metal-organic compounds
Bis(2,6-diaminopyridin-1-ium) hexaaquacobalt(II) disulfate dihydrate
aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, (C5H8N3)2[Co(H2O)6](SO4)2·2H2O, the complete complex cation is generated by crystallographic inversion symmetry, such that the CoII cation is octahedrally coordinated by six water molecules. The organic cation is essentially planar, with a maximum deviation of 0.013 (1) Å. In the the ions and molecules are linked into a pseudo-layered three-dimensional supramolecular network via O—H⋯O and N—H⋯O hydrogen bonds. Weak intermolecular π–π interactions further stabilize the [centroid–centroid distance = 3.5231 (4) Å].
Related literature
For general background to and applications of 1,6-diaminopyridinium ions, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990); Ma & Huang (2003); Patani & LaVoie (1996). For closely related hexaaquacobalt(II) structures, see: Li et al. (2004); Pan et al. (2003). For closely related pyridinium structures, see: Al-Dajani, Abdallah et al. (2009, 2010); Al-Dajani, Salhin et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810026693/hb5536sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810026693/hb5536Isup2.hkl
In a round bottom flask was added with stirring 1,4-dioxane (25 ml), 2,6-diaminopyridine (0.02 mol, 2.2 g) and CoSO4.7H2O (0.01 mol, 2.8 g) dissolved in water. The concoction was refluxed for 24 h and a red solution was then formed. Red blocks of (I) were formed overnight at room temperature. The filtrate was washed with 1,4-dioxane and dried at 333 K.
All H-atoms were located from difference Fourier map and allowed to refine freely [ranges of C—H = 0.938 (13)–0.980 (13) Å, N—H = 0.776 (15)–0.884 (13) Å and O—H = 0.784 (16)—0.863 (17) Å].
Generally 1,6-diaminopyridinium has an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). It also exhibits amino-imino
property (Inuzuka & Fujimoto, 1990). Molecules containing pyridyl moiety exhibit biological activity and low toxicity (Patani & LaVoie, 1996; Ma & Huang, 2003).The
of the title complex comprises of half of hexaaquacobalt(II) cation, a protonated 2,6-diaminopyridin-1-ium cation, a sulphate anion and a water molecule of crystallization. The complete complex (Fig. 1) is generated by the crystallographic inversion center [symmetry code of atoms labelled with suffix A: -x+1, -y+1, -z+1]. Within the metal complex cation [Co(H2O)6]2+, the CoII ion is coordinated by six water molecules at the vertices of the almost ideal octahedron. The Co-O bond lengths range from 2.0801 (5) to 2.1064 (5) Å and the O—Co—O angles span the ranges of 87.50 (2)–92.50 (2)° and 179.999 (1)–180.00 (3)°. The 2,6-diaminopyridinium organic cation (C1-C5/N1-N3) is essentially planar, with a maximum deviation of -0.013 (1) Å at atom C5. Comparing to the unprotonated structure (Al-Dajani, Salhin et al., 2009), protonation at atom N1 has lead to a slight increase in the C1—N1—C5 angle to 123.55 (5)°. The geometric parameters are consistent to those observed in closely related hexaaquacobalt(II) (Pan et al., 2003; Li et al., 2004) and 1,6-diaminopyridinium (Al-Dajani, Abdallah et al., 2009,2010; Al-Dajani, Salhin et al., 2009) structures.The
is mainly stabilized by a network of O—H···O and N—H···O hydrogen bonds (Table 2). In this network, the water molecule O atoms and organic N atoms act as donors whereas the sulphate O atoms provide the most extensive part as acceptors. A three-dimensional supramolecular structure (Fig. 2) is built up in such an arrangement that the 2,6-diaminopyridinium organic layers are sandwiched between layers formed through the remaining ions and water molecules. The is further stabilized by weak intermolecular Cg1···Cg1 interactions [Cg1···Cg1 = 3.5231 (4) Å; symmetry codes: x-1/2, y, -z+3/2 and x+1/2, y, -z+3/2] where Cg1 is the centroid of C1-C5/N1 pyridine ring.For general background to and applications of 1,6-diaminopyridinium ions, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990); Ma & Huang (2003); Patani & LaVoie (1996). For closely related hexaaquacobalt(II) structures, see: Li et al. (2004); Pan et al. (2003). For closely related pyridinium structures, see: Al-Dajani, Abdallah et al. (2009, 2010); Al-Dajani, Salhin et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The suffix A corresponds to the symmetry code [-x+1, -y+1, -z+1]. | |
Fig. 2. The crystal structure of (I), viewed along the b axis, showing the three-dimensional supramolecular structure. Intermolecular interactions have been shown as dashed lines. |
(C5H8N3)2[Co(H2O)6](SO4)2·2H2O | F(000) = 1284 |
Mr = 615.47 | Dx = 1.727 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9901 reflections |
a = 6.6219 (1) Å | θ = 3.5–37.6° |
b = 14.4347 (2) Å | µ = 0.99 mm−1 |
c = 24.7590 (3) Å | T = 100 K |
V = 2366.59 (6) Å3 | Block, red |
Z = 4 | 0.35 × 0.31 × 0.21 mm |
Bruker SMART APEXII CCD diffractometer | 6333 independent reflections |
Radiation source: fine-focus sealed tube | 5758 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 37.7°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.725, Tmax = 0.821 | k = −24→24 |
86569 measured reflections | l = −42→42 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0322P)2 + 0.6554P] where P = (Fo2 + 2Fc2)/3 |
6333 reflections | (Δ/σ)max = 0.001 |
224 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
(C5H8N3)2[Co(H2O)6](SO4)2·2H2O | V = 2366.59 (6) Å3 |
Mr = 615.47 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 6.6219 (1) Å | µ = 0.99 mm−1 |
b = 14.4347 (2) Å | T = 100 K |
c = 24.7590 (3) Å | 0.35 × 0.31 × 0.21 mm |
Bruker SMART APEXII CCD diffractometer | 6333 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 5758 reflections with I > 2σ(I) |
Tmin = 0.725, Tmax = 0.821 | Rint = 0.030 |
86569 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.064 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.60 e Å−3 |
6333 reflections | Δρmin = −0.38 e Å−3 |
224 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.00813 (3) | |
O1W | 0.60030 (8) | 0.62537 (4) | 0.46843 (2) | 0.01288 (8) | |
O2W | 0.37213 (8) | 0.57254 (4) | 0.56500 (2) | 0.01253 (8) | |
O3W | 0.23481 (8) | 0.51148 (4) | 0.45350 (2) | 0.01281 (9) | |
O4W | 0.50958 (8) | 0.83091 (4) | 0.53640 (2) | 0.01281 (9) | |
S1 | 0.86829 (2) | 0.696844 (10) | 0.616698 (6) | 0.00760 (3) | |
O1 | 0.93408 (8) | 0.79469 (3) | 0.62001 (2) | 0.01200 (8) | |
O2 | 0.64851 (8) | 0.69401 (4) | 0.60506 (2) | 0.01254 (8) | |
O3 | 0.97898 (8) | 0.64929 (4) | 0.57237 (2) | 0.01158 (8) | |
O4 | 0.90760 (9) | 0.65018 (4) | 0.66828 (2) | 0.01417 (9) | |
N1 | 0.89603 (9) | 0.85415 (4) | 0.72893 (2) | 0.00943 (8) | |
N2 | 0.97396 (10) | 0.72061 (4) | 0.77643 (3) | 0.01420 (10) | |
N3 | 0.82794 (10) | 0.97979 (4) | 0.67371 (2) | 0.01328 (10) | |
C1 | 0.91746 (10) | 0.81030 (4) | 0.77745 (2) | 0.00979 (9) | |
C2 | 0.88017 (10) | 0.86024 (5) | 0.82461 (3) | 0.01229 (10) | |
C3 | 0.82632 (11) | 0.95288 (5) | 0.82032 (3) | 0.01297 (10) | |
C4 | 0.80547 (11) | 0.99626 (5) | 0.77070 (3) | 0.01179 (10) | |
C5 | 0.84005 (9) | 0.94478 (4) | 0.72390 (2) | 0.00965 (9) | |
H1W1 | 0.542 (2) | 0.6492 (10) | 0.4413 (6) | 0.030 (4)* | |
H2W1 | 0.724 (2) | 0.6368 (10) | 0.4648 (6) | 0.028 (3)* | |
H1W2 | 0.451 (2) | 0.6080 (10) | 0.5781 (6) | 0.025 (3)* | |
H2W2 | 0.264 (2) | 0.5990 (10) | 0.5680 (6) | 0.030 (4)* | |
H1W3 | 0.160 (2) | 0.5580 (11) | 0.4558 (6) | 0.029 (4)* | |
H2W3 | 0.165 (2) | 0.4675 (11) | 0.4463 (6) | 0.028 (3)* | |
H1W4 | 0.559 (3) | 0.7850 (12) | 0.5544 (6) | 0.036 (4)* | |
H2W4 | 0.514 (2) | 0.8192 (13) | 0.5055 (6) | 0.032 (4)* | |
H1N1 | 0.923 (2) | 0.8224 (9) | 0.6993 (5) | 0.021 (3)* | |
H2N2 | 1.014 (2) | 0.6963 (10) | 0.8039 (6) | 0.023 (3)* | |
H1N3 | 0.836 (2) | 0.9442 (9) | 0.6464 (5) | 0.021 (3)* | |
H1N2 | 0.983 (2) | 0.6940 (10) | 0.7493 (6) | 0.023 (3)* | |
H2N3 | 0.769 (2) | 1.0311 (10) | 0.6695 (5) | 0.022 (3)* | |
H2 | 0.888 (2) | 0.8281 (9) | 0.8575 (5) | 0.024 (3)* | |
H3 | 0.794 (2) | 0.9854 (9) | 0.8525 (5) | 0.017 (3)* | |
H4 | 0.768 (2) | 1.0617 (9) | 0.7676 (5) | 0.021 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.00772 (5) | 0.00786 (5) | 0.00880 (5) | −0.00035 (4) | −0.00063 (4) | 0.00026 (3) |
O1W | 0.01163 (19) | 0.0125 (2) | 0.0145 (2) | −0.00216 (16) | −0.00227 (17) | 0.00427 (15) |
O2W | 0.01003 (19) | 0.0139 (2) | 0.01366 (19) | −0.00017 (16) | −0.00004 (16) | −0.00345 (16) |
O3W | 0.01056 (19) | 0.01071 (19) | 0.0172 (2) | 0.00053 (16) | −0.00386 (17) | −0.00187 (15) |
O4W | 0.0138 (2) | 0.0137 (2) | 0.01087 (19) | 0.00064 (16) | −0.00068 (16) | −0.00023 (16) |
S1 | 0.00845 (6) | 0.00744 (6) | 0.00691 (5) | −0.00042 (4) | 0.00023 (4) | −0.00030 (4) |
O1 | 0.0154 (2) | 0.00811 (18) | 0.01252 (19) | −0.00296 (16) | 0.00154 (17) | −0.00110 (14) |
O2 | 0.00834 (18) | 0.0135 (2) | 0.0158 (2) | −0.00022 (15) | −0.00093 (16) | −0.00211 (16) |
O3 | 0.01201 (19) | 0.01219 (19) | 0.01052 (18) | 0.00079 (15) | 0.00229 (15) | −0.00298 (15) |
O4 | 0.0201 (2) | 0.0137 (2) | 0.00873 (17) | −0.00068 (18) | −0.00182 (17) | 0.00294 (15) |
N1 | 0.0103 (2) | 0.0097 (2) | 0.00826 (19) | 0.00011 (16) | −0.00031 (16) | −0.00037 (15) |
N2 | 0.0180 (3) | 0.0110 (2) | 0.0136 (2) | 0.00237 (19) | −0.0038 (2) | 0.00052 (18) |
N3 | 0.0147 (2) | 0.0138 (2) | 0.0113 (2) | 0.00146 (19) | −0.00063 (19) | 0.00307 (17) |
C1 | 0.0089 (2) | 0.0109 (2) | 0.0096 (2) | −0.00068 (18) | −0.00122 (18) | 0.00055 (17) |
C2 | 0.0127 (2) | 0.0153 (3) | 0.0089 (2) | 0.0001 (2) | −0.00031 (19) | −0.00021 (18) |
C3 | 0.0119 (2) | 0.0157 (3) | 0.0113 (2) | 0.0000 (2) | 0.0004 (2) | −0.00380 (19) |
C4 | 0.0112 (2) | 0.0108 (2) | 0.0134 (2) | 0.00028 (19) | 0.0003 (2) | −0.00217 (18) |
C5 | 0.0080 (2) | 0.0101 (2) | 0.0109 (2) | −0.00041 (18) | −0.00031 (18) | 0.00074 (17) |
Co1—O1Wi | 2.0801 (5) | S1—O3 | 1.4875 (5) |
Co1—O1W | 2.0801 (5) | N1—C1 | 1.3652 (8) |
Co1—O2Wi | 2.0985 (5) | N1—C5 | 1.3654 (8) |
Co1—O2W | 2.0985 (5) | N1—H1N1 | 0.884 (13) |
Co1—O3Wi | 2.1064 (5) | N2—C1 | 1.3478 (9) |
Co1—O3W | 2.1064 (5) | N2—H2N2 | 0.810 (14) |
O1W—H1W1 | 0.848 (16) | N2—H1N2 | 0.776 (15) |
O1W—H2W1 | 0.841 (16) | N3—C5 | 1.3438 (8) |
O2W—H1W2 | 0.799 (15) | N3—H1N3 | 0.851 (14) |
O2W—H2W2 | 0.817 (16) | N3—H2N3 | 0.843 (15) |
O3W—H1W3 | 0.836 (16) | C1—C2 | 1.3942 (9) |
O3W—H2W3 | 0.806 (16) | C2—C3 | 1.3881 (10) |
O4W—H1W4 | 0.863 (17) | C2—H2 | 0.938 (13) |
O4W—H2W4 | 0.784 (16) | C3—C4 | 1.3859 (10) |
S1—O4 | 1.4672 (5) | C3—H3 | 0.949 (13) |
S1—O1 | 1.4803 (5) | C4—C5 | 1.3953 (9) |
S1—O2 | 1.4842 (5) | C4—H4 | 0.980 (13) |
O1Wi—Co1—O1W | 180.0 | O4—S1—O3 | 110.06 (3) |
O1Wi—Co1—O2Wi | 89.02 (2) | O1—S1—O3 | 109.64 (3) |
O1W—Co1—O2Wi | 90.98 (2) | O2—S1—O3 | 109.10 (3) |
O1Wi—Co1—O2W | 90.98 (2) | C1—N1—C5 | 123.55 (5) |
O1W—Co1—O2W | 89.02 (2) | C1—N1—H1N1 | 117.9 (9) |
O2Wi—Co1—O2W | 180.0 | C5—N1—H1N1 | 118.5 (9) |
O1Wi—Co1—O3Wi | 89.56 (2) | C1—N2—H2N2 | 119.5 (10) |
O1W—Co1—O3Wi | 90.44 (2) | C1—N2—H1N2 | 120.9 (11) |
O2Wi—Co1—O3Wi | 92.50 (2) | H2N2—N2—H1N2 | 119.0 (15) |
O2W—Co1—O3Wi | 87.50 (2) | C5—N3—H1N3 | 120.2 (9) |
O1Wi—Co1—O3W | 90.44 (2) | C5—N3—H2N3 | 118.2 (9) |
O1W—Co1—O3W | 89.56 (2) | H1N3—N3—H2N3 | 117.5 (13) |
O2Wi—Co1—O3W | 87.50 (2) | N2—C1—N1 | 117.24 (6) |
O2W—Co1—O3W | 92.50 (2) | N2—C1—C2 | 124.16 (6) |
O3Wi—Co1—O3W | 180.0 | N1—C1—C2 | 118.60 (6) |
Co1—O1W—H1W1 | 120.3 (10) | C3—C2—C1 | 118.66 (6) |
Co1—O1W—H2W1 | 121.4 (10) | C3—C2—H2 | 123.9 (8) |
H1W1—O1W—H2W1 | 106.3 (14) | C1—C2—H2 | 117.4 (8) |
Co1—O2W—H1W2 | 111.5 (11) | C4—C3—C2 | 121.91 (6) |
Co1—O2W—H2W2 | 131.1 (10) | C4—C3—H3 | 120.0 (8) |
H1W2—O2W—H2W2 | 103.8 (14) | C2—C3—H3 | 118.0 (8) |
Co1—O3W—H1W3 | 121.3 (10) | C3—C4—C5 | 118.63 (6) |
Co1—O3W—H2W3 | 122.5 (11) | C3—C4—H4 | 122.0 (8) |
H1W3—O3W—H2W3 | 108.0 (16) | C5—C4—H4 | 119.4 (8) |
H1W4—O4W—H2W4 | 109.0 (17) | N3—C5—N1 | 117.44 (6) |
O4—S1—O1 | 109.73 (3) | N3—C5—C4 | 123.90 (6) |
O4—S1—O2 | 109.29 (3) | N1—C5—C4 | 118.63 (6) |
O1—S1—O2 | 109.01 (3) | ||
C5—N1—C1—N2 | −179.89 (6) | C2—C3—C4—C5 | −0.05 (11) |
C5—N1—C1—C2 | 0.09 (10) | C1—N1—C5—N3 | 178.90 (6) |
N2—C1—C2—C3 | 178.85 (7) | C1—N1—C5—C4 | 0.99 (10) |
N1—C1—C2—C3 | −1.13 (10) | C3—C4—C5—N3 | −178.76 (7) |
C1—C2—C3—C4 | 1.12 (11) | C3—C4—C5—N1 | −0.99 (10) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O1ii | 0.848 (14) | 1.863 (15) | 2.7088 (7) | 175.4 (13) |
O1W—H2W1···O4Wiii | 0.840 (13) | 1.948 (13) | 2.7853 (8) | 174.2 (13) |
O2W—H1W2···O2 | 0.800 (14) | 1.923 (14) | 2.7217 (8) | 176.3 (14) |
O2W—H2W2···O3iv | 0.815 (14) | 2.025 (13) | 2.8352 (8) | 172.7 (15) |
O3W—H1W3···O4Wii | 0.836 (15) | 1.898 (15) | 2.7318 (8) | 175.1 (13) |
O3W—H2W3···O3i | 0.805 (15) | 1.991 (15) | 2.7928 (8) | 173.6 (14) |
O4W—H1W4···O2 | 0.863 (17) | 1.910 (17) | 2.7643 (8) | 169.9 (16) |
O4W—H2W4···O3ii | 0.784 (15) | 1.994 (15) | 2.7157 (7) | 152.8 (18) |
N1—H1N1···O1 | 0.883 (13) | 2.005 (12) | 2.8412 (7) | 157.6 (12) |
N2—H2N2···O2v | 0.810 (15) | 2.424 (15) | 3.1769 (9) | 155.1 (13) |
N3—H1N3···O1 | 0.851 (13) | 2.347 (13) | 3.0660 (7) | 142.6 (11) |
N2—H1N2···O4 | 0.776 (15) | 2.162 (15) | 2.8977 (9) | 158.5 (14) |
N3—H2N3···O4vi | 0.844 (14) | 2.079 (14) | 2.9155 (8) | 171.0 (12) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+3/2, −z+1; (iii) x+1/2, −y+3/2, −z+1; (iv) x−1, y, z; (v) x+1/2, y, −z+3/2; (vi) −x+3/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | (C5H8N3)2[Co(H2O)6](SO4)2·2H2O |
Mr | 615.47 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 6.6219 (1), 14.4347 (2), 24.7590 (3) |
V (Å3) | 2366.59 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.99 |
Crystal size (mm) | 0.35 × 0.31 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.725, 0.821 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 86569, 6333, 5758 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.861 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.064, 1.08 |
No. of reflections | 6333 |
No. of parameters | 224 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.60, −0.38 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O1i | 0.848 (14) | 1.863 (15) | 2.7088 (7) | 175.4 (13) |
O1W—H2W1···O4Wii | 0.840 (13) | 1.948 (13) | 2.7853 (8) | 174.2 (13) |
O2W—H1W2···O2 | 0.800 (14) | 1.923 (14) | 2.7217 (8) | 176.3 (14) |
O2W—H2W2···O3iii | 0.815 (14) | 2.025 (13) | 2.8352 (8) | 172.7 (15) |
O3W—H1W3···O4Wi | 0.836 (15) | 1.898 (15) | 2.7318 (8) | 175.1 (13) |
O3W—H2W3···O3iv | 0.805 (15) | 1.991 (15) | 2.7928 (8) | 173.6 (14) |
O4W—H1W4···O2 | 0.863 (17) | 1.910 (17) | 2.7643 (8) | 169.9 (16) |
O4W—H2W4···O3i | 0.784 (15) | 1.994 (15) | 2.7157 (7) | 152.8 (18) |
N1—H1N1···O1 | 0.883 (13) | 2.005 (12) | 2.8412 (7) | 157.6 (12) |
N2—H2N2···O2v | 0.810 (15) | 2.424 (15) | 3.1769 (9) | 155.1 (13) |
N3—H1N3···O1 | 0.851 (13) | 2.347 (13) | 3.0660 (7) | 142.6 (11) |
N2—H1N2···O4 | 0.776 (15) | 2.162 (15) | 2.8977 (9) | 158.5 (14) |
N3—H2N3···O4vi | 0.844 (14) | 2.079 (14) | 2.9155 (8) | 171.0 (12) |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+3/2, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) x+1/2, y, −z+3/2; (vi) −x+3/2, y+1/2, z. |
Footnotes
‡On secondment from: Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Persiaran Bukit Jambul, 11900, Penang, Malaysia.
§Additional correspondence author, e-mail: nornisah@usm.my.
¶Thomson Reuters ResearcherID: C-7576-2009.
‡‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
NH gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM Fellowship.
References
Abu Zuhri, A. Z. & Cox, J. A. (1989). Microchim. Acta, 11, 277–283. CrossRef Google Scholar
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2939–o2940. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1815–o1816. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216–220. CrossRef CAS Web of Science Google Scholar
Li, X.-H., Miao, Q., Xiao, H.-P. & Hu, M.-L. (2004). Acta Cryst. E60, m1784–m1785. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, J. A. & Huang, Y. Q. (2003). Chem. J. Chin. Univ. 24, 654–656. Google Scholar
Pan, J.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m286–m288. CSD CrossRef CAS IUCr Journals Google Scholar
Patani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147–3176. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Generally 1,6-diaminopyridinium has an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). It also exhibits amino-imino tautomerization property (Inuzuka & Fujimoto, 1990). Molecules containing pyridyl moiety exhibit biological activity and low toxicity (Patani & LaVoie, 1996; Ma & Huang, 2003).
The asymmetric unit of the title complex comprises of half of hexaaquacobalt(II) cation, a protonated 2,6-diaminopyridin-1-ium cation, a sulphate anion and a water molecule of crystallization. The complete complex (Fig. 1) is generated by the crystallographic inversion center [symmetry code of atoms labelled with suffix A: -x+1, -y+1, -z+1]. Within the metal complex cation [Co(H2O)6]2+, the CoII ion is coordinated by six water molecules at the vertices of the almost ideal octahedron. The Co-O bond lengths range from 2.0801 (5) to 2.1064 (5) Å and the O—Co—O angles span the ranges of 87.50 (2)–92.50 (2)° and 179.999 (1)–180.00 (3)°. The 2,6-diaminopyridinium organic cation (C1-C5/N1-N3) is essentially planar, with a maximum deviation of -0.013 (1) Å at atom C5. Comparing to the unprotonated structure (Al-Dajani, Salhin et al., 2009), protonation at atom N1 has lead to a slight increase in the C1—N1—C5 angle to 123.55 (5)°. The geometric parameters are consistent to those observed in closely related hexaaquacobalt(II) (Pan et al., 2003; Li et al., 2004) and 1,6-diaminopyridinium (Al-Dajani, Abdallah et al., 2009,2010; Al-Dajani, Salhin et al., 2009) structures.
The crystal structure is mainly stabilized by a network of O—H···O and N—H···O hydrogen bonds (Table 2). In this network, the water molecule O atoms and organic N atoms act as donors whereas the sulphate O atoms provide the most extensive part as acceptors. A three-dimensional supramolecular structure (Fig. 2) is built up in such an arrangement that the 2,6-diaminopyridinium organic layers are sandwiched between layers formed through the remaining ions and water molecules. The crystal structure is further stabilized by weak intermolecular Cg1···Cg1 interactions [Cg1···Cg1 = 3.5231 (4) Å; symmetry codes: x-1/2, y, -z+3/2 and x+1/2, y, -z+3/2] where Cg1 is the centroid of C1-C5/N1 pyridine ring.