organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­methyl-N-[(E)-2,4,5-trimeth­­oxy­benzyl­­idene]aniline

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and dChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 29 June 2010; accepted 1 July 2010; online 7 July 2010)

In the title compound, C18H21NO3, the C=N bond has a trans conformation and the benzene rings are oriented at a dihedral angle of 61.32 (6)°. The C atoms of the three meth­oxy groups are all roughly coplanar with their attached ring [deviations = 0.219 (2), −0.097 (2) and −0.137 (2) Å]. In the crystal, a weak C—H⋯π inter­action may help to establish the packing.

Related literature

For background information on Schiff bases and related crystal structures, see: Tahir et al. (2010a[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.],b[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO3

  • Mr = 299.36

  • Triclinic, [P \overline 1]

  • a = 7.0040 (2) Å

  • b = 11.0396 (4) Å

  • c = 11.1585 (4) Å

  • α = 73.941 (1)°

  • β = 76.022 (2)°

  • γ = 82.079 (1)°

  • V = 802.24 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.985

  • 13855 measured reflections

  • 3957 independent reflections

  • 2935 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.139

  • S = 1.07

  • 3957 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16BCg1i 0.96 2.99 3.5694 (19) 120
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases synthesized from 2,3-dimethylaniline (Tahir et al., 2010a, 2010b), (Tariq et al., 2010) and in continuation of this work, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the 2,3-dimethylaniline moiety A (C1–C8/N1) and the group B (C9—C15/O1/O2/O3) of 2,4,5-trimethoxybenzaldehyde are planar with r. m. s. deviations of 0.0184 and 0.0103 Å, respectively. The dihedral angle between A/B is 61.32 (6)°. The title molecule essentially consists of monomers. The packing may be stabilized through weak C—H···π (Table 1) interactions.

Related literature top

For background information on Schiff bases and related crystal structures, see: Tahir et al. (2010a,b); Tariq et al., (2010).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and 2,4,5-trimethoxybenzaldehyde were refluxed in methanol for 45 min resulting in violet solution. The solution was kept at room temperature which affoarded colorless prisms of (I) after 48 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

We have reported crystal structures of Schiff bases synthesized from 2,3-dimethylaniline (Tahir et al., 2010a, 2010b), (Tariq et al., 2010) and in continuation of this work, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the 2,3-dimethylaniline moiety A (C1–C8/N1) and the group B (C9—C15/O1/O2/O3) of 2,4,5-trimethoxybenzaldehyde are planar with r. m. s. deviations of 0.0184 and 0.0103 Å, respectively. The dihedral angle between A/B is 61.32 (6)°. The title molecule essentially consists of monomers. The packing may be stabilized through weak C—H···π (Table 1) interactions.

For background information on Schiff bases and related crystal structures, see: Tahir et al. (2010a,b); Tariq et al., (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
2,3-Dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline top
Crystal data top
C18H21NO3Z = 2
Mr = 299.36F(000) = 320
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0040 (2) ÅCell parameters from 2938 reflections
b = 11.0396 (4) Åθ = 1.9–28.4°
c = 11.1585 (4) ŵ = 0.08 mm1
α = 73.941 (1)°T = 296 K
β = 76.022 (2)°Prism, colorless
γ = 82.079 (1)°0.32 × 0.14 × 0.12 mm
V = 802.24 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3957 independent reflections
Radiation source: fine-focus sealed tube2935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.5 pixels mm-1θmax = 28.4°, θmin = 1.9°
ω scansh = 79
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.980, Tmax = 0.985l = 1414
13855 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1056P]
where P = (Fo2 + 2Fc2)/3
3957 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H21NO3γ = 82.079 (1)°
Mr = 299.36V = 802.24 (5) Å3
Triclinic, P1Z = 2
a = 7.0040 (2) ÅMo Kα radiation
b = 11.0396 (4) ŵ = 0.08 mm1
c = 11.1585 (4) ÅT = 296 K
α = 73.941 (1)°0.32 × 0.14 × 0.12 mm
β = 76.022 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3957 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2935 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.024
13855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
3957 reflectionsΔρmin = 0.16 e Å3
204 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.17927 (17)0.38228 (10)0.31146 (12)0.0704 (4)
O21.06960 (13)0.10870 (9)0.06502 (9)0.0499 (3)
O30.77474 (16)0.25536 (10)0.00283 (11)0.0649 (4)
N10.69274 (15)0.60252 (10)0.24254 (10)0.0448 (3)
C10.64619 (17)0.71547 (11)0.28410 (11)0.0393 (3)
C20.45691 (17)0.73509 (12)0.35802 (12)0.0408 (4)
C30.40689 (18)0.84878 (12)0.39403 (12)0.0447 (4)
C40.5412 (2)0.94029 (13)0.35392 (14)0.0528 (4)
C50.7257 (2)0.92062 (13)0.28035 (15)0.0567 (5)
C60.77862 (19)0.80817 (13)0.24555 (13)0.0491 (4)
C70.3148 (2)0.63405 (16)0.40020 (17)0.0641 (6)
C80.2084 (2)0.87330 (18)0.47689 (19)0.0722 (6)
C90.85705 (18)0.54088 (11)0.25246 (12)0.0410 (4)
C100.91943 (17)0.42826 (11)0.20390 (11)0.0390 (3)
C111.08153 (17)0.34815 (11)0.23517 (12)0.0417 (4)
C121.13627 (17)0.23966 (11)0.19044 (12)0.0414 (3)
C131.03063 (17)0.21157 (11)0.11341 (11)0.0387 (3)
C140.86709 (17)0.29209 (12)0.08024 (12)0.0425 (4)
C150.81463 (17)0.39796 (12)0.12541 (12)0.0423 (4)
C161.3221 (3)0.29635 (15)0.36533 (17)0.0657 (6)
C171.2405 (2)0.02807 (15)0.08431 (18)0.0666 (6)
C180.6215 (2)0.33758 (15)0.04312 (16)0.0591 (5)
H40.506361.016410.377000.0633*
H50.814290.983090.254250.0681*
H60.903210.794540.196200.0589*
H7A0.305970.594260.489320.0961*
H7B0.360420.572090.351850.0961*
H7C0.187110.671050.386460.0961*
H8A0.200890.954880.493380.1082*
H8B0.191760.809430.556210.1082*
H8C0.106100.871190.433830.1082*
H90.940310.567960.291690.0492*
H121.244010.186240.212540.0496*
H160.706600.451110.103380.0507*
H16A1.264340.218580.412710.0986*
H16B1.369370.331440.421450.0986*
H16C1.430110.280350.298620.0986*
H17A1.354600.076000.051000.1000*
H17B1.252450.037520.041030.1000*
H17C1.230410.009080.174000.1000*
H18A0.517450.349260.027520.0886*
H18B0.571160.301850.097490.0886*
H18C0.671140.417710.090750.0886*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0813 (7)0.0513 (6)0.1068 (9)0.0226 (5)0.0673 (7)0.0385 (6)
O20.0521 (5)0.0475 (5)0.0571 (6)0.0132 (4)0.0173 (4)0.0280 (4)
O30.0709 (6)0.0633 (6)0.0850 (8)0.0239 (5)0.0489 (6)0.0447 (6)
N10.0471 (5)0.0455 (6)0.0486 (6)0.0100 (4)0.0174 (5)0.0234 (5)
C10.0439 (6)0.0405 (6)0.0376 (6)0.0082 (5)0.0159 (5)0.0157 (5)
C20.0414 (6)0.0433 (7)0.0412 (6)0.0045 (5)0.0152 (5)0.0145 (5)
C30.0444 (6)0.0457 (7)0.0455 (7)0.0107 (5)0.0129 (5)0.0179 (5)
C40.0636 (8)0.0377 (7)0.0588 (8)0.0078 (6)0.0145 (7)0.0195 (6)
C50.0616 (8)0.0425 (7)0.0634 (9)0.0089 (6)0.0045 (7)0.0143 (6)
C60.0477 (7)0.0493 (8)0.0471 (7)0.0008 (6)0.0032 (5)0.0151 (6)
C70.0542 (8)0.0645 (10)0.0787 (11)0.0084 (7)0.0076 (7)0.0305 (8)
C80.0537 (8)0.0756 (11)0.0892 (12)0.0108 (8)0.0016 (8)0.0435 (10)
C90.0447 (6)0.0393 (6)0.0437 (7)0.0041 (5)0.0166 (5)0.0157 (5)
C100.0398 (6)0.0378 (6)0.0417 (6)0.0044 (5)0.0124 (5)0.0141 (5)
C110.0427 (6)0.0398 (6)0.0483 (7)0.0020 (5)0.0193 (5)0.0145 (5)
C120.0366 (5)0.0388 (6)0.0498 (7)0.0066 (4)0.0140 (5)0.0133 (5)
C130.0387 (5)0.0383 (6)0.0392 (6)0.0039 (4)0.0063 (5)0.0150 (5)
C140.0420 (6)0.0463 (7)0.0449 (7)0.0059 (5)0.0164 (5)0.0192 (5)
C150.0388 (6)0.0444 (7)0.0477 (7)0.0100 (5)0.0164 (5)0.0185 (5)
C160.0718 (9)0.0584 (9)0.0833 (11)0.0144 (7)0.0510 (9)0.0240 (8)
C170.0627 (9)0.0577 (9)0.0902 (12)0.0253 (7)0.0277 (8)0.0407 (9)
C180.0555 (8)0.0674 (9)0.0649 (9)0.0080 (7)0.0316 (7)0.0240 (8)
Geometric parameters (Å, º) top
O1—C111.3658 (18)C14—C151.3686 (19)
O1—C161.406 (2)C4—H40.9300
O2—C131.3559 (16)C5—H50.9300
O2—C171.4129 (19)C6—H60.9300
O3—C141.3656 (17)C7—H7A0.9600
O3—C181.407 (2)C7—H7B0.9600
N1—C11.4181 (17)C7—H7C0.9600
N1—C91.2664 (17)C8—H8A0.9600
C1—C21.4058 (17)C8—H8B0.9600
C1—C61.3849 (19)C8—H8C0.9600
C2—C31.3962 (19)C9—H90.9300
C2—C71.499 (2)C12—H120.9300
C3—C41.384 (2)C15—H160.9300
C3—C81.508 (2)C16—H16A0.9600
C4—C51.378 (2)C16—H16B0.9600
C5—C61.378 (2)C16—H16C0.9600
C9—C101.4625 (18)C17—H17A0.9600
C10—C111.3917 (18)C17—H17B0.9600
C10—C151.3993 (18)C17—H17C0.9600
C11—C121.3937 (18)C18—H18A0.9600
C12—C131.3785 (17)C18—H18B0.9600
C13—C141.4076 (18)C18—H18C0.9600
C11—O1—C16119.52 (12)C2—C7—H7A109.00
C13—O2—C17118.84 (11)C2—C7—H7B109.00
C14—O3—C18117.70 (12)C2—C7—H7C109.00
C1—N1—C9119.09 (11)H7A—C7—H7B109.00
N1—C1—C2118.33 (11)H7A—C7—H7C109.00
N1—C1—C6120.89 (11)H7B—C7—H7C109.00
C2—C1—C6120.63 (12)C3—C8—H8A109.00
C1—C2—C3118.61 (12)C3—C8—H8B109.00
C1—C2—C7120.36 (12)C3—C8—H8C109.00
C3—C2—C7121.00 (12)H8A—C8—H8B109.00
C2—C3—C4119.75 (12)H8A—C8—H8C109.00
C2—C3—C8120.94 (13)H8B—C8—H8C109.00
C4—C3—C8119.31 (13)N1—C9—H9119.00
C3—C4—C5121.16 (13)C10—C9—H9119.00
C4—C5—C6119.86 (14)C11—C12—H12120.00
C1—C6—C5119.98 (13)C13—C12—H12120.00
N1—C9—C10121.79 (12)C10—C15—H16119.00
C9—C10—C11121.37 (11)C14—C15—H16119.00
C9—C10—C15120.23 (11)O1—C16—H16A109.00
C11—C10—C15118.40 (11)O1—C16—H16B109.00
O1—C11—C10116.09 (11)O1—C16—H16C109.00
O1—C11—C12123.28 (12)H16A—C16—H16B109.00
C10—C11—C12120.63 (11)H16A—C16—H16C109.00
C11—C12—C13119.97 (12)H16B—C16—H16C109.00
O2—C13—C12125.10 (11)O2—C17—H17A109.00
O2—C13—C14114.82 (11)O2—C17—H17B109.00
C12—C13—C14120.08 (12)O2—C17—H17C109.00
O3—C14—C13114.95 (12)H17A—C17—H17B109.00
O3—C14—C15125.80 (12)H17A—C17—H17C110.00
C13—C14—C15119.25 (12)H17B—C17—H17C109.00
C10—C15—C14121.67 (12)O3—C18—H18A109.00
C3—C4—H4119.00O3—C18—H18B109.00
C5—C4—H4119.00O3—C18—H18C110.00
C4—C5—H5120.00H18A—C18—H18B109.00
C6—C5—H5120.00H18A—C18—H18C109.00
C1—C6—H6120.00H18B—C18—H18C109.00
C5—C6—H6120.00
C16—O1—C11—C10169.05 (13)C3—C4—C5—C60.1 (2)
C16—O1—C11—C1210.5 (2)C4—C5—C6—C10.3 (2)
C17—O2—C13—C125.76 (19)N1—C9—C10—C11168.10 (12)
C17—O2—C13—C14174.79 (12)N1—C9—C10—C1511.16 (19)
C18—O3—C14—C13174.38 (12)C9—C10—C11—O11.04 (18)
C18—O3—C14—C155.2 (2)C9—C10—C11—C12178.53 (12)
C9—N1—C1—C2134.93 (13)C15—C10—C11—O1179.69 (12)
C9—N1—C1—C649.51 (17)C15—C10—C11—C120.75 (18)
C1—N1—C9—C10175.98 (11)C9—C10—C15—C14178.84 (12)
N1—C1—C2—C3176.94 (11)C11—C10—C15—C140.45 (19)
N1—C1—C2—C74.86 (18)O1—C11—C12—C13179.82 (12)
C6—C1—C2—C31.38 (18)C10—C11—C12—C130.65 (19)
C6—C1—C2—C7179.57 (13)C11—C12—C13—O2179.65 (12)
N1—C1—C6—C5175.87 (12)C11—C12—C13—C140.23 (18)
C2—C1—C6—C50.4 (2)O2—C13—C14—O30.99 (16)
C1—C2—C3—C41.67 (19)O2—C13—C14—C15179.40 (11)
C1—C2—C3—C8177.99 (13)C12—C13—C14—O3179.53 (11)
C7—C2—C3—C4179.86 (13)C12—C13—C14—C150.07 (19)
C7—C2—C3—C80.2 (2)O3—C14—C15—C10179.60 (12)
C2—C3—C4—C51.0 (2)C13—C14—C15—C100.0 (2)
C8—C3—C4—C5178.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···Cg1i0.962.993.5694 (19)120
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H21NO3
Mr299.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0040 (2), 11.0396 (4), 11.1585 (4)
α, β, γ (°)73.941 (1), 76.022 (2), 82.079 (1)
V3)802.24 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
13855, 3957, 2935
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.07
No. of reflections3957
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···Cg1i0.962.993.5694 (19)120
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds