) rings.

Related literature

For background information on Schiff bases and related crystal structures, see: Mufakkar et al. (2010[Mufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.]); Tahir et al. (2010[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O2

  • Mr = 241.25

  • Orthorhombic, P b c a

  • a = 19.4021 (13) Å

  • b = 12.1065 (7) Å

  • c = 20.0554 (11) Å

  • V = 4710.8 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.979

  • 18932 measured reflections

  • 4260 independent reflections

  • 2577 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.01

  • 4260 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.93 2.24 2.773 (3) 116
C20—H20⋯O3 0.93 2.27 2.788 (3) 115
N1—H1⋯O3i 0.86 2.42 3.242 (2) 161
N4—H4A⋯O1ii 0.86 2.39 3.207 (2) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases containing phenylhydrazine (Mufakkar et al., 2010) and 2-nitrobenzaldehyde (Tahir et al., 2010) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the phenylhydrazine A (C1—C6/N1/N2) and group B (C7—C13) of 2-nitrobenzaldehyde are planar with r. m. s deviation of 0.0228 and 0.0068 Å, respectively. The nitro group C (O1/N3/O2) is of course planar. The dihedral angle between A/B, A/C and B/C is 14.05 (10)°, 13.38 (32)° and 17.41 (30)°, respectively. In second molecule, the phenylhydrazine D (C1—C6/N1/N2) and group E (C7—C13) of 2-nitrobenzaldehyde are also planar with r. m. s deviation of 0.0054 and 0.0037 Å, respectively. The dihedral angle between D/E is 13.01 (10)°. The nitro group F (O3/N6/O4) of this molecule makes dihedral angle of 25.02 (27)° with group D, whereas it is oriented at 27.12 (27)° with group E. In each molecule there exist S(5) and S(6) ring motifs (Bernstein et al., 1995) due to intramolecular H-bonding of C—H···N and C—H···O type, respectively. The molecules are stabilized in the form of dimers due to N—H···O type of H-bondings with R22(16) ring motifs (Table 1, Fig. 2).

Related literature top

For background information on Schiff bases and related crystal structures, see: Mufakkar et al. (2010); Tahir et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of phenylhydrazine and 2-nitrobenzaldehyde were refluxed in methanol for 25 min resulting in a violet solution. The solution was kept at room temperature, which afforded violet prisms of (I) after 48 h.

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = x = 1.2 for all H-atoms.

Structure description top

We have reported crystal structures of Schiff bases containing phenylhydrazine (Mufakkar et al., 2010) and 2-nitrobenzaldehyde (Tahir et al., 2010) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the phenylhydrazine A (C1—C6/N1/N2) and group B (C7—C13) of 2-nitrobenzaldehyde are planar with r. m. s deviation of 0.0228 and 0.0068 Å, respectively. The nitro group C (O1/N3/O2) is of course planar. The dihedral angle between A/B, A/C and B/C is 14.05 (10)°, 13.38 (32)° and 17.41 (30)°, respectively. In second molecule, the phenylhydrazine D (C1—C6/N1/N2) and group E (C7—C13) of 2-nitrobenzaldehyde are also planar with r. m. s deviation of 0.0054 and 0.0037 Å, respectively. The dihedral angle between D/E is 13.01 (10)°. The nitro group F (O3/N6/O4) of this molecule makes dihedral angle of 25.02 (27)° with group D, whereas it is oriented at 27.12 (27)° with group E. In each molecule there exist S(5) and S(6) ring motifs (Bernstein et al., 1995) due to intramolecular H-bonding of C—H···N and C—H···O type, respectively. The molecules are stabilized in the form of dimers due to N—H···O type of H-bondings with R22(16) ring motifs (Table 1, Fig. 2).

For background information on Schiff bases and related crystal structures, see: Mufakkar et al. (2010); Tahir et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form dimers.
(E)-1-(2-Nitrobenzylidene)-2-phenylhydrazine top
Crystal data top
C13H11N3O2F(000) = 2016
Mr = 241.25Dx = 1.361 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2577 reflections
a = 19.4021 (13) Åθ = 2.2–25.3°
b = 12.1065 (7) ŵ = 0.10 mm1
c = 20.0554 (11) ÅT = 296 K
V = 4710.8 (5) Å3Prism, violet
Z = 160.32 × 0.28 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4260 independent reflections
Radiation source: fine-focus sealed tube2577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.2°
ω scansh = 2123
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1314
Tmin = 0.972, Tmax = 0.979l = 2424
18932 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.9743P]
where P = (Fo2 + 2Fc2)/3
4260 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H11N3O2V = 4710.8 (5) Å3
Mr = 241.25Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 19.4021 (13) ŵ = 0.10 mm1
b = 12.1065 (7) ÅT = 296 K
c = 20.0554 (11) Å0.32 × 0.28 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4260 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2577 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.979Rint = 0.041
18932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
4260 reflectionsΔρmin = 0.14 e Å3
325 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02767 (9)0.48801 (15)0.11736 (8)0.0811 (7)
O20.03824 (10)0.64989 (16)0.15815 (9)0.0982 (8)
N10.12471 (9)0.27574 (14)0.00241 (8)0.0646 (7)
N20.12334 (8)0.38691 (13)0.00220 (8)0.0546 (6)
N30.01209 (9)0.58595 (18)0.11891 (9)0.0642 (7)
C10.15768 (10)0.21311 (16)0.04626 (10)0.0519 (7)
C20.15290 (12)0.09962 (17)0.04246 (10)0.0634 (8)
C30.18603 (12)0.03400 (19)0.08869 (12)0.0709 (9)
C40.22378 (12)0.0800 (2)0.13901 (11)0.0709 (10)
C50.22787 (12)0.1929 (2)0.14304 (11)0.0716 (10)
C60.19503 (11)0.26019 (18)0.09740 (10)0.0621 (8)
C70.08784 (11)0.44017 (16)0.04126 (10)0.0568 (8)
C80.08420 (10)0.56020 (16)0.03663 (9)0.0505 (7)
C90.03909 (11)0.62879 (17)0.07170 (9)0.0528 (7)
C100.03841 (13)0.74245 (19)0.06341 (12)0.0724 (9)
C110.08391 (15)0.79155 (19)0.02040 (13)0.0799 (10)
C120.12983 (13)0.7266 (2)0.01410 (12)0.0764 (10)
C130.13014 (11)0.61467 (18)0.00641 (10)0.0621 (8)
O30.53109 (9)0.28838 (15)0.13060 (9)0.0901 (8)
O40.52867 (11)0.44681 (16)0.08338 (9)0.1054 (8)
N40.37407 (9)0.07450 (14)0.24028 (8)0.0580 (6)
N50.38069 (8)0.18402 (13)0.25032 (8)0.0529 (6)
N60.51143 (10)0.38409 (18)0.12819 (9)0.0680 (8)
C140.33940 (10)0.00973 (16)0.28709 (10)0.0501 (7)
C150.30960 (11)0.05488 (18)0.34361 (10)0.0608 (8)
C160.27540 (12)0.0131 (2)0.38795 (11)0.0713 (9)
C170.27064 (12)0.1249 (2)0.37713 (12)0.0723 (9)
C180.30009 (12)0.16936 (18)0.32096 (12)0.0706 (9)
C190.33432 (11)0.10272 (17)0.27593 (11)0.0610 (8)
C200.41511 (10)0.23954 (16)0.20722 (10)0.0539 (7)
C210.42235 (10)0.35828 (16)0.21663 (9)0.0487 (7)
C220.46637 (10)0.42733 (17)0.18061 (10)0.0527 (7)
C230.47060 (12)0.53979 (18)0.19184 (11)0.0642 (8)
C240.43038 (13)0.58790 (19)0.23970 (12)0.0719 (9)
C250.38560 (12)0.5228 (2)0.27580 (11)0.0678 (9)
C260.38167 (11)0.41148 (18)0.26445 (10)0.0596 (8)
H10.105130.243440.035570.0775*
H20.127230.067160.008560.0761*
H30.182610.042440.085550.0851*
H40.246300.035600.169950.0851*
H50.253320.224890.177270.0858*
H60.198070.336610.101120.0746*
H70.064840.402780.075110.0682*
H100.007070.785390.087060.0868*
H110.083740.867770.014610.0959*
H120.161120.759520.043090.0917*
H130.161810.573000.030470.0745*
H4A0.391170.044550.205090.0696*
H150.312600.130380.351660.0729*
H160.255240.017390.425790.0856*
H170.247750.169930.407480.0868*
H180.296970.244920.313180.0848*
H190.354010.133560.237980.0732*
H200.435050.204670.170680.0647*
H230.500810.582730.166840.0770*
H240.433180.663410.247770.0862*
H250.357760.554830.308220.0814*
H260.350830.369690.289430.0716*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0805 (12)0.0809 (12)0.0818 (12)0.0026 (10)0.0189 (9)0.0115 (9)
O20.0928 (14)0.1218 (15)0.0801 (12)0.0250 (12)0.0258 (10)0.0245 (11)
N10.0801 (14)0.0509 (11)0.0628 (11)0.0090 (9)0.0199 (10)0.0048 (8)
N20.0537 (11)0.0525 (11)0.0575 (10)0.0061 (8)0.0015 (9)0.0006 (8)
N30.0593 (12)0.0829 (14)0.0504 (11)0.0128 (11)0.0009 (9)0.0032 (10)
C10.0478 (12)0.0550 (13)0.0530 (12)0.0077 (10)0.0007 (10)0.0004 (10)
C20.0649 (15)0.0613 (14)0.0640 (14)0.0058 (12)0.0117 (11)0.0015 (11)
C30.0731 (16)0.0616 (14)0.0781 (16)0.0093 (12)0.0048 (14)0.0072 (12)
C40.0629 (16)0.0837 (19)0.0660 (15)0.0187 (13)0.0016 (12)0.0156 (12)
C50.0583 (15)0.097 (2)0.0595 (14)0.0071 (13)0.0102 (11)0.0014 (13)
C60.0562 (14)0.0670 (14)0.0632 (14)0.0044 (11)0.0053 (11)0.0060 (11)
C70.0614 (14)0.0557 (14)0.0533 (12)0.0019 (11)0.0049 (11)0.0015 (10)
C80.0495 (13)0.0528 (13)0.0492 (11)0.0008 (10)0.0046 (10)0.0046 (9)
C90.0532 (13)0.0572 (13)0.0479 (12)0.0021 (10)0.0013 (10)0.0052 (9)
C100.0797 (18)0.0590 (15)0.0784 (16)0.0070 (13)0.0002 (14)0.0158 (12)
C110.098 (2)0.0505 (14)0.0912 (18)0.0078 (14)0.0007 (16)0.0030 (13)
C120.0789 (18)0.0650 (16)0.0854 (17)0.0130 (14)0.0085 (14)0.0043 (13)
C130.0575 (14)0.0613 (14)0.0674 (14)0.0010 (11)0.0072 (12)0.0035 (11)
O30.0841 (13)0.0784 (12)0.1079 (14)0.0043 (10)0.0345 (10)0.0129 (10)
O40.1200 (16)0.1156 (15)0.0807 (12)0.0243 (12)0.0354 (11)0.0206 (11)
N40.0609 (12)0.0537 (11)0.0593 (10)0.0076 (9)0.0082 (9)0.0003 (8)
N50.0471 (10)0.0521 (11)0.0596 (10)0.0030 (8)0.0027 (8)0.0050 (8)
N60.0617 (13)0.0785 (14)0.0639 (12)0.0201 (11)0.0049 (10)0.0003 (11)
C140.0411 (11)0.0551 (13)0.0540 (12)0.0017 (10)0.0054 (10)0.0088 (10)
C150.0600 (14)0.0611 (14)0.0612 (13)0.0017 (11)0.0018 (11)0.0040 (11)
C160.0699 (16)0.0852 (18)0.0588 (14)0.0048 (14)0.0074 (12)0.0083 (13)
C170.0656 (16)0.0809 (18)0.0705 (15)0.0069 (13)0.0057 (13)0.0224 (13)
C180.0674 (16)0.0575 (14)0.0870 (17)0.0081 (12)0.0041 (14)0.0106 (12)
C190.0576 (14)0.0597 (14)0.0657 (13)0.0019 (11)0.0077 (11)0.0022 (10)
C200.0495 (13)0.0569 (13)0.0554 (12)0.0045 (10)0.0039 (10)0.0017 (10)
C210.0440 (12)0.0529 (12)0.0493 (11)0.0018 (10)0.0045 (10)0.0055 (9)
C220.0500 (12)0.0585 (13)0.0497 (12)0.0034 (10)0.0035 (10)0.0027 (10)
C230.0676 (15)0.0598 (15)0.0653 (14)0.0136 (12)0.0092 (12)0.0119 (11)
C240.0839 (18)0.0525 (14)0.0793 (16)0.0009 (13)0.0142 (14)0.0009 (12)
C250.0714 (16)0.0646 (16)0.0675 (14)0.0105 (12)0.0007 (13)0.0037 (12)
C260.0556 (14)0.0627 (15)0.0606 (13)0.0006 (11)0.0033 (11)0.0041 (10)
Geometric parameters (Å, º) top
O1—N31.224 (3)C5—H50.9300
O2—N31.215 (3)C6—H60.9300
O3—N61.221 (3)C7—H70.9300
O4—N61.223 (3)C10—H100.9300
N1—C11.392 (3)C11—H110.9300
N1—N21.349 (2)C12—H120.9300
N2—C71.285 (3)C13—H130.9300
N3—C91.467 (3)C14—C191.383 (3)
N1—H10.8600C14—C151.385 (3)
N4—N51.347 (2)C15—C161.382 (3)
N4—C141.396 (3)C16—C171.374 (3)
N5—C201.283 (3)C17—C181.373 (3)
N6—C221.464 (3)C18—C191.381 (3)
N4—H4A0.8600C20—C211.457 (3)
C1—C21.379 (3)C21—C261.399 (3)
C1—C61.379 (3)C21—C221.397 (3)
C2—C31.380 (3)C22—C231.382 (3)
C3—C41.366 (3)C23—C241.367 (3)
C4—C51.372 (3)C24—C251.379 (3)
C5—C61.381 (3)C25—C261.369 (3)
C7—C81.458 (3)C15—H150.9300
C8—C91.397 (3)C16—H160.9300
C8—C131.405 (3)C17—H170.9300
C9—C101.386 (3)C18—H180.9300
C10—C111.370 (4)C19—H190.9300
C11—C121.375 (4)C20—H200.9300
C12—C131.364 (3)C23—H230.9300
C2—H20.9300C24—H240.9300
C3—H30.9300C25—H250.9300
C4—H40.9300C26—H260.9300
N2—N1—C1120.29 (16)C11—C10—H10120.00
N1—N2—C7117.70 (16)C10—C11—H11120.00
O1—N3—O2122.04 (19)C12—C11—H11120.00
O1—N3—C9119.56 (18)C13—C12—H12120.00
O2—N3—C9118.4 (2)C11—C12—H12119.00
N2—N1—H1120.00C12—C13—H13119.00
C1—N1—H1120.00C8—C13—H13119.00
N5—N4—C14119.88 (16)N4—C14—C15122.00 (18)
N4—N5—C20117.69 (16)N4—C14—C19118.58 (18)
O4—N6—C22118.0 (2)C15—C14—C19119.42 (19)
O3—N6—C22119.83 (19)C14—C15—C16119.5 (2)
O3—N6—O4122.2 (2)C15—C16—C17121.2 (2)
C14—N4—H4A120.00C16—C17—C18119.2 (2)
N5—N4—H4A120.00C17—C18—C19120.5 (2)
N1—C1—C6122.54 (18)C14—C19—C18120.2 (2)
N1—C1—C2118.24 (18)N5—C20—C21118.69 (18)
C2—C1—C6119.22 (19)C22—C21—C26115.09 (18)
C1—C2—C3120.3 (2)C20—C21—C22125.64 (18)
C2—C3—C4120.8 (2)C20—C21—C26119.26 (18)
C3—C4—C5118.8 (2)C21—C22—C23122.79 (19)
C4—C5—C6121.5 (2)N6—C22—C21121.51 (18)
C1—C6—C5119.4 (2)N6—C22—C23115.70 (19)
N2—C7—C8118.89 (18)C22—C23—C24120.0 (2)
C7—C8—C9126.23 (18)C23—C24—C25119.0 (2)
C9—C8—C13115.33 (18)C24—C25—C26120.7 (2)
C7—C8—C13118.44 (18)C21—C26—C25122.4 (2)
C8—C9—C10122.40 (19)C14—C15—H15120.00
N3—C9—C10114.96 (19)C16—C15—H15120.00
N3—C9—C8122.63 (18)C15—C16—H16119.00
C9—C10—C11120.0 (2)C17—C16—H16119.00
C10—C11—C12119.1 (2)C16—C17—H17120.00
C11—C12—C13120.9 (2)C18—C17—H17120.00
C8—C13—C12122.2 (2)C17—C18—H18120.00
C3—C2—H2120.00C19—C18—H18120.00
C1—C2—H2120.00C14—C19—H19120.00
C4—C3—H3120.00C18—C19—H19120.00
C2—C3—H3120.00N5—C20—H20121.00
C3—C4—H4121.00C21—C20—H20121.00
C5—C4—H4121.00C22—C23—H23120.00
C6—C5—H5119.00C24—C23—H23120.00
C4—C5—H5119.00C23—C24—H24121.00
C5—C6—H6120.00C25—C24—H24120.00
C1—C6—H6120.00C24—C25—H25120.00
C8—C7—H7121.00C26—C25—H25120.00
N2—C7—H7121.00C21—C26—H26119.00
C9—C10—H10120.00C25—C26—H26119.00
C1—N1—N2—C7174.85 (18)C7—C8—C13—C12179.5 (2)
N2—N1—C1—C2174.72 (18)C9—C8—C13—C121.0 (3)
N2—N1—C1—C65.8 (3)C13—C8—C9—C101.6 (3)
N1—N2—C7—C8178.67 (17)N3—C9—C10—C11179.9 (2)
O1—N3—C9—C817.2 (3)C8—C9—C10—C111.2 (3)
O1—N3—C9—C10161.6 (2)C9—C10—C11—C120.0 (4)
O2—N3—C9—C8163.5 (2)C10—C11—C12—C130.6 (4)
O2—N3—C9—C1017.8 (3)C11—C12—C13—C80.0 (4)
N5—N4—C14—C151.6 (3)N4—C14—C15—C16179.44 (19)
N5—N4—C14—C19179.04 (18)C19—C14—C15—C160.1 (3)
C14—N4—N5—C20177.50 (18)N4—C14—C19—C18179.7 (2)
N4—N5—C20—C21179.35 (17)C15—C14—C19—C180.3 (3)
O3—N6—C22—C23152.6 (2)C14—C15—C16—C170.3 (3)
O4—N6—C22—C21153.5 (2)C15—C16—C17—C180.4 (4)
O3—N6—C22—C2127.2 (3)C16—C17—C18—C190.2 (4)
O4—N6—C22—C2326.7 (3)C17—C18—C19—C140.1 (3)
C6—C1—C2—C31.0 (3)N5—C20—C21—C22169.55 (19)
N1—C1—C6—C5178.38 (19)N5—C20—C21—C2611.8 (3)
N1—C1—C2—C3178.5 (2)C20—C21—C22—N60.5 (3)
C2—C1—C6—C51.1 (3)C20—C21—C22—C23179.7 (2)
C1—C2—C3—C40.3 (3)C26—C21—C22—N6179.12 (18)
C2—C3—C4—C50.4 (3)C26—C21—C22—C231.1 (3)
C3—C4—C5—C60.3 (3)C20—C21—C26—C25179.8 (2)
C4—C5—C6—C10.5 (3)C22—C21—C26—C251.0 (3)
N2—C7—C8—C9167.98 (19)N6—C22—C23—C24179.8 (2)
N2—C7—C8—C1312.6 (3)C21—C22—C23—C240.3 (3)
C7—C8—C9—N30.3 (3)C22—C23—C24—C250.5 (3)
C7—C8—C9—C10178.9 (2)C23—C24—C25—C260.5 (4)
C13—C8—C9—N3179.78 (18)C24—C25—C26—C210.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.242.773 (3)116
C20—H20···O30.932.272.788 (3)115
N1—H1···O3i0.862.423.242 (2)161
N4—H4A···O1ii0.862.393.207 (2)158
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H11N3O2
Mr241.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)19.4021 (13), 12.1065 (7), 20.0554 (11)
V3)4710.8 (5)
Z16
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.28 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
18932, 4260, 2577
Rint0.041
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.01
No. of reflections4260
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.242.773 (3)116
C20—H20···O30.932.272.788 (3)115
N1—H1···O3i0.862.423.242 (2)161
N4—H4A···O1ii0.862.393.207 (2)158
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds