metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­amino­pyridin-1-ium) hexa­aqua­cobalt(II) di­sulfate dihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2010; accepted 6 July 2010; online 10 July 2010)

In the title compound, (C5H8N3)2[Co(H2O)6](SO4)2·2H2O, the complete complex cation is generated by crystallographic inversion symmetry, such that the CoII cation is octa­hedrally coordinated by six water mol­ecules. The organic cation is essentially planar, with a maximum deviation of 0.013 (1) Å. In the crystal structure, the ions and mol­ecules are linked into a pseudo-layered three-dimensional supra­molecular network via O—H⋯O and N—H⋯O hydrogen bonds. Weak inter­molecular ππ inter­actions further stabilize the crystal structure [centroid–centroid distance = 3.5231 (4) Å].

Related literature

For general background to and applications of 1,6-diamino­pyridinium ions, see: Abu Zuhri & Cox (1989[Abu Zuhri, A. Z. & Cox, J. A. (1989). Microchim. Acta, 11, 277-283.]); Inuzuka & Fujimoto (1990[Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216-220.]); Ma & Huang (2003[Ma, J. A. & Huang, Y. Q. (2003). Chem. J. Chin. Univ. 24, 654-656.]); Patani & LaVoie (1996[Patani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147-3176.]). For closely related hexa­aqua­cobalt(II) structures, see: Li et al. (2004[Li, X.-H., Miao, Q., Xiao, H.-P. & Hu, M.-L. (2004). Acta Cryst. E60, m1784-m1785.]); Pan et al. (2003[Pan, J.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m286-m288.]). For closely related pyridinium structures, see: Al-Dajani, Abdallah et al. (2009[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2939-o2940.], 2010[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1815-o1816.]); Al-Dajani, Salhin et al. (2009[Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931-o2932.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H8N3)2[Co(H2O)6](SO4)2·2H2O

  • Mr = 615.47

  • Orthorhombic, P b c a

  • a = 6.6219 (1) Å

  • b = 14.4347 (2) Å

  • c = 24.7590 (3) Å

  • V = 2366.59 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 100 K

  • 0.35 × 0.31 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.821

  • 86569 measured reflections

  • 6333 independent reflections

  • 5758 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.064

  • S = 1.08

  • 6333 reflections

  • 224 parameters

  • All H-atom parameters refined

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1W 2.0801 (5)
Co1—O2W 2.0985 (5)
Co1—O3W 2.1064 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.848 (14) 1.863 (15) 2.7088 (7) 175.4 (13)
O1W—H2W1⋯O4Wii 0.840 (13) 1.948 (13) 2.7853 (8) 174.2 (13)
O2W—H1W2⋯O2 0.800 (14) 1.923 (14) 2.7217 (8) 176.3 (14)
O2W—H2W2⋯O3iii 0.815 (14) 2.025 (13) 2.8352 (8) 172.7 (15)
O3W—H1W3⋯O4Wi 0.836 (15) 1.898 (15) 2.7318 (8) 175.1 (13)
O3W—H2W3⋯O3iv 0.805 (15) 1.991 (15) 2.7928 (8) 173.6 (14)
O4W—H1W4⋯O2 0.863 (17) 1.910 (17) 2.7643 (8) 169.9 (16)
O4W—H2W4⋯O3i 0.784 (15) 1.994 (15) 2.7157 (7) 152.8 (18)
N1—H1N1⋯O1 0.883 (13) 2.005 (12) 2.8412 (7) 157.6 (12)
N2—H2N2⋯O2v 0.810 (15) 2.424 (15) 3.1769 (9) 155.1 (13)
N3—H1N3⋯O1 0.851 (13) 2.347 (13) 3.0660 (7) 142.6 (11)
N2—H1N2⋯O4 0.776 (15) 2.162 (15) 2.8977 (9) 158.5 (14)
N3—H2N3⋯O4vi 0.844 (14) 2.079 (14) 2.9155 (8) 171.0 (12)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Generally 1,6-diaminopyridinium has an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). It also exhibits amino-imino tautomerization property (Inuzuka & Fujimoto, 1990). Molecules containing pyridyl moiety exhibit biological activity and low toxicity (Patani & LaVoie, 1996; Ma & Huang, 2003).

The asymmetric unit of the title complex comprises of half of hexaaquacobalt(II) cation, a protonated 2,6-diaminopyridin-1-ium cation, a sulphate anion and a water molecule of crystallization. The complete complex (Fig. 1) is generated by the crystallographic inversion center [symmetry code of atoms labelled with suffix A: -x+1, -y+1, -z+1]. Within the metal complex cation [Co(H2O)6]2+, the CoII ion is coordinated by six water molecules at the vertices of the almost ideal octahedron. The Co-O bond lengths range from 2.0801 (5) to 2.1064 (5) Å and the O—Co—O angles span the ranges of 87.50 (2)–92.50 (2)° and 179.999 (1)–180.00 (3)°. The 2,6-diaminopyridinium organic cation (C1-C5/N1-N3) is essentially planar, with a maximum deviation of -0.013 (1) Å at atom C5. Comparing to the unprotonated structure (Al-Dajani, Salhin et al., 2009), protonation at atom N1 has lead to a slight increase in the C1—N1—C5 angle to 123.55 (5)°. The geometric parameters are consistent to those observed in closely related hexaaquacobalt(II) (Pan et al., 2003; Li et al., 2004) and 1,6-diaminopyridinium (Al-Dajani, Abdallah et al., 2009,2010; Al-Dajani, Salhin et al., 2009) structures.

The crystal structure is mainly stabilized by a network of O—H···O and N—H···O hydrogen bonds (Table 2). In this network, the water molecule O atoms and organic N atoms act as donors whereas the sulphate O atoms provide the most extensive part as acceptors. A three-dimensional supramolecular structure (Fig. 2) is built up in such an arrangement that the 2,6-diaminopyridinium organic layers are sandwiched between layers formed through the remaining ions and water molecules. The crystal structure is further stabilized by weak intermolecular Cg1···Cg1 interactions [Cg1···Cg1 = 3.5231 (4) Å; symmetry codes: x-1/2, y, -z+3/2 and x+1/2, y, -z+3/2] where Cg1 is the centroid of C1-C5/N1 pyridine ring.

Related literature top

For general background to and applications of 1,6-diaminopyridinium ions, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990); Ma & Huang (2003); Patani & LaVoie (1996). For closely related hexaaquacobalt(II) structures, see: Li et al. (2004); Pan et al. (2003). For closely related pyridinium structures, see: Al-Dajani, Abdallah et al. (2009, 2010); Al-Dajani, Salhin et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

In a round bottom flask was added with stirring 1,4-dioxane (25 ml), 2,6-diaminopyridine (0.02 mol, 2.2 g) and CoSO4.7H2O (0.01 mol, 2.8 g) dissolved in water. The concoction was refluxed for 24 h and a red solution was then formed. Red blocks of (I) were formed overnight at room temperature. The filtrate was washed with 1,4-dioxane and dried at 333 K.

Refinement top

All H-atoms were located from difference Fourier map and allowed to refine freely [ranges of C—H = 0.938 (13)–0.980 (13) Å, N—H = 0.776 (15)–0.884 (13) Å and O—H = 0.784 (16)—0.863 (17) Å].

Structure description top

Generally 1,6-diaminopyridinium has an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). It also exhibits amino-imino tautomerization property (Inuzuka & Fujimoto, 1990). Molecules containing pyridyl moiety exhibit biological activity and low toxicity (Patani & LaVoie, 1996; Ma & Huang, 2003).

The asymmetric unit of the title complex comprises of half of hexaaquacobalt(II) cation, a protonated 2,6-diaminopyridin-1-ium cation, a sulphate anion and a water molecule of crystallization. The complete complex (Fig. 1) is generated by the crystallographic inversion center [symmetry code of atoms labelled with suffix A: -x+1, -y+1, -z+1]. Within the metal complex cation [Co(H2O)6]2+, the CoII ion is coordinated by six water molecules at the vertices of the almost ideal octahedron. The Co-O bond lengths range from 2.0801 (5) to 2.1064 (5) Å and the O—Co—O angles span the ranges of 87.50 (2)–92.50 (2)° and 179.999 (1)–180.00 (3)°. The 2,6-diaminopyridinium organic cation (C1-C5/N1-N3) is essentially planar, with a maximum deviation of -0.013 (1) Å at atom C5. Comparing to the unprotonated structure (Al-Dajani, Salhin et al., 2009), protonation at atom N1 has lead to a slight increase in the C1—N1—C5 angle to 123.55 (5)°. The geometric parameters are consistent to those observed in closely related hexaaquacobalt(II) (Pan et al., 2003; Li et al., 2004) and 1,6-diaminopyridinium (Al-Dajani, Abdallah et al., 2009,2010; Al-Dajani, Salhin et al., 2009) structures.

The crystal structure is mainly stabilized by a network of O—H···O and N—H···O hydrogen bonds (Table 2). In this network, the water molecule O atoms and organic N atoms act as donors whereas the sulphate O atoms provide the most extensive part as acceptors. A three-dimensional supramolecular structure (Fig. 2) is built up in such an arrangement that the 2,6-diaminopyridinium organic layers are sandwiched between layers formed through the remaining ions and water molecules. The crystal structure is further stabilized by weak intermolecular Cg1···Cg1 interactions [Cg1···Cg1 = 3.5231 (4) Å; symmetry codes: x-1/2, y, -z+3/2 and x+1/2, y, -z+3/2] where Cg1 is the centroid of C1-C5/N1 pyridine ring.

For general background to and applications of 1,6-diaminopyridinium ions, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990); Ma & Huang (2003); Patani & LaVoie (1996). For closely related hexaaquacobalt(II) structures, see: Li et al. (2004); Pan et al. (2003). For closely related pyridinium structures, see: Al-Dajani, Abdallah et al. (2009, 2010); Al-Dajani, Salhin et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The suffix A corresponds to the symmetry code [-x+1, -y+1, -z+1].
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the b axis, showing the three-dimensional supramolecular structure. Intermolecular interactions have been shown as dashed lines.
Bis(2,6-diaminopyridin-1-ium) hexaaquacobalt(II) disulfate dihydrate top
Crystal data top
(C5H8N3)2[Co(H2O)6](SO4)2·2H2OF(000) = 1284
Mr = 615.47Dx = 1.727 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9901 reflections
a = 6.6219 (1) Åθ = 3.5–37.6°
b = 14.4347 (2) ŵ = 0.99 mm1
c = 24.7590 (3) ÅT = 100 K
V = 2366.59 (6) Å3Block, red
Z = 40.35 × 0.31 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6333 independent reflections
Radiation source: fine-focus sealed tube5758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 37.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.725, Tmax = 0.821k = 2424
86569 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.6554P]
where P = (Fo2 + 2Fc2)/3
6333 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C5H8N3)2[Co(H2O)6](SO4)2·2H2OV = 2366.59 (6) Å3
Mr = 615.47Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 6.6219 (1) ŵ = 0.99 mm1
b = 14.4347 (2) ÅT = 100 K
c = 24.7590 (3) Å0.35 × 0.31 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6333 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5758 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.821Rint = 0.030
86569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.064All H-atom parameters refined
S = 1.08Δρmax = 0.60 e Å3
6333 reflectionsΔρmin = 0.38 e Å3
224 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.00813 (3)
O1W0.60030 (8)0.62537 (4)0.46843 (2)0.01288 (8)
O2W0.37213 (8)0.57254 (4)0.56500 (2)0.01253 (8)
O3W0.23481 (8)0.51148 (4)0.45350 (2)0.01281 (9)
O4W0.50958 (8)0.83091 (4)0.53640 (2)0.01281 (9)
S10.86829 (2)0.696844 (10)0.616698 (6)0.00760 (3)
O10.93408 (8)0.79469 (3)0.62001 (2)0.01200 (8)
O20.64851 (8)0.69401 (4)0.60506 (2)0.01254 (8)
O30.97898 (8)0.64929 (4)0.57237 (2)0.01158 (8)
O40.90760 (9)0.65018 (4)0.66828 (2)0.01417 (9)
N10.89603 (9)0.85415 (4)0.72893 (2)0.00943 (8)
N20.97396 (10)0.72061 (4)0.77643 (3)0.01420 (10)
N30.82794 (10)0.97979 (4)0.67371 (2)0.01328 (10)
C10.91746 (10)0.81030 (4)0.77745 (2)0.00979 (9)
C20.88017 (10)0.86024 (5)0.82461 (3)0.01229 (10)
C30.82632 (11)0.95288 (5)0.82032 (3)0.01297 (10)
C40.80547 (11)0.99626 (5)0.77070 (3)0.01179 (10)
C50.84005 (9)0.94478 (4)0.72390 (2)0.00965 (9)
H1W10.542 (2)0.6492 (10)0.4413 (6)0.030 (4)*
H2W10.724 (2)0.6368 (10)0.4648 (6)0.028 (3)*
H1W20.451 (2)0.6080 (10)0.5781 (6)0.025 (3)*
H2W20.264 (2)0.5990 (10)0.5680 (6)0.030 (4)*
H1W30.160 (2)0.5580 (11)0.4558 (6)0.029 (4)*
H2W30.165 (2)0.4675 (11)0.4463 (6)0.028 (3)*
H1W40.559 (3)0.7850 (12)0.5544 (6)0.036 (4)*
H2W40.514 (2)0.8192 (13)0.5055 (6)0.032 (4)*
H1N10.923 (2)0.8224 (9)0.6993 (5)0.021 (3)*
H2N21.014 (2)0.6963 (10)0.8039 (6)0.023 (3)*
H1N30.836 (2)0.9442 (9)0.6464 (5)0.021 (3)*
H1N20.983 (2)0.6940 (10)0.7493 (6)0.023 (3)*
H2N30.769 (2)1.0311 (10)0.6695 (5)0.022 (3)*
H20.888 (2)0.8281 (9)0.8575 (5)0.024 (3)*
H30.794 (2)0.9854 (9)0.8525 (5)0.017 (3)*
H40.768 (2)1.0617 (9)0.7676 (5)0.021 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00772 (5)0.00786 (5)0.00880 (5)0.00035 (4)0.00063 (4)0.00026 (3)
O1W0.01163 (19)0.0125 (2)0.0145 (2)0.00216 (16)0.00227 (17)0.00427 (15)
O2W0.01003 (19)0.0139 (2)0.01366 (19)0.00017 (16)0.00004 (16)0.00345 (16)
O3W0.01056 (19)0.01071 (19)0.0172 (2)0.00053 (16)0.00386 (17)0.00187 (15)
O4W0.0138 (2)0.0137 (2)0.01087 (19)0.00064 (16)0.00068 (16)0.00023 (16)
S10.00845 (6)0.00744 (6)0.00691 (5)0.00042 (4)0.00023 (4)0.00030 (4)
O10.0154 (2)0.00811 (18)0.01252 (19)0.00296 (16)0.00154 (17)0.00110 (14)
O20.00834 (18)0.0135 (2)0.0158 (2)0.00022 (15)0.00093 (16)0.00211 (16)
O30.01201 (19)0.01219 (19)0.01052 (18)0.00079 (15)0.00229 (15)0.00298 (15)
O40.0201 (2)0.0137 (2)0.00873 (17)0.00068 (18)0.00182 (17)0.00294 (15)
N10.0103 (2)0.0097 (2)0.00826 (19)0.00011 (16)0.00031 (16)0.00037 (15)
N20.0180 (3)0.0110 (2)0.0136 (2)0.00237 (19)0.0038 (2)0.00052 (18)
N30.0147 (2)0.0138 (2)0.0113 (2)0.00146 (19)0.00063 (19)0.00307 (17)
C10.0089 (2)0.0109 (2)0.0096 (2)0.00068 (18)0.00122 (18)0.00055 (17)
C20.0127 (2)0.0153 (3)0.0089 (2)0.0001 (2)0.00031 (19)0.00021 (18)
C30.0119 (2)0.0157 (3)0.0113 (2)0.0000 (2)0.0004 (2)0.00380 (19)
C40.0112 (2)0.0108 (2)0.0134 (2)0.00028 (19)0.0003 (2)0.00217 (18)
C50.0080 (2)0.0101 (2)0.0109 (2)0.00041 (18)0.00031 (18)0.00074 (17)
Geometric parameters (Å, º) top
Co1—O1Wi2.0801 (5)S1—O31.4875 (5)
Co1—O1W2.0801 (5)N1—C11.3652 (8)
Co1—O2Wi2.0985 (5)N1—C51.3654 (8)
Co1—O2W2.0985 (5)N1—H1N10.884 (13)
Co1—O3Wi2.1064 (5)N2—C11.3478 (9)
Co1—O3W2.1064 (5)N2—H2N20.810 (14)
O1W—H1W10.848 (16)N2—H1N20.776 (15)
O1W—H2W10.841 (16)N3—C51.3438 (8)
O2W—H1W20.799 (15)N3—H1N30.851 (14)
O2W—H2W20.817 (16)N3—H2N30.843 (15)
O3W—H1W30.836 (16)C1—C21.3942 (9)
O3W—H2W30.806 (16)C2—C31.3881 (10)
O4W—H1W40.863 (17)C2—H20.938 (13)
O4W—H2W40.784 (16)C3—C41.3859 (10)
S1—O41.4672 (5)C3—H30.949 (13)
S1—O11.4803 (5)C4—C51.3953 (9)
S1—O21.4842 (5)C4—H40.980 (13)
O1Wi—Co1—O1W180.0O4—S1—O3110.06 (3)
O1Wi—Co1—O2Wi89.02 (2)O1—S1—O3109.64 (3)
O1W—Co1—O2Wi90.98 (2)O2—S1—O3109.10 (3)
O1Wi—Co1—O2W90.98 (2)C1—N1—C5123.55 (5)
O1W—Co1—O2W89.02 (2)C1—N1—H1N1117.9 (9)
O2Wi—Co1—O2W180.0C5—N1—H1N1118.5 (9)
O1Wi—Co1—O3Wi89.56 (2)C1—N2—H2N2119.5 (10)
O1W—Co1—O3Wi90.44 (2)C1—N2—H1N2120.9 (11)
O2Wi—Co1—O3Wi92.50 (2)H2N2—N2—H1N2119.0 (15)
O2W—Co1—O3Wi87.50 (2)C5—N3—H1N3120.2 (9)
O1Wi—Co1—O3W90.44 (2)C5—N3—H2N3118.2 (9)
O1W—Co1—O3W89.56 (2)H1N3—N3—H2N3117.5 (13)
O2Wi—Co1—O3W87.50 (2)N2—C1—N1117.24 (6)
O2W—Co1—O3W92.50 (2)N2—C1—C2124.16 (6)
O3Wi—Co1—O3W180.0N1—C1—C2118.60 (6)
Co1—O1W—H1W1120.3 (10)C3—C2—C1118.66 (6)
Co1—O1W—H2W1121.4 (10)C3—C2—H2123.9 (8)
H1W1—O1W—H2W1106.3 (14)C1—C2—H2117.4 (8)
Co1—O2W—H1W2111.5 (11)C4—C3—C2121.91 (6)
Co1—O2W—H2W2131.1 (10)C4—C3—H3120.0 (8)
H1W2—O2W—H2W2103.8 (14)C2—C3—H3118.0 (8)
Co1—O3W—H1W3121.3 (10)C3—C4—C5118.63 (6)
Co1—O3W—H2W3122.5 (11)C3—C4—H4122.0 (8)
H1W3—O3W—H2W3108.0 (16)C5—C4—H4119.4 (8)
H1W4—O4W—H2W4109.0 (17)N3—C5—N1117.44 (6)
O4—S1—O1109.73 (3)N3—C5—C4123.90 (6)
O4—S1—O2109.29 (3)N1—C5—C4118.63 (6)
O1—S1—O2109.01 (3)
C5—N1—C1—N2179.89 (6)C2—C3—C4—C50.05 (11)
C5—N1—C1—C20.09 (10)C1—N1—C5—N3178.90 (6)
N2—C1—C2—C3178.85 (7)C1—N1—C5—C40.99 (10)
N1—C1—C2—C31.13 (10)C3—C4—C5—N3178.76 (7)
C1—C2—C3—C41.12 (11)C3—C4—C5—N10.99 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1ii0.848 (14)1.863 (15)2.7088 (7)175.4 (13)
O1W—H2W1···O4Wiii0.840 (13)1.948 (13)2.7853 (8)174.2 (13)
O2W—H1W2···O20.800 (14)1.923 (14)2.7217 (8)176.3 (14)
O2W—H2W2···O3iv0.815 (14)2.025 (13)2.8352 (8)172.7 (15)
O3W—H1W3···O4Wii0.836 (15)1.898 (15)2.7318 (8)175.1 (13)
O3W—H2W3···O3i0.805 (15)1.991 (15)2.7928 (8)173.6 (14)
O4W—H1W4···O20.863 (17)1.910 (17)2.7643 (8)169.9 (16)
O4W—H2W4···O3ii0.784 (15)1.994 (15)2.7157 (7)152.8 (18)
N1—H1N1···O10.883 (13)2.005 (12)2.8412 (7)157.6 (12)
N2—H2N2···O2v0.810 (15)2.424 (15)3.1769 (9)155.1 (13)
N3—H1N3···O10.851 (13)2.347 (13)3.0660 (7)142.6 (11)
N2—H1N2···O40.776 (15)2.162 (15)2.8977 (9)158.5 (14)
N3—H2N3···O4vi0.844 (14)2.079 (14)2.9155 (8)171.0 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x1, y, z; (v) x+1/2, y, z+3/2; (vi) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C5H8N3)2[Co(H2O)6](SO4)2·2H2O
Mr615.47
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)6.6219 (1), 14.4347 (2), 24.7590 (3)
V3)2366.59 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.35 × 0.31 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.725, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
86569, 6333, 5758
Rint0.030
(sin θ/λ)max1)0.861
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.064, 1.08
No. of reflections6333
No. of parameters224
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.60, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—O1W2.0801 (5)Co1—O3W2.1064 (5)
Co1—O2W2.0985 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.848 (14)1.863 (15)2.7088 (7)175.4 (13)
O1W—H2W1···O4Wii0.840 (13)1.948 (13)2.7853 (8)174.2 (13)
O2W—H1W2···O20.800 (14)1.923 (14)2.7217 (8)176.3 (14)
O2W—H2W2···O3iii0.815 (14)2.025 (13)2.8352 (8)172.7 (15)
O3W—H1W3···O4Wi0.836 (15)1.898 (15)2.7318 (8)175.1 (13)
O3W—H2W3···O3iv0.805 (15)1.991 (15)2.7928 (8)173.6 (14)
O4W—H1W4···O20.863 (17)1.910 (17)2.7643 (8)169.9 (16)
O4W—H2W4···O3i0.784 (15)1.994 (15)2.7157 (7)152.8 (18)
N1—H1N1···O10.883 (13)2.005 (12)2.8412 (7)157.6 (12)
N2—H2N2···O2v0.810 (15)2.424 (15)3.1769 (9)155.1 (13)
N3—H1N3···O10.851 (13)2.347 (13)3.0660 (7)142.6 (11)
N2—H1N2···O40.776 (15)2.162 (15)2.8977 (9)158.5 (14)
N3—H2N3···O4vi0.844 (14)2.079 (14)2.9155 (8)171.0 (12)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1/2, y, z+3/2; (vi) x+3/2, y+1/2, z.
 

Footnotes

On secondment from: Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Persiaran Bukit Jambul, 11900, Penang, Malaysia.

§Additional correspondence author, e-mail: nornisah@usm.my.

Thomson Reuters ResearcherID: C-7576-2009.

‡‡Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NH gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM Fellowship.

References

First citationAbu Zuhri, A. Z. & Cox, J. A. (1989). Microchim. Acta, 11, 277–283.  CrossRef Google Scholar
First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2939–o2940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1815–o1816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216–220.  CrossRef CAS Web of Science Google Scholar
First citationLi, X.-H., Miao, Q., Xiao, H.-P. & Hu, M.-L. (2004). Acta Cryst. E60, m1784–m1785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J. A. & Huang, Y. Q. (2003). Chem. J. Chin. Univ. 24, 654–656.  Google Scholar
First citationPan, J.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m286–m288.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147–3176.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds